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ABSTRACT: Humans seek to improve their wellbeing by altering ecological processes 

to maximize the output of specific ecosystem services, which often leave the system 

vulnerable to unintended and undesirable side effects. Ecosystem services emerge from 

complex interactions among ecological structures and processes occurring at multiple 

scales. The degree to which an ecosystem maintains a predictable range of structures and 

processes in the face of disturbance can be described as its resilience. The 1930s Dust 

Bowl of the North American Great Plains is an example of a system reconfiguration and 

loss of resilience that was ultimately driven by human optimization for a single 

ecosystem service, and proximately triggered by an environmental disturbance. In part to 

avoid another social-ecological catastrophe, in 1985 Congress approved a 12 million ha 

set aside program known as The Conservation Reserve Program. In 2017, The 

Conservation Reserve Program (CRP) remains the largest soil conservation initiative in 

U.S. history in terms of acres enrolled, and provides a myriad of ecosystem services. 

However, the reliable production of these services is uncertain in the face of enrollment 

variability, potentially conflicting management objectives, and global change. 

Additionally, since its inception CRP objectives have expanded beyond soil conservation 

to include pollinator conservation and game habitat –the establishment of which often 

makes use of soil destructive practices like disk tillage. The goal of this work was to 



 

uncover whether management intended to achieve multiple, simultaneously objectives for 

the CRP may ultimately lead to non-linear, unwanted outcomes for CRP grassland 

ecosystems in the North Central Great Plains.  
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1 THE POLITICAL, SOCIAL, AND ECOLOGICAL CONTEXT OF THE 

CONSERVATION RESERVE PROGRAM 

Hannah Eliza Birge, Ph.D. 

University of Nebraska, 2017 

Advisors: Craig R. Allen and David A. Wedin 

ABSTRACT: Humans seek to improve their wellbeing by altering ecological processes 

to maximize the output of specific ecosystem services, which often leave the system 

vulnerable to unintended and undesirable side effects. Ecosystem services emerge from 

complex interactions among ecological structures and processes occurring at multiple 

scales. The degree to which an ecosystem maintains a predictable range of structures and 

processes in the face of disturbance can be described as its resilience. The 1930s Dust 

Bowl of the North American Great Plains is an example of a system reconfiguration and 

loss of resilience that was ultimately driven by human optimization for a single 

ecosystem service, and proximately triggered by an environmental disturbance. In part to 

avoid another social-ecological catastrophe, in 1985 Congress approved a 12 million ha 

set aside program known as The Conservation Reserve Program. In 2017, The 

Conservation Reserve Program (CRP) remains the largest soil conservation initiative in 

U.S. history in terms of acres enrolled, and provides a myriad of ecosystem services. 

However, the reliable production of these services is uncertain in the face of enrollment 

variability, conflicting management objectives, and global change. Additionally, since its 

inception the CRP objectives have expanded beyond soil conservation to include 

pollinator conservation and game habitat –the attempted creation of which often includes 

soil destructive practices like disking. Here I explore the complex social, ecological, and 
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economic components that underpin the Conservation Reserve Program and the 

ecosystem services it provides. 
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1.1 INTRODUCTION: The political, social, and ecological context of the 

Conservation Reserve Program 

Humans seek to improve their wellbeing by altering ecological processes to maximize the 

output of specific ecosystem services, which often leave the system vulnerable to 

unintended and undesirable side effects. Grassland ecosystems, including those in the 

United States Great Plains, provide many ecosystem services such as water purification, 

food and fiber production, erosion control, waste recycling, and disease and pest 

mitigation (Hönigová et al., 2012). These ecosystem services emerge from complex 

interactions among ecological structures and processes occurring at multiple scales. The 

objective of this work is to understand how human management of ecosystems elicits 

unintended ecological feedbacks, especially from the soil system, and how these 

feedbacks might ultimately undermine original management objectives.  

 

The degree to which an ecosystem maintains a predictable range of structures and 

processes in the face of disturbance can be described as its resilience. First termed by 

Holling in 1973, resilience theory invigorated the decade’s old debate surrounding 

stability in ecology. Holling distinguished two alternate models of ecological response to 

disturbance: near-equilibrium stabilizing behavior and adaptive behavior that allowed the 

system to persist in its current state over the long-term. The former, so-called 

“equilibrium” understanding of ecosystems relies on the eventual return to steady state 

following variability ranging from small fluctuations to catastrophic shifts.  

 

An ecosystem assumed to reliably return to equilibrium could be managed with intensive 

practices to generate desired ecosystem services (e.g., food or fiber production) and then 
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abandoned to eventually restore itself through successional processes, the rate of 

return perhaps amplified with human intervention (restoration). The latter, or non-

equilibrium view of ecosystems rejects that the ecosystem inevitably returns to a 

determined equilibrium following the removal of disturbance even with intensive 

intervention. Instead, it understands systems as having multiple possible stable states. In 

the non-equilibrium view, the persistence of any one state is promoted by one or a set of 

key ecological structures and processes that can be eroded and eventually eliminated 

through repeated disturbances, with a proximate disturbance triggering reconfiguration 

into an alternative state. Once it occupies this alternative stable state, the non-equilibrium 

view understands that the system cannot return to a state resembling the initial state 

without considerable management intervention, and even then such pseudo-reversibility 

may be unachievable because old feedbacks and thresholds have been supplanted by new, 

dominant processes.  

1.1.1 European Settlement of the Great Plains: Social-Ecological Transformations  

The 1930s Dust Bowl of the North American Great Plains is an example of a system 

reconfiguration and loss of ecosystem services that was ultimately driven by human 

optimization for a single ecosystem service and proximately triggered by an 

environmental disturbance. The Great Plains, for this context, is defined as extending 

across all or a portion of ten mid-continental United States (Colorado, Kansas, Montana, 

New Mexico, Nebraska, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming) 

and the southern most parts of two Canadian prairie provinces (Saskatchewan and 

Manitoba), and the very northeastern part of Mexico (Figure 1.1).  
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As European settlers immigrated to the Great Plains in the early 19th century, they 

cultivated the land using knowledge from more mesic eastern United States (U.S.) and 

European farming traditions. A relatively wet period extending from the early 19th to 

early 20th centuries (Miao et al., 2007), the 1837 invention of the steel plow, and 

innovations in irrigation facilitated the temporary success of European and eastern U.S.’ 

farming traditions poorly suited to the Great Plains (McDonald, 2010). Yet transforming 

native grasslands to wheat croplands was an arduous undertaking, requiring heavy, oxen-

pulled plows, cutting multiple furrows through the densely rooted grassland soil (i.e., 

“sodbusting”) before it was arable (Schob, 1973).  

 

The conversion of Great Plains grasslands to cropland drove a loss of multiple ecosystem 

components, including soil organic matter. Soil organic matter is the decomposing plant 

and microbial fraction of the soil, and is central to soil functioning (Schmidt et al., 2011). 

Soil organic matter (SOM) is the central supply of energy and nutrients to belowground 

biota (including plant roots), retains moisture, contributes to complex soil structure, and 

provides belowground habitat. As a result, declines in SOM correspond to loss of soil 

fertility and biodiversity that supports a variety of ecosystem services (Wall et al., 2004; 

Schmidt et al., 2011). Sodbusting and tillage disrupt soil aggregates that protect SOM 

from microbial attack, and accelerate decomposition of recent and labile carbon (C) 

inputs by increasing contact between decomposing organisms and substrates (Burke et 

al., 1995; Dungait et al., 2012). Cropping also leads to reduced SOM through residue 

removal, shallow rootedness of crop species, and perhaps through declines in plant 

productivity associated with lower species diversity (Doran, 1980; Burke et al., 1995; 

DuPont et al., 2014; Steinauer et al., 2015). The exact amount of recently fixed C (i.e., 
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productivity) transferred belowground and incorporated into SOM is difficult to 

experimentally assess, but a metaanalysis of 271 studies puts the estimate at 5% ± 1% 

(with the rest sequestered into living root tissue or lost to microbial and root respiration) 

(Jones et al., 2009). 

 

This reduction of SOM and rhizosphere, or zone of high soil biological activity 

influenced by plant roots (Lynch and Whipps, 1990; Hinsinger et al., 2011), had 

profound implications for the resistance of soil to wind erosion in the post-European 

settlement Great Plains. The rhizosphere typically extends about 2 mm from root surface, 

after which there is a sharp decline in activity (i.e., “bulk soil”) (Jensen et al., 2005; 

Raynaud, 2010). Due to the dense root systems of native grasslands, the entire volume of 

the top meters of soil can be considered rhizosphere (Hinsinger et al., 2011). In the 

rhizosphere, complex interactions among soil physical and biological components 

contribute to the production of multiple ecosystem services. Uptake of nutrients, water, 

and ions; exudation of carbon substrates; and gas exchange create heterogeneous resource 

gradients throughout the rhizosphere. Diverse microbiota abound in these microhabitats, 

transforming nutrients and organic matter, serving as prey for higher trophic levels, and 

contributing to soil aggregate formation (de Deyn and van der Putten, 2005). Bacterial 

residues, arbuscular mycorrhizal (AM) fungi, fine roots, and larger plant roots contribute 

to aggregate formation and increased soil pore network complexity (Hinsinger et al., 

2009; 2011). Destruction of deep-rooted perennial vegetation reduced these rhizosphere 

processes, including soil-stabilization, leaving the system vulnerable to wind erosion 

during periods of low precipitation. In tilled soils with sufficient moisture, a crust of 

consolidated soil and microorganisms can temporarily protect the soil surface from wind 
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erosion (Chepil and Woodruff, 1963), but they are readily degraded by tillage 

(Zobeck, 1991), especially in low-clay soils and under low precipitation and drought 

conditions (Fryrear, 2011).  

 

In the 1890s, European settlers of the Great Plains experienced their first major drought, 

bringing to fruition the consequences of sod busting and intensive agriculture. The now 

little-known 1890s drought lasted nearly the entire decade, and extended across almost 

the entire North American Great Plains (Warrick, 1980). The drought nearly collapsed 

the burgeoning agricultural industry and elicited a significant decline of European 

settlers, with conservative estimates putting population declines at ~45-75% of the 

population – a much greater relative population loss than at any other point in European 

settlement of the Great Plains, including the later Dust Bowl (Warrick, 1980). While the 

majority of population loss was the result of emigration, starvation was not uncommon. 

Many recent immigrants to the region arrived with few resources, and the drought 

depleted what meager reserves they had (Warrick, 1980). Scarcity of locally available 

assistance and the desire by government and business leaders in the region to maintain an 

image of Great Plains as destination to make an easy fortune (Baltensperger, 1974; 

Bowden, 1977) likely exacerbated population loss and obscured crucial social-ecological 

leaning for future settlers. 

 

Another wave of settlers attracted by promises of wealth concurrent with a wet climatic 

period during the early 20th century set the stage for another drought-triggered, social-

ecological disaster, this time during the 1930s. During the first two decades of the 20th 

century, population levels rebounded and then surpassed that of pre-1890s Great Plains. 
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In addition to the sustained above-average precipitation, settlers were drawn by cheap 

land promoted by Homestead and Kincaid Acts, high grain prices driven by the First 

World War, rapid farming technological advances, and government manifest destiny 

campaigns (Warrick, 1980).  

 

In the 1920s, suddenly plummeting grain prices and expensive technological 

improvements led settlers to acquire and convert more farmland to meet the debtors’ 

demands. This drove rapid conversion of grasslands for agriculture, including that of land 

once considered too marginal for production (Warrick 1980). Fewer people began 

farming more land with diminishing returns but greater profits than ever before in the 

post-European settlement Great Plains. Yet costs were hidden both belowground, with 

the depleted rhizosphere leaving the soil increasingly vulnerable to drought, and a 

growing agricultural commodity price bubble. 

 

In the early 1930s, as wheat prices continued to drop, an anomalously cool eastern Pacific 

and simultaneously anomalously warm northern Atlantic sea surface temperatures caused 

a persistent high-pressure system over the Great Plains that was likely exacerbated locally 

by lack of soil moisture feedbacks above the central U.S., triggering the extreme droughts 

of the 1930s (Schubert et al., 2004; Miao et al., 2007; Cook et al., 2009). The droughts 

lasted the entire decade, and the top meter of soil weakly held by the depleted rhizosphere 

and soil crust was desiccated and eroded by the persistent Great Plains winds. Over more 

than 40 million ha of topsoil and tens of thousands of families were displaced from the 

Great Plains by the end of the decade (Hakim, 1995).  
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The social-ecological destruction of the 1930s dust storms remains firmly entrenched 

in U.S. cultural and political memory. Songs, photographs, and books on the subject are 

core works of Americana. For the first time in U.S. history, federal emergency relief was 

dispatched in response to a social-ecological agricultural disaster, and aid to the Great 

Plains region reached 1 billion 1930s USD by the end of the decade, with destitute farm 

families receiving the bulk of the aid (Warrick et al., 1975).   

 

The Dust Bowl reveals both the cost of not understanding hidden feedbacks in the pursuit 

of maximizing a single ecosystem service, and the relatively small frame of reference 

within which management operates. The vulnerability to drought driven by lost soil 

resilience was masked by periods of high returns and lack of a mechanism to incorporate 

knowledge from past failures into the management of the system. Importantly, the effect 

of intensive agriculture on soil was far from unknown in the course of human history. In 

the 4th century B.C.E., Plato lamented the loss of “formerly rich land” transformed “like 

the skeleton of a sick man”, attributing the destruction to intensive agriculture (in Hillel, 

1991:104). Lessons from the 1890s U.S. did not prevent the Dust Bowl, and the world 

famous Dust Bowl did not prevent a similar series of events in the Soviet Union fewer 

than 40 years later. In the Soviet episode, state directed tillage of 40 million hectares of 

virgin prairie within the brief span of 1954-65, followed by a severe drought, led to the 

wind erosion of more than 2.8 million ha and plummeted millions of peasant farmers into 

destitution and starvation (Worster, 2004). 

 

Perhaps more surprising was the effect of drought in the United States only twenty years 

on from the Dust Bowl. The 1950s drought was slightly smaller in both intensity and 
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spatial extent, and farmers experienced less absolute loss in crop than in the Dust 

Bowl. However, when crop losses during the 1950s drought are normalized according to 

decline per division month of drought (an index combining drought length and intensity 

for normalizing the comparison of different droughts), the impacts of the 1950s drought 

on non-irrigated wheat yield losses were indistinguishable from that of the 1930s 

(Warrick, 1980), 1970s (Warrick, 1980), and late 1980s (Riebsame et al., 1991) droughts. 

The social impacts of each drought in the Great Plains were successively less due to 

shifting attitudes and government programs and increased technological advances that 

buffer the social system from this specific type of ecological variability.  

 

Whether technology such as center pivot irrigation buffer society against drought have 

hidden tradeoffs that leave the system inadvertently vulnerable to other social or 

ecological stressors is unknown. “Trading” social resilience for ecological resilience 

through technological advances is not a new concept, and there is thought that such 

behaviors actually leave society more vulnerable to extreme climatic variability (e.g., 

engineering rivers with storage projects to buffer against moderate to high droughts and 

floods can enhance vulnerability to mega-droughts and mega-floods [Birge et al., 

2015a]). Indeed, exploring tradeoffs among food, energy, and water production in these 

complex social-ecological systems is a current research priority for both the U.S. 

National Science Foundation and United States Department of Agricultural.  

 

1.2 THE CONSERVATION RESERVE PROGRAM 

The Conservation Reserve Program (CRP) was established as part of the 1985 Farm Bill, 

and its social, scientific, and political lineage can be traced back to Dust Bowl response. 



 11 

Like most conservation policy, the program is inextricably a product of past efforts 

(and failures), and its primary objective is to solve ecological problems from a top-down, 

command-and-control perspective – the reasoning of which has been largely abandoned 

by ecologists and scholars of environmental policy (Craig, 2010). However, there is some 

flexibility built into the CRP, specifically through the incorporation of new ecological 

knowledge in successive Farm Bills and local flexibility, like the Conservation Reserve 

Enhancement Program (CREP), which is implemented at the state level. As a result, a 

holistic assessment of the CRP’s potential and limitations to influence complex 

ecosystem service tradeoffs requires an understanding of its historical and social-

ecological contexts as well as its measurable ecological impacts. 

 

In March 1935, two dust storms originating from the Great Plains’ darkened the midday 

sky in Washington, D.C. as Congress met to pass the Soil Conservation Act (PL 74-46), 

the first of its kind in U.S. history. President Roosevelt signed the Act in April of that 

year to establish the Soil Conservation Service (the precursor to the modern Natural 

Resources Conservation Service) under the United States Department of Agriculture 

(USDA). The Soil Conservation Service quickly established “soil conservation districts”, 

a unit still in use today, with over 3,000 unique districts across the United States. The 

Soil Conservation Service (SCS) implemented conservation districts as their primary unit 

of management partly based on the notion that local rather than federal agencies would be 

most efficacious for soil conservation and landowner engagement (Malone, 1986). Less 

than a decade later, during the Second World War, Congress increased their 

appropriations to the SCS to support farmers as they met rising agricultural commodity 

demands.  
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The 1950s-70s elicited even more federal funding for soil erosion prevention including 

aid programs to landowners for the protection of marginal lands, research to improve 

scientific understanding, and sweeping conservation policies spurred by 1960s and 70s 

environmental movement. The 1950s marked the first major drought in the Great Plains 

following that of the 1930s, and farmers found measurable relief in the set aside 

programs offered by the SCS (Warrick, 1980). The Environmental Movement of the 

1960s and 1970 saw the creation of the Environmental Protection Agency (P.L. 91-190) 

and Clean Air Act and Amendments of 1977 (P.L. 95-95; 91 Stat. 685), which joined the 

1948 Water Pollution Control Act (Ch. 758; P.L. 845), more commonly referred to as the 

Clean Water Act. During this period, Congress also authorized the National Resources 

Inventory in the Rural Development Act of 1972 (P.L 42-419) and The Water Resources 

Conservation of 1977 (P.L. 95-192), which tasked the Soil Conservation Service with 

regularly monitoring and reporting to Congress on the status of soil resources on private 

lands to better inform conservation policy. 

 

However, this improved scientific understanding, political awareness, and social support 

for conservation did not trigger the formation of the Conservation Reserve Program; an 

economic crisis did. After two decades of rising farm incomes, low interest rates, rapid 

cropland expansion, and rising farm debt (to keep pace with technological improvements 

in the 1960s and 70s), a U.S. agricultural bubble was formed and was eventually burst in 

the early 1980s by a trade embargo imposed on the Soviet Union causing commodity 

prices to plummet. Farm indebtedness in the 1980s was fifteen times that incurred by the 

1950s drought, and the U.S. lost 3% of its two million farmers during each year of the 
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1980s crisis (Barnett, 2000). Rural communities were hit especially hard during this 

period, with three non-farming jobs lost for every one farming job lost from the 

community (Stockman, 1986). Land values declined by 50%, hitting their lowest point in 

1987. When Reagan took office, he endeavored to increase exports and reduce federal 

farm subsidies with the dual aims of solving the agricultural crisis and relieving the tax 

burdens he felt middle and large sized farms placed on U.S. taxpayers. His attempts at a 

laissez-faire approach soon included a failed effort to privatize the Farm Credit System, 

an array of ad hoc production control measures, price supports, and export financing 

(Stockman, 1986). Yet, his simplified neoliberal approach, combined with the ongoing 

crisis, led to tense political protests and he quickly backed away from this strategy.  

 

Farm abandonment, low profits, and high debt among medium sized farms exacerbated 

the transition towards large corporate U.S. farms during this period (Davidson, 1989). By 

1987, corporate farm ownership was up 39% from 1979 (a large share of which were 

foreign investors), and many bankrupt farmers were hired to work their former farms as 

laborers and managers (Davidson, 1989). In response, several Great Plains and Corn Belt 

states enacted statutes limiting or prohibiting corporate farm ownership during the 1970s 

and 1980s. One of these states was Nebraska, whose citizens voted to pass Initiative 300, 

which amended the state constitution to prohibit corporate farming and ranching in 1982. 

This was followed in rapid succession with a similar amendment by South Dakota 

(Davidson, 1989). These laws were seemingly effective: in states with anti-corporate 

farming and ranching laws, rural unemployment and poverty rates were measurably 

lower by the early 2000s (Lyson et al., 2001; Lyson and Welsh, 2005).  

 



 14 

Even in the face of these anti-corporate laws, corporate farms steadily grew more 

powerful in the decades following the 1980s largely through their ability to vertically 

integrate production, processing, and distribution of commodities. By the 2000s, 

corporate farms successfully challenged states’ anti-corporate farming laws. An example 

was the precedent-setting South Dakota Farm Bureau, Inc. v. Hazeltine (340 F.3d 58; 8th 

Cir. 2003) which found a voter-approved anti-corporate farming amendment to South 

Dakota’s constitution (Amendment E) to be in violation of the Commerce Clause of the 

U.S. Constitution; [NALC, n.d.). The defeat of South Dakota’s Amendment E opened 

Nebraska’s Initiative 300 to litigation, and the Eighth Circuit Court ruled it 

unconstitutional in 2006 (CFRA, 2008; Schutz, 2009). I will not provide an analysis of 

the potential consequence of these rulings on enrollment in the Conservation Reserve 

Program –and corresponding changes in ecosystem service production –but it is worth 

noting this trend because farm size and the scale at which it implements management is 

likely influenced by the trend towards increasingly larger farms and ranches in the 

Midwest and Great Plains. 

 

The reality of the 1980s crises combined with increasing political opposition to his 

administration (and the republican party) led Reagan shift his strategy. In the words of Cy 

Carpenter, president of the National Farmers Union at the time, "Either we rely on the 

anarchy of the marketplace [...or we...] adopt a rational, coherent policy of supply 

management with program benefits targeted to the family-scale sector of agriculture" 

(Eason, 1984). In other words, for the small and medium-scale U.S. farms to remain in 

existence, federal assistance is requisite (Broder, 1987).  
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During preparations of the 1985 Farm Bill, the American Farmland Trust, Audobon 

Society, and Sierra Club lobbied forcefully to ensure a conservation provision, buoyed by 

mounting urban and suburban support for both environmental issues and farmers (e.g., 

FarmAid concerts; Visser, 1986). A 1983 report to the Congress by the Comptroller 

General on the inadequacy of existing soil conservation programs, legal feebleness of 

existing soil conservation policy (e.g., The Farmland Protection Policy Act of 1981), and 

a report from the USDA outlining the potential benefits of sodbusting legislation and a 

reserve program, incentivized the Reagan administration to include a strong conservation 

measure in the 1985 Farm Bill (Malone, 1986).  

 

In summer 1985, the Ninety-ninth Congress approved a 12 million ha set aside program 

with “sodbusting” and “swampbusting” provisions that disqualified landowners who 

farmed highly erodible land and wetlands from receiving federal assistance (Heimlich 

and Classen, 1998, Whachenheim, 2014). Highly erodible land was defined by the bill as 

Soil Conservation Service land classes IVe, VI, VII or VIII land (Malone, 1986). 

Although there was some initial controversy between the House and Senate over the 

details of the Farm Bill's conservation provisions –the farthest reaching by any measure 

in U.S. history –they were largely forgotten in chaos over terse debates concerning more 

controversial provisions like farm subsidies and corporate farm takeovers. This political 

window of opportunity allowed the Conservation Reserve Program and its sodbuster and 

swampbuster provisions to be included in the final Farm Bill, with surprisingly little 

political fanfare relative to the program’s scale in history (Malone, 1986).  
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There are complex social, economic, political, and ecological tradeoffs associated 

with any Farm Bill, and Reagan's 1985 Bill is no exception. The set aside program his 

administration initially proposed, for instance, was intended to quickly amplify 

commodity prices to bolster farm profits. This prototype had no acreage limits or 

minimum environmental vulnerability enrollment requirements and, argued critics, would 

most benefit the largest, and richest farms that had large holdings of fertile land, 

especially if they could quickly enroll during temporary lulls in commodity prices 

(Malone, 1986). This advantage to corporate farms, which could then increasingly 

aggregate struggling small farms, would hurt the small U.S. family farmer –a politically 

toxic move for the administration. It could also put tenant farmers (most of whom were 

formerly small family farmers) out of work and pass the cost of rising commodities onto 

consumers during those economic lulls.  

 

Additionally, major seed and fertilizer companies viewed the proposal as a threat to their 

survival (Malone, 1986). It was also a marked departure from the fiscal conservatism and 

laissez-faire approach the administration used as foundation for their domestic policy, 

costing them political capital within their own party. Although family farmers made up 

less than 3% of the population in the 1980s, they enjoyed record public support during 

the crises and any move by the administration to revoke aid would have similarly cost 

political capital (USWNR, 1986; Walljasper, 1986). When the 1985 Farm Bill, entitled 

The Food Security Act (P.L. 99-198) was finally passed, its set aside program, the 

Conservation Reserve Program (CRP) was designed principally to conserve vulnerable 

natural resources and to provide small and medium sized farms with financial assistance, 

with very weak commodity supply control as a distant secondary objective. 
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1.2.1 The Conservation Reserve Program: current context 

The Conservation Reserve Program, now in its 30th year, is administered by the Farm 

Service Agency (FSA) through the United States Department of Agriculture (USDA) and 

supported by the NRCS, state forestry agencies, local soil and water conservation 

districts, and state fish and wildlife agencies. In 2015, the CRP provided rental payments 

for the continuous and new enrollments of 9.5 million ha, which amounts to ~8% of the 

nation’s potential cropland being maintained under grassland, savannah, or forest cover 

(Sullivan et al., 2004). In addition to the $2 billion year-1 in direct rental payments to 

farmers, the CRP may provide $1.1 billion year in added, indirect financial benefit to 

local economies by stimulating job growth and supporting retired farmers (USDA News 

Release, 2016).   

 

In 2017, The Conservation Reserve Program (CRP) remains the largest soil conservation 

initiative in U.S. history in terms of acres enrolled, and provides a range of ecosystem 

services. However, the reliable production of these services is uncertain in the face of 

enrollment variability, conflicting management objectives, and the effects of global 

change. An assessment of ecosystem production from land enrolled in the Conservation 

Reserve Program provides a way to assess these uncertainties so that policy, 

management, and science can better support the benefits obtained by this large-scale 

program. 

 

Within the first decade of its inception, the CRP is estimated to have reduced erosion by 

between 626 and 2420 million tons, with ongoing annual erosion reduction estimated at 
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roughly 19 tons acre-1 year-1 (Feather et al., 1999). Its wildlife recreation benefits are 

estimated at $428 million year-1 (Feather et al., 1999; Sullivan et al., 2004). Other 

ecosystem services include sedimentation and runoff reduction, water purification and 

retention, habitat restoration for upland game birds, waterfowl, songbirds; and pollinator 

ecosystem services.  

 

Wetlands (including sloughs and wet meadows) are a common cover class in the Great 

Plains, and their elimination during conversion to row crop agriculture represents a major 

loss of ecosystem services that is unlikely recoverable. Wetlands are among the most 

valuable land cover types in terms of their ecosystem service production per unit area 

(Zedler and Kercher, 2005), and while the CRP and swampbuster provision led to the re-

flooding of thousands of former wetlands in the late 1980s, it is unlikely that all wetland 

ecosystem services can be restored following years of cropland cover. A study in the 

Minnesotan prairie pothole region assessed the restoration of such re-flooded wetlands on 

CRP land over twenty years. Within the first few years of restoration, many native 

wetlands plants reappeared, although this response was more gradual in wetland patches 

isolated from other wetlands in highly fragmented matrices of row crop agricultural 

cover, i.e., wetlands isolated from potential seed banks. After a decade, however, nearly 

all sites were dominated by a few nonnative and invasive species. By year 19, most of the 

wetlands' species richness had stabilized (i.e., flat rate of species additions and losses). 

Rare species found in native wetlands were poorly or not represented in the restored site. 

Perhaps more importantly, the carbon and nutrient dynamics and hydrology, which are 

core to wetland ecosystem service production, did not recover in the re-flooded CRP 

wetlands to that of their native analogs (Zedler and Kercher, 2005).  
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In upland, terrestrial grasslands, similar species community and biogeochemical 

dynamics cast uncertainty over the ability of CRP lands to function like native grasslands. 

However, even if CRP lands cannot function like their native analogs, they can still 

generate valuable ecosystem services. As a result, understanding how to manage these 

lands for is essential. Nested programs, or state-level efforts through the Conservation 

Reserve Enhancement Program (CREP) were added with successive iterations of the 

Farm Bill, and specifically targeted many different ecosystem services. One such 

program is the CP-25, which is an enrollment option in the CRP designed to provide 

"Rare and Declining Habitat" for birds and pollinators through nesting, escape cover, and 

food resource vegetation. CP-25 is offered during general CRP sign-up and in return for 

landowner participation the Farm Service Agency (FSA) provides additional annual 

rental payments, cost share payments for establishing the restoration, and mid-contract 

management cost share (USDA CP25, n.d). CRP cover is typically prioritized for low 

cost, long-term erosion prevention. As a result, most standard CRP seeds mixes are 

composed of a few native perennial grass species and few forbs. In contrast, CP-25 

programs that prioritize pollinator and upland game bird habitat use seed mixes with 

more grass species (annual and perennial) and a greater relative abundance of forb 

species. 

 

Whether the CRP can effectively mitigate another social-ecological crises such as the 

Dust Bowl or the 1980s farming crisis remains unknown. The CRP provides an 

abundance of ecosystem services, yet it rarely receives empirical social-ecological 

assessments. Like the other conservation programs it replaced and joined, the CRP has 
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multiple –sometimes conflicting –objectives that are have varying levels of success 

due to a diversity of complex social-ecological variables. Provisions like swampbuster 

and sodbuster, for instance, have been only partially effective due to lack of a common 

definition or measurement framework and local variability, haphazard enforceability, and 

because fluctuating commodity prices continue to overwhelm conservation payments in 

determining land use conservation rates (Heimlich and Classen, 1998; Schnepf, 2008). 

Indeed, the decision to enroll, re-enroll, or remove land from the CRP relies on a complex 

combination of economic and social drivers. Due to the large spatial scale of CRP land, 

enrollment changes can have major consequences for ecosystem service provisioning 

from CRP lands.  Understanding the variables that influence enrollment changes can 

therefore provide insight into shifting ecosystem service production from Conservation 

Reserve Program lands. 

 

Although there are about two dozen similar voluntary conservation programs in the 

United States that receive federal funding, roughly 40% of these funds are devoted to 

easement programs through the CRP. In 2016, enrollment was 9.5 million ha, down 

roughly 5.3 million ha from 2007 (USDA/FSA/EPAS, 2016). The sheer size of this 

program means that even percentage change in enrollment can have profound impacts on 

land use/land cover change, and associated ecosystem services. In some instances, the 

processes of interest may misalign with CRP contract length. For example, at some sites 

local conditions mean that soil carbon sequestration requires centuries to achieve the 

same results measured in decades at other sites (e.g., Baer et al., 2010). The spatial extent 

of a CRP field may not be able to accommodate multiple concurrent ecosystem services, 

depending on the suite of ecosystem services of interest (Birge et al., 2016b).  
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As a result, an assessment of the economic drivers underlying CRP enrollment 

provides insight into potential shifts in grassland versus agricultural ecosystem service 

tradeoffs.  

 

The feedbacks that influence enrollment are largely economic, and these economic 

effects are rapid. Models investigating the effect of rising corn prices on CRP enrollment 

in Iowa show that an increase of $2 to $3 bushel-1 of corn would result in the removal of 

half of the state's CRP acreage (Secchi and Babcock, 2007). Under a scenario where corn 

prices increased to $4 bushel-1, a doubling of annual CRP payments would be necessary 

to retain all CRP lands (Secchi and Babcock, 2007). Another model including all of the 

Corn Belt states (Indiana, Illinois, Iowa, Missouri, Nebraska, Ohio, and Kansas) showed 

13-22% decreases in enrolled acres for every dollar increase bushel-1 between 1986 and 

2010 (Gill-Austern, 2011). According to the model, the minimum period after which 

changes in commodity prices affect enrollment is three years (Gill-Austern, 2011). This is 

likely attributable to the enrollment tradeoffs farmers must assess, including current and 

potential future commodity prices, ethanol policy, policy details, emergency haying 

provisions, vulnerability to erosion, value of adjacent land, penalties for early-opt-out 

(i.e., breaking a CRP contract), and rental payments (Cooper and Osborn, 1998; 

Hellerstein and Malcolm, 2011). CRP rental payments are adjusted based on a variety of 

factors, with land valuation primary among them. Yet property taxes are also adjusted 

based on land value, adding further complexity. While these variables influence CRP 

enrollment, commodity prices remain the primary determinant of CRP enrollment, even 

after accounting for rental payment adjustments (Wachenheim et al., 2014).  
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1.3 RESILIENCE AND MANAGEMENT OUTCOMES 

The Conservation Reserve Program in the North Central Great Plains is comprised of 

wetland, grassland, savanna, and forested ecosystems, where complex within and cross-

scale interactions give rise to ecosystem services that support societal survival and well 

being within and beyond the Great Plains. Historically, grasslands covered approximately 

50% of terrestrial earth surface, a number that now more closely resemble 26% (Sterling 

and Ducharne, 2008; World Bank, 2017), due almost entirely to agricultural 

intensification (Sterling and Ducharne, 2008). Remaining grasslands are heavily utilized 

for rangeland production, supporting 1800 million livestock units (Kemp and Michalk, 

2007). Remaining grassland ecosystems are vulnerable to conversion for crop production, 

and in cases like the Dust Bowl or salinization events for instance, vulnerable to non-

linear loss of functioning following such conversion so that even if restoration is 

attempted they can never fully return to their grassland state (Birge et al., 2016a). 

Conservation Reserve Program grasslands are managed partly in an effort to protect 

society from the undesirable effects of crossing such thresholds, but doing so requires 

reducing uncertainty surrounding complex ecological scales of interaction in natural 

resources management plans. 

 

Ecosystems are complex adaptive systems, which are systems with nontrivial emergent 

(not deducible from the sum of its parts) and self-organizing behaviors (Mitchell, 2009). 

Complex adaptive systems are made up of components connected through a network of 

interactions with no central controller. Adaptation to external information inputs (e.g., 

extreme weather events or nutrient inputs) arises from simple rules of operation giving 

rise to complex behaviors and sophisticated information processing, without an internal 
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or external controller (Holland, 1992; Levin, 1998). Patterns of feedbacks and 

information processing in complex systems can, however, give rise to important 

processes at some specific scale that defines an operational space for a complex adaptive 

system. This functioning cannot be reduced to the sum of its parts, because it emerges 

from the interactions among components at smaller, nested scales.  

 

In systems with low functional redundancy and/or inability to withstand certain 

disturbances, even a small alteration to a single process can trigger enough shifts from 

negative (stabilizing) to positive (runaway) feedbacks throughout the system to cause a 

systemic reconfiguration. The alternative stable state of the complex system is often 

persistent and unable to deliver the type and quantity of pre-shift ecosystem services. 

Systems highly vulnerable to reconfiguration are described as having low resilience, 

because their alternative states are typically persistent and resistant (at least to 

reversibility). As such, resilience is an emergent system property that describes the 

amount of disturbance a system can withstand before the loss of key processes trigger the 

reconfiguration of its components, not a normative description of a pristine ecosystem or 

a management objective.  

 

While the Conservation Reserve Program typically makes use of ten or fifteen year 

contracts with a single management (“mid-contact management”) event midway through 

the lease, limits enrollment acreage per landowner, and has minimum vulnerability 

criteria; ecological processes occur across greater variability, ranging from microbial to 

millennial (Figure 1.3a). It is impossible to incorporate all of these scales into a single 

study, but by measuring multiple aboveground and belowground ecological processes in 
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response to common mid-contract management treatments on a Conservation Reserve 

Program grassland (Figure 1.3b) and linking these processes to ecosystem services and 

social perceptions, I attempt a more thorough assessment of the complex social-

ecological tradeoffs associated with Conservation Reserve Program grasslands, and the 

implications for the Program’s long-term ecosystem service production.  

1.4 FIGURES 

 

Figure 1.1 The United States Great Plains ecoregion (yellow) and a subsection of United 

States Midwest (orange) where prairie was the historic land cover. Across these regions, 

from east to west, the prairie cover is tallgrass, mixed grass, and short grass. The 

boundaries between cover types are porous and dynamic based on large scale (climatic) 

and local scale (e.g., soil type, topography, hydrology, land use) variables.  
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Figure 1.2 An example of different potential suites of ecosystem services and the 

tradeoffs associated with different cover types in a Great Plains landscapes (from Birge et 

al., 2016b). 
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Figure 1.3a. A Stommell diagram of structures and processes in a North Central Great 

Plains grassland system, including belowground, aboveground, climatic, and disturbance 

regime components.  
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Figure 1.3b. A Stommell diagram showing components of the Conservation Reserve 

Program on a North Central Great Plains grassland.  
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2 ECOSYSTEM SERVICES FROM THE CONSERVATION RESERVE PROGRAM: 

LANDOWNER PERCEPTIONS AND PRACTICES IN NEBRASKA 

Hannah Eliza Birge, Ph.D. 

University of Nebraska, 2017 

Advisors: Craig R. Allen and David A. Wedin 

ABSTRACT: Conservation Reserve Program (CRP) lands in Nebraska comprise a vast 

gradient of environmental variables, past land uses, and management objectives, yet little 

is known regarding individual landowner practices and perceptions of their management. 

To address this uncertainty, I designed survey questions to assess which management 

practices were most commonly used in the Nebraska CRP, landowner-desired ecosystem 

service outcomes, and how those actions and preferences compare to scientific outcomes. 

Ecosystems services can be defined as “benefits people obtain from ecosystems” and 

emerge from complex ecological interactions that can be clarified through adaptive 

management to avoid surprising, non-linear system response to management. By 

assessing landowner responses, I can frame the results of my field study to uncover how 

the more common management practices across the state might lead to a non-linear loss 

of the ecosystem services that landowners identify as most important. I sent an IRB 

approved questionnaire containing questions investigating CRP management practices, 

perceptions of ecosystem services, perceptions of ecosystem disservices, landowner 

perceptions of management effectiveness, and reasons for choosing among management 

practices to over 10,000 CRP enrollees in the state of Nebraska. The survey response rate 

was roughly 23%. The majority of respondents (n=730) reported interseeding on their 

CRP lands (which was unsurprising given that interseeding is often used in conjunction 
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with other practices), followed by herbicide application (n=634), burning (n=597), 

disking (n=384). Respondents ranked burning as the most effective management practice, 

followed by herbicide application, interseeding, and then disking. While considered most 

effective, only 26% of respondents reported that they used burning as a management 

practice. Respondents overwhelming attributed their decision to use a specific practice to 

agency recommendation, rather than to ease, cost, or past practice. Respondents reported 

“erosion reduction” as the CRP ecosystem service with highest importance, followed 

closely by “habitat for pheasants and quail”. The respondents generally disagreed that the 

CRP provided ecosystem disservices, with the exception of the disservice of “invites 

noxious weeds”. These survey results reduce uncertainty surrounding landowner 

perceptions and behavior, specifically that while landowners perceive burning as 

effective, they are not using it as management practice in proportion to its perceived 

effectiveness. By capitalizing on agency influence and the perceived effectiveness of 

burning, there is an opportunity for a statewide, agency-administered adaptive 

management plan to test how burning versus herbicide application on CRP lands 

influence soil and upland game bird ecosystem services.  
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2.1 INTRODUCTION 

Conservation Reserve Program (CRP) lands in Nebraska comprise a vast gradient of 

environmental variables, past land uses, and management objectives, yet little is known 

regarding individual landowner practices and perceptions of their management. As of 

May 2017, Nebraska had 324,311 ha enrolled in the CRP across 21,521 contracts 

(104,674 ha of which are under continuous enrollment) (FSA, 2017). In Nebraska, 21,481 

of those ha are planted to pollinator habitat (CP42), and 8,693 ha are considered high 

erodible lands, although the amount of acreage on which these designations co-occur is 

not available. Individual landowner decisions across Nebraska CRP lands represent 

uncertainty in the social-ecological system that can be reduced using standard survey 

methods, which was the objective of this study. 

 

Working with the survey designers, I developed questions to investigate Nebraska CRP 

enrollee perceptions of ecosystem services and disservices (classified using the 

ecosystem-focused rather than Millennium Assessment classification; discussed below) 

associated with the CRP and outcomes from mid-contract management practices I 

assessed in a field study (results discussed in Chapters 3, 4, and 5). This provided me 

with a way to explore which practices were most commonly used in the Nebraska CRP, 

which CRP ecosystem services where most valued by landowners, which CRP ecosystem 

disservices were most undesired by landowners, and how management practices and 

preferences align vis-à-vis the scientific outcomes I obtained from my own field 

campaign.  
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2.1.1. Ecosystem services: history, definition, and classification  

The ecosystem services concept was formalized during the 1960s and 70s to leverage 

environmental concerns during policy decision-making (Ehrlich and Ehrlich, 1981). In 

the early 21st century, the United Nations' Millennium Assessment provided the now 

commonly used definition of ecosystem services as “benefits people obtain from 

ecosystems” (MEA, 2003; 2005), and classified them into four categories: supporting, 

provisioning, regulating, and cultural services (Figure 2.1). Supporting ecosystem 

services are foundational to provisioning, regulating, and cultural services, and together 

all ecosystem services by definition contribute to human wellbeing.   

 

The Millennium Assessment classification scheme informs research, ecosystem services 

valuation, and policy applications, although its shortcomings have inspired alternative 

approaches (Carpenter et al., 2009). Specifically, other methods have been proposed to 

improve consistency in ecosystem service valuation (e.g., Fisher and Turner, 2008), 

establish common indicators for comparison across ecosystems and institutions (Fisher et 

al., 2009), and explicitly separate end products from their underpinning ecological 

processes (Boyd and Banzhaf, 2007; Wallace, 2008). These alternative approaches, 

experts argue, better reflect the complex realities of social-ecological systems (Haines-

Young and Potschin, 2010) (Figure 2.2). The Millennium Assessment's tendency to 

confound ecosystem service end products with their means of production is exemplified 

by the “supporting services” classification (Boyd and Banzhaf, 2007; Wallace, 2007). 

Inability to distinguish between a shared underlying process and multiple end products 

could result in unintentionally imbalanced valuation of services. In management schemes 
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where tradeoffs must be carefully weighed to achieve multiple objectives using finite 

resources, this can be problematic (Wallace, 2007).  

 

The “ecosystem-focused” approach to ecosystem service assessment addresses some of 

the issues arising from the Millennium Assessment’s classification scheme by 

distinguishing the “final products” that are consumed or used and their underpinning 

ecological structures and processes (Haines-Young and Potschin, 2010). This 

distinguishes ecological components central to the simultaneous production of multiple 

ecosystem services (multifunctionality). This approach is also well suited to the 

uncertainty I attempted to address with the survey, by listing ecosystem services that are 

end products, rather than underlying processes, or midpoints between the two.  

2.1.2 Adaptive management  

Adaptive management provides a way to clarify otherwise concealed relationships among 

management actions, ecological processes, and the production of ecosystem services. 

Holling (1978; further developed by Walters, 1986) introduced adaptive management as 

part of a growing recognition that complex systems of people and nature do not 

predictably return to an equilibrium state following disturbance but instead adapt through 

novel or altered feedbacks (i.e., persist in their initial state), or fail to adapt (i.e., 

reconfigure into alternative state) (Allen and Gunderson, 2011). Adaptive management 

was designed to identify essential structures and functions and their response to external 

stressors to avoid critical thresholds. Management that optimizes the production of a 

single or few ecosystem services may eventually erode the very structures and functions 

that maintain the state needed to produce the services of interest, eventually leading to an 
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abrupt and persistent loss of those ecosystem services (Scheffer et al., 2001). When 

applied in the appropriate contexts (i.e., high controllability and high uncertainty; 

Peterson et al. [2003]), adaptive management provides a way to avoid non-linear loss of 

ecosystem services while proceeding with management. By assessing landowner 

responses, my objective was to frame the results of my field study to uncover how the 

more common management practices across the state that might lead to a non-linear loss 

of the ecosystem services that landowners identified as most important.  

2.1 METHODS 

I included questions regarding CRP management practices, perceptions of ecosystem 

services, perceptions of ecosystem disservices, landowner perceptions of management 

effectiveness, and reasons for choosing among management practices in a larger survey 

sent to every CRP enrollee in the state of Nebraska. Surveys were sent to over 10,000 

participants by way of an IRB approved invitation letter that included a paper survey with 

a weblink for an option to fill out the survey online. The paper survey and web survey 

were both designed using SNAP survey software. Returned and completed paper surveys 

were scanned and digitized.  

 

I assessed landowner perception of ecosystem services using a Likert scale (i.e., Not at all 

important, Not important, Indifferent, Important, Very important) using the prompt “How 

important are each of these benefits of CRP to you?” for the following ecosystem 

services: (1) provides habitat for pheasants and quail, (2) restores diverse native prairies, 

(3) reduces erosion, (4) decreases water runoff, (5) provides better quality soil for the 

future, (6) reduces the impact of drought, (7) improves water quality, (8) provides 
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hunting opportunities, (9) provides wildlife-viewing opportunities, (10) provides 

places for recreation, (11) increases pollinators. To assess how landowners perceived 

negative effects, or ecosystem disservices, associated with the CRP, I again used a Likert 

scale (i.e., Strongly disagree, Disagree, Neither agree nor disagree, Agree, and Strongly 

Agree) using the prompt: “Although the CRP provides benefits, it may cause negative 

effects as well. How much do you agree with each of the following statements regarding 

potential negative effects of CRP to your land?” for the following ecosystem disservices 

(1) invites noxious weeds, (2) harbors predators of livestock, (3) neighbors have a bad 

perception of CRP, (4) increased pressure to open access to hunting, (5) source of weed 

seed for adjacent lands, (6) harder to farm in the future, (7) loss of aesthetics, (8) harbors 

pests, (9) reduces moisture for crops. I also asked what type of management pratice land 

owners conducted: (1) burning, (2) disking, (3) herbicide treatment, (4) interseeding, 

and/or (5) none; and to select primary reason they chose to implement those management 

practices: (1) cheapest option, (2) easiest option, (3) what they’ve always done, or (4) 

recommended by the management agency. Using a Likert scale, I also asked landowners 

to rank the effectiveness of aforementioned management practices (i.e., Not at all 

effective, Not effective, Neutral, Effective, Very effective).  

2.2 RESULTS 

I received 2,285 completed responses largely through the mail from 659 zip codes across 

Nebraska. At roughly 10,000 surveys sent to nearly all of Nebraska’s 1182 zip codes, this 

represents a response rate of 22.85% and represents 55.75% of Nebraska’s zip codes. The 

majority of respondents (730) reported interseeding on their CRP lands which is 

unsurprisingly as interseeding is often conducted in conjunction with other management 



 35 

practices, followed by herbicide application (634), burning (597), disking (384), or no 

management (171) (Figure 2.5). When asked to rank the effectives of all practices (not 

just those they apply on their CRP enrolled land), respondents ranked burning as the most 

effective, followed by herbicide application, interseeding, and then disking (Figure 2.6). 

Generally, the respondents considered burning, herbicide (Figure 2.7), and interseeding 

on the whole to be effective, but considered disking on the whole to be less effective. 

Interestingly, while burning was considered to be the most effective treatment for 

achieving management objectives, only 26% of respondents reported using this treatment. 

Herbicide had a surprising effect on plant and soil dynamics in the field portion of my 

study (see Chapters 3 and 4), which is why I examined herbicide users more closely 

(Figures 2.7 and 2.8).   

 

When asked why they chose to implement their chosen management action, respondents 

overwhelming attributed their decision making to agency recommendation, rather than 

ease, cost, or past precedence (Figure 2.8). The decision to apply herbicide followed a 

similar trend to the other treatments, but with a relative higher proportion in users whose 

primary reason to apply management was past precedence, and a relatively lower 

proportion of herbicide users who choose a management practice based on cost or ease 

(Figure 2.8). In other words, herbicide use is more attributable to agency 

recommendation and past precedence rather than ease or cost of use, relative to the other 

practices. Overall however, agency recommendation is still the most influential reason 

for using any management practice.  
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With the exception of “provide places for recreation”, the respondents generally 

ranked all the CRP ecosystem services listed on the survey as more important than not 

important (Figure 2.9). Respondents reported “erosion reduction” as the CRP ecosystem 

service with highest importance, followed closely by “habitat for pheasants and quail”, 

with “better quality soil for the future” and “decreased water runoff” roughly tied for the 

third. While “restoring diverse native prairies”, “increase pollinators”, and “provide 

wildlife-viewing opportunities” were generally ranked as more important than not 

important, they did not receive as high importance ranking as the other ecosystem 

services (again, with the exception of recreation, which was ranked lowest and had more 

respondents ranking it, on the whole, as not important than important).  

 

The respondents were generally neutral or disagreed that the CRP provided the ecosystem 

disservices listed on the survey (Figure 2.10), with the exception of the disservice of 

“invites noxious weeds”, which respondents agreed was an ecosystem disservice 

associated with the CRP. Following “invites noxious weeds”, respondents also disagreed 

the least (i.e., agreed that the CRP provided the ecosystem disservice) with “increased 

pressure to open access to hunting”, “source of weed seed for adjacent lands”, “harder to 

farm in the future”, and then “harbors pests”. Respondents disagreed most strongly that 

the CRP “harbors predators of livestock”, drives a “loss of aesthetics”, and “reduces 

moisture for crops” (i.e., they disagreed that the CRP provided those ecosystem 

disservices).  
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2.3 DISCUSSION 

The respondents in this survey surprisingly revealed that, as a group, they think burning 

is the most effective mid-contract management practice for meeting their objectives, even 

though only about a quarter implement the practice. Instead, they are more commonly 

applying herbicide and interseeding (although interseeding is likely used in conjunction 

with the other mid-contract management practices). Just as surprisingly, respondents 

attribute their choice of management practice to agency recommendations rather than 

ease or cost, revealing the leverage of agencies to direct management in the state. This 

provides a rare opportunity for agencies to have a profound influence on Nebraska’s CRP 

ecosystem services provisioning, by capitalizing on the high controllability necessary for 

adaptive management to proceed. It is rare for an opportunity to use adaptive 

management for ecosystem services on such a large spatial scale, and amenability to 

burning combined with the influence of agency personnel –and current low agricultural 

commodity prices driving high demand for CRP enrollment –provides such an 

opportunity in the Nebraska CRP.  

 

Herbicide application is a commonly used practice in Nebraska, perceived as effective, 

and is more likely to be used than the other practices due to agency recommendation. 

This, more specifically, provides an opportunity for state agencies to design county or 

state level adaptive management plans to assess how burning versus herbicide influence 

different suites of ecosystems services among CRP fields in Nebraska. A shifting mosaic 

of herbicide and burning might, for example, produce a wider array of ecosystem services 

than would be available at a single burned or herbicide patch in space and time (Figure 

2.4). Alternatively, such an investigation might reveal that one practice is superior over 
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the other in some, most, or all contexts and scales for eliciting certain ecosystem 

services. An opportunity for such a plan is especially strategic given that survey 

respondents mirrored the CRP in identifying soil health and upland gamebird habitat 

production as leading management priorities. They also identified unwanted species, and 

the spread of unwanted species to adjoining land, as leading undesirable ecosystem 

disservices associated with CRP enrollment. Burning may be the most effective method 

for dealing with many undesirable grassland plant species –notably eastern redcedar, 

which rapidly spreading in the state – even though herbicide is commonly against 

unwanted plant species. By creating a burning and/or herbicide schedule to elicit different 

size and timings of burns or herbicide treatments among CRP fields in the state, agencies 

could directly test management objectives related to soil health, upland gamebird habitat, 

and nonnative species in a structured decision making approach that improves field, 

county, and state level CRP management. 

2.4 CONCLUSION 

These survey results reduce uncertainty surrounding landowner perceptions and behavior, 

specifically that while landowners perceive burning as effective they are not using it as a 

management practice in proportion to its perceived effectiveness relative to other 

practices. This appears attributable to the influence of agency personnel, which is ranked 

higher than cost or ease when it comes to landowners choosing among management 

practices. By capitalizing on the influence of agency personnel and perceived 

effectiveness of burning among landowners, there is an opportunity for a statewide CRP 

adaptive management plan to test how burning versus herbicide elicit different suites of 

ecosystem services through space and time on Nebraska CRP lands. 
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2.5 FIGURES 

 

Figure 2.1 The Millennium Assessment's Framework for Classifying Ecosystem Services 

(modified from the Millennium Assessment [2005]). The three consumable or usable 

classes of ecosystem services (provisioning, regulating, and cultural) rely on supporting 

ecosystem services, which are not directly consumed or used. 
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   Supporting 
 

§  Soil formation 
§  Nutrient cycling 
§  Primary production 
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Figure 2.2 An ecosystem services classification scheme that distinguishes between means 

(ecosystem structures and processes) and end products (ecosystem services and benefits), 

and illustrates how adaptive management may be used to manage the ecosystem to affect 

the flow of services to the social system (modified in part from Haines-Young and 

Potschin [2010]).  
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Figure 2.3 The adaptive management cycle (from Allen et al. [2011]). 
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Figure 2.4 Model illustrating inherent tradeoffs in ecosystem services from management 

actions as influenced by scale. Black outlines highlight changes in tradeoffs with 

increasing scale. 
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Figure 2.5 The number of respondents who reported implementing the different mid 

contract management treatments on their CRP enrolled acreage.  
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Figure 2.6 The proportion of effectiveness rankings respondents assigned to the four 

management practices. 
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Figure 2.7 The number of respondents according to how they ranked the effectiveness of 

herbicide applications.  
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Figure 2.8. The number of respondents according to the primary reason they applied a 

specific management practice, with herbicide application highlighted.  
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Figure 2.9 The importance respondents assigned to ecosystem services associated with 

the CRP. 
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Figure 2.10 The agreement respondents assigned to various ecosystem disservices 

associated with the CRP.  
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3 PLANT COMMUNITY RESPONSE TO COMMON MANAGEMENT 

PRACTICES ON A NORTH CENTRAL GREAT PLAINS CONSERVATION 

RESERVE PROGRAM GRASSLAND 

Hannah Eliza Birge, Ph.D. 

University of Nebraska, 2017 

Advisors: Craig R. Allen and David A. Wedin 

ABSTRACT: Since European settlement in the U.S. Great Plains and Midwest, it is 

estimated that native tallgrass prairie cover has declined by as much as 99.9%, with 

losses largely attributed to conversion to cropland and alteration to the historical 

disturbance regime. The Conservation Reserve Program (CRP) enrolls over 9.7 million 

ha of the nation’s agricultural lands most vulnerable to erosion, converting them back to 

perennial vegetation cover in order to protect the nation’s soil resources against erosion. 

However, CRP grasslands removed from the historical disturbance regime are susceptible 

to dominance of late successional plant species. To remedy this, a mid-contract 

management (MCM) is required in nearly all CRP contracts. Importantly, however, mid-

contract management mimics disturbance events, while attempting to elicit ecological 

outcomes that emerge from disturbance regimes. An explicit desired management 

outcome of such practices is higher biological diversity. Whether more diverse plant 

communities are more stable or resistant to invasion is a long running debate in ecology. 

There is growing evidence, however, that more multifunctional plant communities 

generate a higher flow of ecosystem services like food, fuel, and fiber production; carbon 

sequestration; pollinator resources; game habitat; and medicine. But managing for the 

moving target of biological diversity is not always simple due to the inherent uncertainty 

and complexity of ecosystems. By measuring biodiversity and more broad plant 
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groupings (native versus nonnative; graminoids versus forbs and shrubs; annuals 

versus perennials) in response to four commonly used mid-contract management 

practices of burning, disk tillage, herbicide application, and a high diversity interseeding, 

I sought to reduce this uncertainty. My results reveal that while management had no 

influence on species diversity, it can influence ecological multifunctionality by selecting 

for broader plant groupings of interest to managers.  
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3.1 INTRODUCTION   

3.1.1 The Conservation Reserve Program: using management to elicit diversity 

Since European settlement in the U.S. Great Plains and Midwest, it is estimated that 

native tallgrass prairie cover has declined by as much as 99.9%, with mixed and 

shortgrass prairie declining by 20-80% (Samson and Knopf, 1996). Conversion to 

cropland and changes to the historical disturbance regime drove much of this decline, 

contributing to a profound loss of landscape heterogeneity and biological diversity in the 

modern Great Plains (Risser 1988; Sterling and Ducharne, 2008). 

 

The Conservation Reserve Program (CRP) enrolls over 9.7 million ha of the nation’s 

agricultural lands most vulnerable to erosion, converting them back to perennial 

vegetation cover in order to protect the nation’s soil resources against erosion. Within its 

first decade, the CRP was estimated to have reduced erosion by between 626 and 2420 

million tons, with ongoing annual erosion reduction estimated at roughly 19 tons acre-1 

year-1 (Feather et al., 1999). While not initially an explicit objective of the program, the 

program also provides wildlife habitat and pollinator resources. However, CRP 

grasslands removed from the historical disturbance regime are susceptible to dominance 

of late successional plant species, including shrubs and nonnative grasses, leading to low 

diversity grasslands incapable of supporting a high flow ecosystem services, including 

habitat provisioning.  

 

To remedy this, federal policymakers added mid-contract management requirements to 

CRP contracts with the assumption that the addition of a disturbance event meant to 

simulate historical disturbance elicits plant diversity and corresponding ecosystem 
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services. Importantly, however, mid-contract management mimics disturbance events, 

the commonly accepted definition of which is given by Pickett and White (1985) as “any 

relatively discrete event that disrupts the structure of an ecosystem, community, or 

population, and changes resource availability or the physical environment”, while 

attempting to elicit ecological outcomes that emerge from disturbance regimes, which 

include the spatial and temporal characteristics of disturbances over long periods and 

across broad spatial scales.  

 

In the Great Plains, the last glaciation ended 12, 000 years ago, making a meaningfully 

“long period” many millennia. Spatial interactions that structure most terrestrial 

ecological communities range from microbial to regional (Birge et al., 2016b). 

Disturbance regimes are defined over such periods and extents by disturbance frequency, 

return interval, spatial distribution, size, intensive, severity, rotation period, and residuals 

(biotic legacies) (Turner, et al., 1998). Under current land use patterns, however, historic 

disturbance regimes are profoundly altered, with many disturbance events diminished in 

frequency, intensity, and size on the Great Plains (Fuhlendorf and Engle, 2001). In their 

place are new sets of anthropogenic disturbances –or lack thereof.  

 

Mid-contract management offers a way to reintroduce disturbance on CRP grasslands, 

but whether it can elicit high diversity grassland cover is not well tested. In addition to 

serving as more disturbance event than as part of a disturbance regime, there is reason to 

predict mid-contract management may not stimulate high diversity grasslands. Individual 

manager and landowners are guided by their own management objectives (i.e., cost, ease 

of application) and are constrained by CRP regulations, being forced to make use of 
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treatments including herbicide application, disk tillage, and drill interseeding or some 

combination thereof  –clearly none of which are native grassland disturbances –in 

addition to small extent, low intensity burning. It is infeasible that these serve as direct 

substitutes for native disturbances which include low to high intensity wildfires, 

droughts, floods, grazing inundations, and prairie dog activity that varied along all facets 

of the disturbance regime over millennia across the Great Plains (Biondini et al. 1989, 

Vinton et al. 1993, Hartnett et al. 1996, Fuhlendorf & Smeins 1998). However, the 

Conservation Reserve Program enrolls 9.3 million ha, so understanding how management 

influences plant diversity could provide important insight into the ecosystem services 

emerging from plant community dynamics across this large area of perennial grassland 

vegetation.  

 

3.1.2 Why is biodiversity a management target? The diversity-function debate  

The question of how biological diversity (i.e., species, functional, response) influences 

ecosystem function and resilience to disturbance is a long-standing research theme in 

ecology. The original iteration of this question surrounds the effect of species diversity on 

ecosystem “stability”. Elton (1923, 1958) was an early pioneer of this work, arguing that 

high biological diversity provides resistance against environmental stressors. Early 

mathematical models (e.g., Gause, 1934) of ecosystems seemingly supported this 

relationship. These models, along with work from Odum (1953) and MacArthur (1955), 

added further (mostly theoretical) support to the diversity-stability relationship, arguing 

that simple communities are more vulnerable to dramatic oscillations and extinctions, and 

that these oscillations provided an opening for invaders to successfully establish. 
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However, there is far from scientific consensus that species diversity leads to 

stability. This is partly attributable to language: According to Chapin et al. in 2002, 

ecological “stability” had over 160 different definitions in the literature. Indeed, there is 

little attempt to isolate and measure any mechanism of species diversity from whence a 

commonly understood metric of stability emerges. In recent years, there seems to be 

recognition of this problem, as a growing body of work from Tilman (1994, 1997, 2001), 

Hooper et al. (2005) and others has begun arguing for a link between biodiversity and 

ecological functioning, more broadly. Much of this work supports the idea of 

complementarity, in which different functional groups contribute to different ecological 

tasks to more fully utilize resources, and thus increase gross ecosystem production. In 

grassland systems, a more consistent relationship is emerging between trait diversity and 

biomass production (Zavaleta and Hulvey, 2006). Another idea in of this iteration of the 

diversity-stability debate is “multifunctionality”. 

 

Ecological multifunctionality refers to the simultaneous production of numerous 

ecosystem services, and relies on a diverse community of species with a variety of 

functional traits (Wall et al., 2004; Gamfeldt et al., 2008; Maestre et al., 2012; Wagg et 

al., 2014). To maintain multifunctionality through time, a diverse community includes 

functional replacements for species excluded by shifting conditions (“functional 

redundancy”), or species with high plasticity (Isbel et al., 2011; de Vries et al., 2012). 

The link between multifunctionality and biodiversity is especially apparent in 

communities with low diversity or for a highly specialized function, where the loss of one 

functional group can be especially impactful (Nielsen et al., 2011). Multifunctional plant 

communities continue to generate ecosystem services like food, fuel, and fiber 
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production; carbon sequestration; pollinator resources; game habitat; and medicine. 

It’s no wonder managers aim for biodiversity as a target. But managing for the moving 

target of biological diversity is not always simple due to the inherent uncertainty and 

complexity of ecosystems.  

 

The objective of this study was to assess how plant biodiversity indices of species 

richness, evenness, and Shannon-Wiener diversity, and well as broader functions like 

growth form (graminoid, forb, subshrub, or shrub), growth duration (annual, biennial, 

perennial), and native status (native or nonnative) respond to common management 

practices on a North Central Great Plains CRP grassland. I hypothesized that the different 

management practices would select for different plant communities and traits due to their 

different mechanisms of disturbance, and that these impacts would have different legacies 

over time. Specifically, I hypothesized that both the community response and 

successional patterns would vary in response to the different treatments used to mimic 

common mid-contract management practices used on Conservation Reserve Program 

grasslands.  

 

3.2 METHODS 

3.2.1 Study area 

The study site was located approximately 2 km southeast of Anncar, Nebraska (Holt 

County; 42°47'26.83"N, 98°43'29.57"W) on 220 ha of privately owned land enrolled in 

the Conservation Reserve Program (CRP). Mean annual air temperature was 8.61°C and 

10.83°C in 2014 and 2015, and annual precipitation (cumulative) was 51.35 and 60.86, 

centimeters (cm) in 2014 and 2015, respectively (High Plains Regional Climate Center, 
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2017). Land cover was mixed and tallgrass prairie, and according to aerial imagery it 

was under center pivot rowcrop agriculture in 1983 and what appears to be non-center 

pivot cropland in 1954 (USGS EarthExplorer, 2017; Figure 3.1).  

 

The field was enrolled into CRP likely sometime between the late 1980s and 1990s, and 

has been continuously enrolled throughout the duration of the study. Prior to enrollment, 

there is aerial imagery evidence that the field was under irrigated rowcrop agriculture 

(Figure 3.1), and prior to that dry land rowcrop as far back as 1946. Along the southern 

border of the field, there are trees planted in two rows to form a windbreak, with a ~30 m 

interspace between the rows that was untilled and uncultivated since at least 1946 

according to aerial imagery, but possibly 1930 (conversations with a local landowner). 

 

The study site is bordered to the south by a windbreak composed of mixed deciduous and 

eastern redcedar trees, to the east by privately owned pasturelands, to the north by CRP 

grassland and deciduous woody riparian vegetation along Niobrara river, and to the east 

by an irrigated cornfield. Eastern redcedar windbreaks partially border the field along the 

middle portion of the east border, and the most easterly edge of the northern border. 

Biennially planted winter wheat firebreaks border the entire study area.  

  

Soils at the site are of Eolian sands parent material. The dominant soil associations that 

constitute the site's soil series were Valentine-Dunday loamy fine sand, Simeon loamy 

sand, and Valentine fine sand. Together, their typical profiles are an A-horizon (~0 – 30 

cm), a possible AC-horizon (18 – 36 cm), and a C-horizon (36 – 200 cm). Slope on the 

field ranged from 0-9%. Fine and loamy sands dominate the upper horizon, with sand 
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more commonly found at lower horizons (> 15 cm). This soil series is excessively 

drained, with little to no frequency of flooding or ponding, low available water storage in 

the profile, and are considered nonsaline (0.0 – 0.2 mmhos cm-1) (Soil Survey Division 

Staff, 1999). 

 

3.2.2 Treatments and Experimental Design 

In summer of 2012, the entire study site was emergency hayed in response to drought. In 

fall of 2012, the 220 ha field was divided into nine areas separated by firebreaks planted 

with winter wheat. In each of these nine sections, a 2.4 ha plot was lightly disked and 

seeded with a CR42 pollinator seed mix using a drill seeder at the NRCS recommended 

seeding rate. The rest of the site was planted with a standard CRP tallgrass prairie seed 

mix (CP25 mix, 15 species) using a drill seeder at the NRCS recommending seeding rate 

(~40 seeds ft-1). 

 

In April 2014, I applied three additional treatments to the study site in a randomized 

block design, with nine 20 m x 20 m blocks in each of the nine sections made by the 

interseeded plots and windbreak design in the field, and each block containing four plots 

assigned to the three treatments plus a control (Figure 3.2). Treatments consisted of: 1) 

burning, 2) disking, and 3) herbicide application. The herbicide replicates were sprayed 

on April 14, 2014 with a glyphosate herbicide 32 oz acre-1, or at half-label-rate (which is 

generally as effective as full label rate; Knezevic, 2008).  The burn replicates were 

burned on April 17, 2014. The temperature was 6 ° C, relative humidity was 30%, and 

wind speed was 13 MPH. The disk replicates were heavily disked to ~ 30 cm on April 20, 

2014 with a disc harrow pulled behind a tractor.  
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The treatments (burn, disk, herbicide ,and a control) were arranged with 20 x 20 m 

replicates joining the interseeding treatment of field matrix (Figure 2.4).  

 

3.2.3 Data Collection 

In 2014 and 2015, I sampled plant communities with two 1 m x 1 m quadrats in each 

field replicate, twice throughout the growing season. At each field replicate, the 1 m x 1 

m quadrat was placed randomly within the replicate (using a random number generator to 

determine the exact sampling location), and item (bare ground, litter, or plant species) 

and abundance (measured as canopy cover) was recorded.  This was repeated within the 

replicate for a total of two 1 m x 1 m quadrats per sampling period, and data were 

combined for that field replicate (i.e., abundance per replicate was on a 2 m2 basis). This 

was repeated for each replicate a total of four times: twice per year in 2014 and 2015. 

Plants were identified to the species level with the following exceptions, which were 

identified to genus level: Ambrosia, Andropogon, Carex (combined with Cyperus), 

Chenopodium, Helianthus, and Solidago. At this site, Andropogon gerardii and 

Andropogon hallii showed evidence of hybridization, so while they were often recorded 

separately, they were combined for analysis.   

 

Each plant was assigned a grouping according to its growth habit, native status, and 

growth duration using assignations from the USDA NRCS PLANTS Database (accessed 

2016). Growth habits assignments were graminoid, forb, or shrub. Subshrubs versus 

shrubs are a delineation that I eliminated due to low sample size in each group resulting 

in weak statistical power. As a result, I reclassified two subshrub species (Rosa 
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arkansana and Yucca glauca) as shrubs. When plants had a naturalized assignation 

(i.e., Chenopodium), I assigned them as “nonnative” and not as “native”. Plants’ growth 

duration was assigned as annual, biennial, or perennial.  

 

3.2.4 Analysis 

I used multi-model inference to assess my hypotheses, i.e., compared treatment, time, 

field block the combination (i.e., global), or simply a null model against one another, to 

assess which model best fit data for species richness, evenness, Shannon-Wiener Index 

(SHI), bare ground, and litter cover. I also compared how these models explained broad 

level community traits (growth habit, native status, and growth duration). The following 

models were included in multi-model inference (MMI) frameworks, with the response 

variable (Y) for each MMI as species richness, diversity, evenness, growth habit, native 

status, growth duration, bare ground abundance, or litter abundance (i.e., eight MMIs in 

total):  

Treatment model: Y ~ Treatment 

Time model: Y ~ SamplingTime 

Block model: Y ~ Block 

Global model: Y ~ Treatment+SamplingTime+Block 

Null model: Y ~  1  

I set two AICc as criteria for models being equal a priori.   

 

3.3 RESULTS 

Average species richness (± SD) (Figure 3.3), evenness (Figure 3.4), and Shannon 

Wiener (Figure 3.5) index for all replicates across the entire study (whole field, over two 
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years) was 12.94 ± 6.31, 0.80 ± 0.18 and 1.91 ± 0.54, respectively.  The multimodel 

inference framework showed that the sampling time model –and not treatment –was the 

best model for species evenness (Table 3.1), species richness (Table 3.2), and species 

diversity (Table 3.3). Species richness was higher in 2014, evenness higher in 2015, and 

Shannon-Wiener diversity higher in 2014.  

 

The models that best fit forb abundance (Figures 3.6 and 3.7) in the multimodel inference 

framework were the global (AICc = 0.52) and treatment models (AICc = 0.36) (Table 

3.4). Time was the third best fitting model (AICc = 0.09). The summary of the global 

model (Table 3.5) revealed that the interseed treatment resulted in significantly (P < 0.05) 

higher forb abundance than all other treatments and control (Figure 3.6). A summary of 

the time model showed that forb abundance was also significantly higher in 2014 versus 

2015 (Figure 3.7). The model that best fit graminoid (grass) abundance was the time 

model (AICc = 0.99) (Table 3.6; Figure 3.6), a summary of which showed significantly 

increased abundance from 2014 to 2015. None of the candidate models I selected fit the 

shrub abundance data better than the null model (AICc = 0.69), although the time model 

(AICc = 0.21) was within two AIC of the top (null) model (Table 3.7), with higher shrubs 

in 2015 versus 2014.  

 

Treatment was the model that best fit abundance of nonnative species (AICc = 0.44) in 

the multimodel inference (Figure 3.8; Table 3.8) although it was tied (within two AIC) 

with the null model (AICc weight = 0.32) so care must be taken when interpreting these 

results. Nevertheless, a summary of the treatment model showed that the abundance of 

nonnative species was significantly higher in the herbicide plots (Table 3.9). The model 
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that best fit native species abundance was time (AICc = 0.93), with higher native 

species abundance in 2015 versus 2014 (Figure 3.9; Table 3.10).  The next model was the 

null (AIC = 0.03), with all others falling below.  

  

The model that best fit annual plant abundance was that global model (AICc = 0.86), 

followed by the time model (AICc = 0.1) (Figure 3.10; Table 3.11), and a summary of the 

global model revealed that annual plant abundance was nominally significantly (P < 0.1) 

higher in the herbicide and interseed treated plots (Figure 3.10), and in 2014 (Figure 

3.11). Because I had few models in my MMI framework, that my global model was the 

best fit for the data does not mean I should reject this result as my models being a poor 

fit. This is especially true in light of none of the blocks being significant predictors of 

annual plant abundance. The time model was by far the best fit for perennial plant 

abundance (AICc = 0.99), with higher cover in 2015 (Table 3.12), and all other models 

falling below the null. The candidate models that best fit biennial plant abundance, which 

was low throughout the study, were the null model (AICc = 0.67) and the (with the time 

model (AICc = 0.3) which tied (within two AIC of one another) (Table 3.13). 

 

The best fit for bare ground percent cover was the global model (Table 3.14), the 

summary (Table 3.15) of which revealed higher bare ground in the disking treatment, and 

lower bare ground herbicide treatment and slightly lower bare ground in the control 

(Figures 3.12). The summary also revealed higher bare ground in 2014 versus 2015 

(Figures 3.13). None of the blocks had higher bare ground, with the exception of blocks, 

five and six which had nominally significantly (P < 0.1) higher bare ground. The 

treatment model was by far the best fit for litter percent cover (AICc = 1), with 
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significantly higher litter cover in the herbicide treatment, significantly less in the 

interseed treatment, and nominally significantly less in the disk treatment (Table 3.17; 

Figure 3.12).  

 

3.4 DISCUSSION 

The standard management treatments applied to this mixed grass Conservation Reserve 

Program field did not elicit plant communities with greater species diversity, but did shift 

communities towards different broader functional groupings. In contemporary grassland 

communities experiencing increased representation of species undesirable from a 

management perspective (i.e., nonnative and woody species), managing for higher 

species richness or Shannon-Weiner diversity may not support management objectives 

typically assumed to be reliant on high biological diversity. This is exemplified by the 

interseed treatment, which had no effect on Shannon-Weiner diversity, but did elicit 

higher forb abundance –a management goal of the treatment. This indicates that plant 

community targets not coupled to Shannon-Weiner diversity may be a more effective 

management objective. 

 

Management also played a significant role in other broad scale plant dynamics that are 

often of interest to managers but were independent from species identity. Herbicide 

treatment led to higher abundance of nonnative species in my study, even though it is 

frequently administered to produce the opposite outcome. Bare ground is thought to 

invite invasive, nonnative species, but in the treatment that elicited the highest bare 

ground, disking, this did not occur. Instead, the treatment with the lowest bare ground 

cover, herbicide, had the highest abundance of nonnative species. Bare ground and litter 
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cover are often used as proxies for other management objectives, including upland 

game bird habitat and various soil processes (sometimes collective referred to as “soil 

health”). My results indicate that bare ground cover may not always be an appropriate 

gauge of resource availability in the system. 

 

It appear that in my study a flush of reactive nitrogen, rather than bare ground, provided a 

foothold for nonnative species. Many nonnative species successfully colonize a system as 

a result of their ability to quickly capitalize on resources following the release stage of a 

disturbance event (i.e., the ‘fluctuating resource hypothesis’; Davis et al., 2000). 

However, as the system restructures, they are outcompeted by more resource efficient 

(often native) species. In the herbicide treatment, initially elevated soil nitrogen, possibly 

due to lack of plant re-uptake, root necromass mineralization, and/or glyphosate-induced 

priming effects (see Chapter 4), could give a continued advantage to low nitrogen 

efficiency nonnative invaders, which might then perpetuate their advantage through 

mineralization low carbon to nitrogen litter tissue content (Ehrenfeld, 2003). 

 

My results indicate that while management may not be able to simply elicit higher 

species diversity, it can still influence ecological multifunctionality through selecting for 

broad functional plant community groupings rather than at the species scale. To maintain 

multifunctionality through time, communities require functional replacements for species 

excluded by shifting conditions (“functional redundancy”). Because no species-level 

trends emerged across the site in response to treatment, and/or over time, yet broader 

groupings including growth form (graminoid, forb, or shrub), native status, and growth 

duration (annual, biennial, or perennial) did respond to treatment, my work provides 
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tentative evidence for possible functional redundancy at the species level in this North 

Central Great Plains CRP grassland. 

 

3.5 CONCLUSION 

For managers and landowners seeking to improve functional redundancy and high 

multifunctionality on similar grasslands, my work supports the use of monitoring 

programs that measure broad groupings such as native versus nonnative and forbs versus 

graminoids, rather than individual species identities. By incorporating this broader level 

information, the collection of which is more efficient than species level assessments, into 

management programs, managers can design plans that better navigate the complexity 

and uncertainty of grassland community dynamics while balancing multiple management 

objectives.  
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3.7 TABLES AND FIGURES 

Table 3.1 Multimodel inference table showing the time model as the best fitting model of 

the candidate set for plant species evenness per two m2.  

  Model K AICc Delta AICc AICc weight log-Likelihood 

2 Time 3 -57.38 0 0.84 31.83 

5 Null 2 -53.38 4 0.11 28.76 

3 Block 3 -51.59 5.79 0.05 28.94 

1 Treatment 6 -47.14 10.23 0.01 30.08 

4 Global 21 -34.95 22.42 0 45.37 

 

Table 3.2 Multimodel inference table showing the time model as the best fitting model of 

the candidate set for plant species richness per two m2. 

  Model K AICc Delta AICc AICc weight log-Likelihood 

2 Time 3 468.86 0 0.98 -231.29 

4 Global 21 477.2 8.34 0.02 -210.7 

5 Null 2 584.59 115.73 0 -290.22 

3 Block 3 586.67 117.81 0 -290.19 

1 Treatment 6 592.11 123.25 0 -289.54 
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Table 3.3 Multimodel inference table showing the time model as the best fitting 

model of the candidate set for plant species Shannon-Weiner diversity index per two m2. 

  Model K AICc Delta AICc AICc weight 
log-

Likelihood 

2 Time 3 123.76 0 1 -58.74 

4 Global 21 142.22 18.46 0 -43.21 

5 Null 2 146.16 22.4 0 -71.01 

3 Block 3 148.15 24.39 0 -70.93 

1 Treatment 6 154.43 30.68 0 -70.7 

 

Table 3.4 Multimodel inference table showing the global and treatment models as tied for 

the top model (within two AIC) out of the candidate model set for forb abundance per 

two m2. 

  Model K AICc Delta AICc AICc weight 
log-

Likelihood 

4 Global 17 6249.64 0 0.52 -3107.48 

1 Treatment 6 6250.43 0.78 0.36 -3119.17 

3 Time 5 6253.11 3.47 0.09 -3121.52 

2 Block 10 6256.56 6.91 0.02 -3118.16 

5 Null 2 6257.37 7.73 0.01 -3126.68 

 

 

 



 67 

Table 3.5 Summary of the treatment model from the forb abundance multimodel 

inference framework per two m2.  

 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) 4.9766 0.5446 9.14 0 

Control -0.3109 0.7691 -0.4 0.6861 

Disk -0.2858 0.7461 -0.38 0.7017 

Herbicide 0.9401 0.7605 1.24 0.2167 

Interseed 1.9868 0.7376 2.69 0.0072 

 

Table 3.6 Multimodel inference table showing the time model as the best fitting model of 

the candidate set for graminoid abundance per two m2. 

  Model K AICc Delta AICc AICc weight 
log-

Likelihood 

3 Time 5 10902.23 0 0.99 -5446.09 

1 Treatment 6 10913.66 11.43 0 -5450.79 

5 Null 2 10914.59 12.37 0 -5455.29 

4 Global 17 10914.78 12.55 0 -5440.13 

2 Block 10 10927.6 25.37 0 -5453.71 
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Table 3.7 Multimodel inference table showing the null model as the best fitting model 

of the candidate set for shrub abundance per two m2. 

  Model K AICc Delta AICc AICc weight 
log-

Likelihood 

5 Null 2 163.02 0 0.69 -79.21 

3 Time 5 165.38 2.36 0.21 -75.93 

2 Block 10 167.28 4.26 0.08 -64.47 

1 Treatment 6 171.37 8.35 0.01 -77.06 

4 Global 22 Inf Inf 0 -36.16 

 

Table 3.8 Multimodel inference table showing the treatment and the null model as tied 

(within two AIC) for the best fitting model of the candidate set for nonnative plant 

abundance per two m2.  

  Model K AICc 
Delta 

AICc 

AICc 

weight 

log-

Likelihood 

1 Treatment 6 1123.82 0 0.44 -555.66 

5 Null 2 1124.49 0.67 0.32 -560.21 

2 Time 5 1126.31 2.49 0.13 -557.98 

3 Block 10 1127.16 3.34 0.08 -552.92 

4 Global 17 1129.07 5.25 0.03 -545.61 
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Table 3.9 Summary of the Treatment model for nonnative plant abundance per two 

m2 from the multimodel inference. 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 3.4259 1.0907 3.14 0.002 

Control 0.9907 1.5034 0.66 0.5108 

Disk 1.6366 1.4116 1.16 0.2479 

Herbicide 3.6149 1.3583 2.66 0.0085 

Interseed 0.9289 1.4919 0.62 0.5343 

 

Table 3.10 Multimodel inference table showing the time model as the best fitting model 

of the candidate set for native plant abundance per two m2. 

  Model K AICc Delta AICc AICc weight log-Likelihood 

2 Time 5 17145.71 0 0.93 -8567.84 

5 Null 2 17152.36 6.65 0.03 -8574.18 

1 Treatment 6 17152.4 6.68 0.03 -8570.18 

4 Global 17 17158.61 12.9 0 -8562.15 

3 Block 10 17165.5 19.79 0 -8572.69 
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Table 3.11 Multimodel inference table showing global model as the best fitting model 

of the candidate set for annual plant abundance per two m2.  

  Model K AICc Delta AICc AICc weight log-Likelihood 

4 Global 17 5509.78 0 0.86 -2737.5 

2 Time 5 5514.03 4.25 0.1 -2751.98 

1 Treatment 6 5515.88 6.1 0.04 -2751.89 

5 Null 2 5524.37 14.58 0 -2760.18 

3 Block 10 5525.08 15.3 0 -2752.4 

 

Table 3.12 Multimodel inference table showing the time model as the best fitting model 

of the candidate set for perennial plant abundance per two m2. 

  Model K AICc Delta AICc 
AICc 

weight 

log-

Likelihood 

2 Time 5 11572.13 0 0.99 -5781.04 

5 Null 2 11584.03 11.9 0 -5790.01 

1 Treatment 6 11584.47 12.34 0 -5786.2 

4 Global 17 11587.28 15.15 0 -5776.4 

3 Block 10 11597.65 25.53 0 -5788.74 

 

 

 

 



 71 

Table 3.13 Multimodel inference table showing the null and time models tied (within 

two AIC) as the best fitting models of the candidate set for biennial plant abundance per 

two m2. 

  Model K AICc Delta AICc AICc weight log-Likelihood 

5 Null 2 438.68 0 0.67 -217.23 

2 Time 3 440.27 1.59 0.3 -216.91 

1 Treatment 6 445.02 6.34 0.03 -215.69 

3 Block 9 451.23 12.54 0 -214.74 

4 Global 16 465.18 26.5 0 -209.96 

 

Table 3.14 Multimodel inference table showing the global model as the best fitting model 

of the candidate set for percent bare ground cover per two m2. 

  Model K AICc Delta AICc AICc weight log-Likelihood 

4 Global 17 1035.36 0 1 -497.9 

1 Treatment 6 1074.22 38.86 0 -530.77 

3 Time 5 1093.12 57.76 0 -541.31 

5 Null 2 1118.64 83.28 0 -557.27 

2 Block 10 1133.76 98.4 0 -555.94 

 

 

 

 

 

 



 72 

 

Table 3.15 Summary of the global model for percent bare ground per two m2 from the 

multimodel inference.  

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 25.9286 4.297 6.03 0 

Time - August2014 -2.4095 3.0429 -0.79 0.4301 

Time - July2015 -21.2261 3.3459 -6.34 0 

Time - August2015 -18.3248 3.1288 -5.86 0 

Control -12.5808 3.7729 -3.33 0.0012 

Disk 17.7944 3.125 5.69 0 

Herbicide -13.2373 3.9531 -3.35 0.0011 

Interseed -4.2493 3.339 -1.27 0.2058 

Block2 0.8684 4.6065 0.19 0.8508 

Block3 2.7321 4.8255 0.57 0.5724 

Block4 -0.9474 5.0393 -0.19 0.8512 

Block5 7.8594 4.6557 1.69 0.0942 

Block6 7.5494 4.4843 1.68 0.0951 

Block7 -2.7347 5.7371 -0.48 0.6345 

Block8 0.8297 4.6747 0.18 0.8594 

Block9 2.9152 5.0471 0.58 0.5647 
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2.1.3  

Table 3.16 Multimodel inference table showing the treatment model as the best fitting 

model of the candidate set for percent cover litter per two m2 AIC table. 

  Model K AICc Delta AICc AICc weight log-Likelihood 

1 Treatment 6 1403.77 0 1 -695.65 

2 Time 5 1429.08 25.3 0 -709.37 

5 Null 2 1433.45 29.68 0 -714.69 

3 Block 10 1445.11 41.34 0 -711.92 

4 Global 166 4651.03 3247.26 0 -528.81 

 

 

Table 3.17 Summary of the Treatment model for percent litter cover per two m2. 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 15.0694 1.7928 8.41 0 

Control 2.9514 2.5354 1.16 0.2459 

Disk -4.6694 2.5534 -1.83 0.0691 

Herbicide 8.2708 2.5354 3.26 0.0013 

Interseed -5.4658 2.4569 -2.22 0.0274 
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Figure 3.1 Aerial photos of the study area from USGS indicating different land use and 

the presence of the southern border windbreak, starting in 1936 and until 2014. The 2014 

photos show the mid-contract management treatments applied in this study.  
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Figure 3.2 A custom soil report from the NRCS Web Soil Survey with a map of the 220 

ha study area with the 2.4 ha interseed (green rectangles) and other mid-contract 

management treatments (20 x 20 m white, red, blue, and yellow squares) indicating the 

relative position and size of the nine replicates on the field. Although here they are shown 

9

Custom Soil Resource Report
Soil Map (SmithCRPSoils)
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in the same order, the mid-contract management squares (save the interseed 

replicates) were randomized on the field. The yellow lines were planted in winter wheat 

in 2013 and 2014 as a firebreak. Map unit legend for the orange numbers, which indicate 

soil types are as follows, with percent cover of the study area in parentheses: 4499 – 

Dunday loam sand, 3-6% slope (0.1%); 4781 – Valentine fine sand, 0-3% slope (4.6%); 

4791 –Valentine fine sand, 3-9% slope (6.3%); 4871 – Valentine-Dunday loamy fine 

sands, 0-3% slope (39.0%); 4881 – Valentine-Simeon sands, 3-9% slope (11.4%); 4882 –

Valentine-Simeon sands, 9-30% slopes (6.9%); 8925 – Simeon loamy sand, 0-3% slope 

(31.7%). 
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Figure 3.3 Mean species richness per two m2 by year in the treatments and control. Error 

bars are ±SE.   
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Figure 3.4 Mean species evenness per two m2, by year in the treatments and control. 

Error bars are ±SE.   

 

0.00

0.25

0.50

0.75

1.00

Burn Control Disk Herbicide Interseed
Treatment

Sp
ec

ie
s 

Ev
en

ne
ss

Year
2014
2015



 79 

 

Figure 3.5 Mean Shannon-Weiner Index per two m2, by year in the treatments and control 

Error bars are ±SE.  
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Figure 3.6 Mean abundance of plants per two m2 grouped by growth forms (forb, 

graminoid, and shrub/subshrub combined into shrub), in the treatments and control. Error 

bars are ±SE.   
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Figure 3.7 Mean abundance of plants per two m2 grouped by growth forms (forb, 

graminoid, and shrub/subshrub combined into shrub) over the four sampling periods. 

Error bars are ±SE.   
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Figure 3.8 Mean abundance of plants per two m2 grouped by native status (nonnative or 

native), in the treatments and control. Error bars are ±SE.   

0

5

10

Burn Control Disk Herbicide Interseed
Treatment

Ab
un

da
nc

e

Native Status
Native
Nonnative



 83 

 

Figure 3.9 Mean abundance of plants per two m2 grouped by native status (nonnative or 

native) by sampling time. Error bars are ±SE.   
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Figure 3.10 Mean abundance of plants per two m2 grouped by growth duration (annual, 

biennial, or perennial) by treatment and control. Error bars are ±SE.   
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Figure 3.11 Mean abundance of plants per two m2 grouped by growth duration (annual, 

biennial, or perennial) over sampling times. Error bars are ±SE.   
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Figure 3.12 Percent cover of bare ground and litter per two m2 grouped by treatments and 

control. Error bars are ±SE.   
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Figure 3.13 Percent cover of bare ground and litter per two m2 grouped by sampling 

period. Error bars are ±SE.   
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ABSTRACT: A chief objective of the Conservation Reserve Program is to protect soil 

resources, yet conflicting secondary management objectives using management practices 

that disrupt the soil may lead to an inadvertent loss of soil ecosystem services, ultimately 

undermining the Program’s overarching objective. Burning, herbicide application, disk 

tillage, and drill interseeding are approved mid-contract management (MCM) practices 

meant to elicit diverse plant communities. While these management practices are allowed 

as interchangeable, they use different mechanisms and ostensibly influence the 

belowground differently. To investigate these potential differences, I measured soil 

organic matter (assessed by total carbon, labile carbon, soil nutrients, and aggregation) 

and microbial community structure and function (assessed by PLFA and extracellular 

enzymes) in response to the four management practices on a Conservation Reserve 

Program grassland in North Central Nebraska. I found that soil carbon was slightly higher 

in the herbicide relative to the disked plots, which represent the treatments with the least 

and highest bare ground, respectively. However, soil carbon was also slightly in the 

herbicide treatment relative to the control, which had the second highest percent litter 

cover, so it is unlikely that litter cover drove soil carbon storage in my study.  Mean 

weighted diameter also did not appreciable change in response to the treatments. Soil 

nitrogen was significantly elevated in the herbicide treatments, which is likely 
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attributable to lack of plant nitrogen uptake upon herbicide-induced death, 

mineralization of root necromass, microbial priming in response to the herbicide 

chemical I used, or some combination thereof. There was weak evidence for shifts in 

microbial community in response to treatments, yet it appears that herbicide-induced 

elevated soil nitrogen shifted the belowground towards carbon and phosphorus limitation, 

evidenced by elevated production of carbon and phosphorus acquisition enzymes. 

Additionally, enzyme activity Q10, which indicates lability of soil organic matter (SOM), 

was significantly lower in burn treatment, potentially due to fire adapted grassland plants 

releasing labile carbon to stimulate mineralization of SOM to release nutrients for 

regrowth following burning. The soil is directly and indirectly responsible for numerous 

ecosystem services upon which society depends for its survival and wellbeing. While the 

belowground is often ignored in management plans, my study reveals the complexity of 

its role in mediating management outcomes. 
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4.1 INTRODUCTION 

A chief objective of the Conservation Reserve Program is to protect soil resources 

(Gebhart et al., 1994; Karlen et al., 1998, Staben et al., 1997), yet conflicting secondary 

management objectives using management practices that disrupt the soil may lead to an 

inadvertent loss of soil ecosystem services, ultimately undermining the Program’s 

overarching objective. Soils contribute directly and indirectly to multiple ecosystem 

services, such as regulation of the atmosphere and climate, primary (including 

agricultural) production, waste processing, decomposition, nutrient conservation, water 

purification, erosion control, medical resources, pest control, and disease mitigation 

(Wall et al., 2004; Bardgett, 2005; de Deyn and van der Putten, 2005; Wall et al., 2015).  

Standard Conservation Reserve Program (CRP) contracts are ten to fifteen years in 

duration, with a “mid-contact management” provision requiring management intervention 

on at least a portion of the enrolled acreage around the contract’s mid point, the goal 

being a reduction in the dominance of late-stage successional or nonnative plants.  

 

Burning is one of the approved mid-contract management (MCM) practices, along with 

herbicide application, disk tillage, and drill interseeding, the last of which is often used in 

conjunction with other management techniques to establish a specific plant community. 

While these management practices are allowed as interchangeable, they use different 

mechanisms to elicit an early successional plant community and ostensibly influence the 

belowground differently both directly and indirectly through aboveground response to 

management, due to the tight coupling between aboveground and belowground 

functioning (de Deyn and van der Putten, 2005).   
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The overarching objective of this study was to assess how four common CRP MCM 

practices actions of herbicide application, low intensity burning, disk tillage, and drill 

interseeding on a Conservation Reserve Program grasslands affect the soil. I 

hypothesized that, due to their different mechanisms of action, the four different practices 

would have different effects on soil carbon, nutrients, and microbial communities.  

 

4.1.1 Soil Organic Matter and Grassland Soil Functioning 

Soil organic matter (SOM) is central to soil structure and function. SOM is made up of 

decomposing plant material and soil microbiota, and confers multiple ecological 

properties including nutrient, water, and mineral retention, energy and nutrients for the 

belowground food web, soil structure necessary to support numerous soil functions, and a 

stable reservoir of non-greenhouse gas carbon. Due to the ecosystem services it directly 

and indirectly provides, SOM sequestration is a common objective in management plans 

for systems ranging from ecological restorations to intensive agroecosystems. However, 

the complex mechanisms responsible for the formation, transformation, and loss of SOM 

are not entirely understood (Horwath, 2007), creating uncertainty in management plans 

targeting SOM sequestration.  

 

The quantity of SOM in ecosystems is the long-term result of a net primary production 

(NPP) minus the rate of decomposition, i.e., net ecosystem production. In native 

temperate grasslands, annual aboveground NPP is largely allocated to litter fall and 

standing dead biomass (Schlesinger, 1990; Schlesinger and Bernhardt, 2013), but much 

of grassland production occurs belowground, allocated to the growth and turnover of 

deep, dense, fibrous, grassland root systems. In grasslands, moisture limitations help 
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reduce the two major sources of carbon loss from the system: microbial respiration of 

SOM to CO2, and dissolved organic carbon (DOC) leaching. Mineralization of SOM also 

releases soil nitrogen and phosphorus, which are taken up by microbiota and plants, 

leached, reduced to N2 gas in the case of reactive nitrate, or gradually occluded in 

minerals in the case of bioavailable phosphorus. As a result, undisturbed grassland soils 

accumulate large SOM pools, and while they are generally nitrogen limited, grasslands 

tend to become increasingly more phosphorus limited as they age.  

 

An important control on SOM transformation and loss is microbial accessibility (Dungait 

et al., 2012; Birge et al., 2015b). SOM can be isolated from microbial attack due to 

occlusion within aggregates, low rate of material movement among pores, or strong 

physico-chemical bonding to soil clay minerals (the “Abiotic Gate Hypothesis”; Kemmitt 

et al., 2008). As a result, tillage and irrigation of temperate grassland soils leads to rapid 

loss of carbon from the soil (Jenny, 1933; Bauer & Black, 1981; Parton et al. 1983; 

Mann, 1986; Parton et al. 1987; Davidson and Ackermann, 1993; Reeder et al., 1998; 

David et al., 2000; Mikhailova, 2000). Tillage disrupts soil carbon protected in 

aggregates and redistributes soil carbon so that it is exposed to decomposing extracellular 

enzymes and organisms. Cropping reduces aboveground residue (i.e., harvest) and 

reduces belowground inputs as vegetation is shifted towards annual shallow-rooted crop 

cover (Elliott, 1986; Burke et al., 1995). Irrigation relieves water limitation on soil 

respiration, and altered soil structure and hydrology from tillage accelerates flushing of 

dissolved organic carbon (typically the lighter fraction) out of the system or to greater 

depths (> 200 cm) (David et al., 2000). The loss of soil carbon to CO2 associated with 

land use change from native cover to crop (e.g., Burke et al., 1991) occurs in all 
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ecosystem types, but the greatest SOM losses occur associated with land use change 

from former grasslands (Guo and Gilford, 2002).  

 

Whether SOM can be recovered through enrollment in the Conservation Reserve 

Program remains unknown, although there is growing evidence that quantity recovery is 

possible. The soil carbon saturation hypothesis (Six et al., 2002) posits that all soils have 

a limited amount of carbon they can store due to a variety of interacting constraints, and 

that rate of accrual will vary depending on how far a soil is from its saturation, with 

highest rates of accrual occurring in the most depleted soils, and rates slowing as 

saturation approaches. It should follow that recently restored grassland soils, which again 

generally lose the most carbon in response to conversion to cropland, gain the most 

carbon the fastest relative to other native ecosystems converted back from cropland.  A 

metaanalysis exploring how various management activities influence soil carbon storage, 

including “improved” rotational grazing strategies, different vegetation cover, and 

chronosequences of cropland to grassland or forest restorations indeed found that the 

fastest soil organic matter accumulation indeed occurred in the cropland conversion to 

grassland or forest treatments (Conant et al., 2001). Additionally, carbon accrual in these 

restorations occurred fastest in the first forty years following conversion, and in the top 

10 cm of soil (Conant et al., 2001).  

 

SOM quality, as opposed to quantity, is often defined by how easily it is mineralized. 

Recently inputted materials with low lignin to nitrogen ratio, exposed to less chemical 

and physical processing, not adsorbed onto minerals or protected within aggregates are 

often used as examples of high quality SOM in conceptual models. Whether the soils at 
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my study site appreciably accumulated carbon and nitrogen that was lost in response 

to a heavy mid-contract management disking treatment is an uncertainty that I address by 

measuring total carbon, Solvita carbon (which is a measure of the high quality, labile 

SOM, and microbial fraction), nitrogen, and phosphorus. I also measured aggregation to 

assess whether the various treatments significantly altered this potential SOM-storage 

structure, using soil undisturbed for at least 80 years from between rows of shelterbelt 

trees at the southern edge of the study area as a comparison. This soil also served as a 

potential measure of soil carbon that the soil could store at their saturation point.  

 

While the effect of tillage on soil carbon, nutrients, and the microbial community that 

rely on these resources is well studied, burning has a less well understood mechanistic 

effect on the belowground (e.g., Michelsen et al., 2004; Preston & Schmidt, 2006). Fire 

volatilizes potential future aboveground litter inputs, and may accelerate belowground 

inputs through increased root necromass and labile inputs meant to stimulate microbial 

mineralization of nutrients needed for regrowth (Michelsen et al., 2004). Fire also keeps 

at bay woody encroachers that may alter soil physical, chemical and biological properties 

(e.g., Haugo et al., 2013) Recalcitrant “black carbon” or “biochar” inputs resulting from 

high intensity, low oxygen condition fires could confer added nitrogen and water 

retention, altered pH, water repellant soil surfaces and decomposition-resistant soil 

carbon (Hamer et al. 2004; Preston & Schmidt, 2006; Zimmerman, 2010). 

 

The effect of interseeding with a high diversity seed mix –or any of the treatments 

eliciting higher aboveground diversity –on the soil is difficult to predict. The positive 

effect of plant diversity on soil organic matter accumulation has received empirical 
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support in recent years (e.g., Zavaleta et al., 2010; Eisenhauer et al., 2013) although 

disentangling the complex linkages between aboveground and belowground species and 

functional diversity, and how these relationships influence soil carbon, is not yet fully 

understood (de Deyn and Van der Putten 2005; Bradford et al., 2014). 

 

Even less is known about herbicide effects on soil functioning (Bunemann et al., 2006; 

Rose et al., 2016) largely due to the lack of empirical studies. The evidence that does 

exist shows small and ephemeral effects on soil biota, with responses specific to the class 

of herbicide, taxa, and process of interest (Rose et al., 2016). Glyphosate, belonging to 

the glycine class of herbicides, is the most widely used herbicide on earth (Duke and 

Powles, 2008) and was the herbicide used in my study. It is non-selective (for 

photoautotrophic taxa), has high sorption affinity (i.e., strongly binds to soil minerals), 

and easily undergoes xenobiotic transformation (i.e., it is biodegradable; Rose et al., 

2016). Soil microbial growth is apparently unaffected in situ at typical application rates 

(Drouin et al., 2010), and may even stimulate microbial soil respiration (personal 

communication with J. Megan Steinweg). This could be due to higher microbial 

respiration of recent root necromass, or from microbial breakdown of glyphosate through 

xenobiotic “co-metabolism” (i.e., "accidental" metabolism that does not support growth, 

cellular repair, or reproduction).  

 

 

4.1.2 Microbial Community Structure and Function  

Relative to the rest of the ecosystem, microbial biomass (i.e., bacteria, fungi, protists, 

archea) is small, yet their transformations of materials and energy in the rhizosphere 
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influence whole ecosystem functioning (Alphei, 1996; de Deyn and Van der Putten 

2005). Microbiota mineralize nutrients for plant uptake, permanently reduce reactive 

nitrogen in the system, remediate toxins, alter gas and water flow around roots by 

increasing soil aggregation (Jastrow, 1987; Kennedy, 2005; Kibblewhite et al., 2008), and 

are a food source for soil fauna, like protozoa and nematodes (Griffiths, 1990). Plants 

exude up to 40% of their fixed carbon (C) into the rhizosphere as easily decomposable 

carbon, which is the major “currency” for the belowground system (Lynch and Whipps, 

1990; Brussard, 2012). Most soil microbes are found concentrated within 2 - 5 mm of 

plant roots (Kennedy, 2005), and their activity in turn influence aboveground functioning 

(de Deyn and Van der Putten 2005), creating complex linkages between the aboveground 

and belowground.  

 

Hydrolytic extracellular enzymes are excreted by the microbial biomass to cleave nutrient 

and carbon molecules from soil organic matter for uptake, mediating belowground energy 

and nutrient cycling, and reflecting relative nutrient and carbon limitations of the 

microbial community as a snapshot in space and time (Sinsabaugh and Shah, 2011). 

Extracellular enzymes are targeted, accelerating the hydrolysis reactions of specific types 

of bonds, e.g., sulfatases cleave carbon-SO4
2- bonds in organic molecules. While they are 

energetically expensive to produce, especially in low nitrogen environments (enzymes 

are proteins), extracellular hydrolytic enzymes play an essential role in the accessibility 

and uptake of nutrients and carbon to the microbial biomass. The abundance of different 

extracellular enzymes in the soil combined with soil nutrient status and microbial 

community structure provides insight into microbial community functioning and potential 

outcomes for the aboveground. By conducting enzyme assays at multiple temperatures, I 
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can also calculate Q10 (the reaction rate sensitivity to an increase of 10 ° C) in 

response to the management treatments. These provide additional insight into soil carbon 

quality dynamics, because more biochemically recalcitrant soil carbon should be more 

temperature sensitive (have a higher Q10) (Conant et al., 2011).  The enzymes I measured 

included two carbon acquisition enzymes, a nitrogen, a phosphorus, and a sulfur 

acquisition enzyme (Table 4.1).   

 

In conjunction with measuring soil carbon and nutrients, I tested the hypothesis of 

whether microbial community structure and function responded differently in response to 

the four management practices due to their different mechanisms of actions, using 

microbial PLFA and extracellular enzyme assays to assess microbial structure and 

function, respectively. 

 

4.2 METHODS 

4.2.1 Study area 

The study site is located approximately 2 km southeast of Anncar, Nebraska (Holt 

County; 42°47'26.83"N, 98°43'29.57"W) on 220 ha of privately owned land enrolled in 

the Conservation Reserve Program (CRP). Mean annual air temperature was 8.61°C, and 

10.83°C in 2014 and 2015 respectively. Annual precipitation (cumulative) was 51.35, 

60.86 cm in 2014 and 2015, respectively (High Plains Regional Climate Center, 2017). 

Land cover is mixed and tallgrass prairie, and according to aerial imagery the study area 

was under center pivot rowcrop agriculture in 1983 and what appears to be non-center 

pivot cropland in 1954 (USGS EarthExplorer, 2017; Figure 4.1).  
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The field was enrolled into CRP likely sometime between the late 1980s and 1990s, 

and was continuously enrolled throughout the duration of the study. Prior to enrollment, 

there is aerial imagery evidence that the field was under irrigated rowcrop agriculture 

(Figure 4.1), and prior to that, dry land rowcrop agricultural cover as far back as 1946. 

Along the southern border of the field, there are trees planted in two rows to form a 

windbreak, with a ~30 m interspace between the rows that was untilled and uncultivated 

since at least 1946 according to aerial imagery (Figure 4.1), but possibly 1930 (according 

to conversations with a local landowner). 

 

The study site is bordered to the south by a windbreak composed of mixed deciduous and 

eastern redcedar trees, to the east by privately owned rangeland, to the north by CRP 

grassland and food plots and deciduous woody riparian vegetation along Niobrara river, 

and to the east by an irrigated corn-soybean rotation. Eastern redcedar windbreaks 

partially border the field along the middle portion of the east border, and the most 

easterly edge of the northern border. Biennially planted winter wheat firebreaks border 

the entire study area.  

  

Soils at the site are of Eolian sands parent material. The dominant soil associations at the 

site are Valentine-Dunday loamy fine sand, Simeon loamy sand, and Valentine fine sand. 

Together, their typical profiles are an A-horizon (~0 – 30 cm), a possible AC-horizon (18 

– 36 cm), and a C-horizon (36 – 200 cm). Slope on the field ranges 0 – 9%. Fine and 

loamy sands dominate the upper horizon, with sand more commonly found at lower 

horizons (> 15 cm). This soil series is excessively drained, with little to no frequency of 
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flooding or ponding, low available water storage in the profile, and is classified as 

non-saline (0.0 – 0.2 mmhos cm-1) (Soil Survey Division Staff, 1999). 

 

4.2.2 Treatments and Experimental Design  

In summer of 2012, the entire study site was emergency hayed in response to the 2012 

drought. In fall of 2012, the 220 ha field was divided into nine areas separated by 

windbreaks planted with winter wheat. In each of these nine sections, a 2.4 ha plot was 

lightly disked and seeded with a CP42 pollinator seed mix (exact mix unknown; 

conversation with Nebraska Game and Parks agency personnel) using a drill seeder at the 

NRCS recommended seeding rate. The rest of the site was planted with a standard CRP 

tallgrass prairie seed mix (CP25 mix, 15 species) using a drill seeder at the NRCS 

recommending seeding rate (~40 seeds ft-1). 

 

In April 2014, I applied three additional treatments to the study site in a complete 

randomized block design, with nine 20 m x 20 m blocks in each of the nine sections made 

by the interseed plots and firebreak design in the field, and each block containing four 

plots assigned to the three treatments plus a control (Figure 4.2). Treatments consisted of: 

1) burning, 2) disking, and 3) herbicide application. The herbicide replicates were 

sprayed on April 14, 2014 with a glyphosate herbicide 32 oz acre-1, or at half-label-rate 

(which is generally as effective as full label rate; Knezevic, 2008). The burn replicates 

were burned on April 17, 2014. The temperature was 6 ° C, relative humidity was 30%, 

and wind speed was 13 MPH. The disk replicates were heavily disked to > 30 cm on 

April 20, 2014 with a disc harrow pulled behind a tractor. The mid-contract management 
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treatments (“burn”, “disk”, “herbicide”, “interseed”) were arranged with nine 20 m x 

20 m replicates of field matrix that served as a control (“C”) (Figure 4.2).  

 

4.2.3 Sample Processing 

A composite sample of ten cores (diam: 2 cm; depth: 10 cm) were taken from treatment 

and control replicate plus the windbreak interspace (herein “N” for native) for soil 

carbon, Solvita C, soil N, soil P, PLFA, and extracellular enzyme analysis. For the 

aggregate mean weighted diameter analysis samples, I cored deeper (depth: 20 cm) and 

wider (diam: 10cm), using a dutch style auger designed for sandy soils (SoilMoisture 

Equipment Corp., Goleta California) and collected four composite cores instead of ten at 

each field replicate due to the greater depth and diameter of the auger to achieve a 

representative sample without removing overly large samples.  

 

Samples were collected at following times for soil carbon and phosphorus; August 2014 

and August 2015; aggregation and extracellular enzymes: August 2015; soil nitrogen and 

microbial PFLA: May 2014, August 2014, and August 2015. Upon collection, samples 

were stored at 4 ° C and split into equal subsamples with one transferred to University of 

Nebraska-Lincoln and the other transferred to Ward Laboratories, in Kearney, NE. Upon 

arrival in Lincoln they were pushed through a 2.00 mm sieve (or 4.75mm in the case of 

the aggregation samples), and mineral and organic fragments or the rare mineral fragment 

on the mesh surface were discarded. Samples were stored at 4 ° C until analysis for 

extracellular enzymes or aggregation.  
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Soil samples at Ward Laboratory were subdivided. One subsample was stored at –20 

° C until the time of lipid PLFA extraction. The other was stored at 4 ° C until analysis 

for soil carbon, and H3A inorganic nitrogen (NO3 and NH4), inorganic phosphorus, and 

Solvita carbon analysis. No inorganic carbon (CaCO3) was present in the soil, using 

standard methods (Allison and Moodie, 1965), so total organic carbon is equal to total 

carbon (presented here as percent carbon). 

 

4.2.4 Laboratory Analysis – H3A Nitrogen, Phosphorus, Total Percent C, Solvita C 

Total inorganic nitrogen, nitrate, ammonium, and phosphate were analyzed according to 

Haney et al., (2006) and modified by Haney et al. (2010) (the so called "H3A", method 

after the authors). Four grams of soil were placed in a 50 mL centrifuge tube and a 

mixture of 40 mL of the following extractant was added: 2 g L-1 lithium citrate, 0.6 g L-1 

citric acid, 0.4 g L-1 malic acid, and 0.4 g L-1 oxalic acid. The mixture was shaken for 5 

minutes and then filtered through a cone fitted with Whatman 2V filter paper. The filtrate 

was divided for total inorganic nitrogen and phosphorus. Ammonium, and nitrate were 

analyzed in the filtrate using an IO Analytical rapid flow analyzer (RFA, colorimetric). 

Units were expressed as ppm (mg nitrogen as nitrate or ammonium per kg dry soil). 

Phosphate in the filtrate was analyzed using a Varian Vista-MPX axial flow ICP (as mg 

phosphorus per kg dry soil). Total soil carbon was analyzed on a Tru Mac LECO as 

expressed as percent carbon on a dry soil basis.  

 

Solvita carbon burst methods were conducted according to Franzluebbers (2015). 100 

grams of 4.75 mm sieved soil, oven dried (60 ° C for two days) soil was wetted to 50% 

water filled pore space and placed into a sealed jar containing a 10 mL vial of 1 M NaOH 
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(CO2 trap) and a vial of water to maintain headspace humidity. Jars were incubated 

for three days at 25 ° C. Blank jars with vials of 1 M NaOH were included for every 25 

samples. Following the incubation, the NaOH vial was removed and sealed until titration, 

at which point 1.5 M BaCl2 solution was added to precipitate the CO2 as bicarbonate 

(BaCO3), along with phenolphthalein as a color indicator that binds to the bicarbonate. 

The vial was placed on a stir plate with a mini stir bar to mix the solution as 1 M HCl was 

slowly added to return the solution from pink to clear. CO2 (mg C kg -1 soil) was 

calculated using the following formula: 

 CO2 = 𝑚𝐿 !"#$%  −  𝑚𝐿 !"#$%& × 𝑁 × 𝑀 ∕ 𝑆 

Where 𝑁 = normality of acid (mol L-1), 𝑀 = mass conversion from cmolc to g C, and 𝑆 = 

soil weight (i.e., 100 g).  

 

4.2.5 Laboratory Analysis - Aggregates 

A 10 g subset of soil was oven dried for two days at 40 ° C to determine soil moisture. 

The rest of the field moist soil samples were cold air dried under low humidity (~20%) at 

4 ° C until they reached gravimetric water content of 100 g water kg-1 soil (approx. 7-14 

days) based on methods described by Sainju (2006). I used this cold air drying method 

rather than oven or air drying to reduce potential microbial activity that might affect 

aggregation by decomposing carbon substrates adhering aggregates. I used the dry 

sieving method of aggregate separation based on methods described by Schutter and Dick 

(2002) and Sainju (2006) rather than wet sieving to protect delicate aggregates in the 

sandy soils. I placed 100 g soil on nested sieves (diam.: 20 cm) on a Retsch AS 300 

Control 8" Sieve Shaker Table (Palm Bay, FL) to capture large macroaggregates (> 4 mm 

mesh), macroaggregates (2-4 mm mesh), small macroaggregates (2.00-0.25 mm mesh), 
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and microaggregates, silt, and clay (< 0.25 mm mesh). The nested sieves shook at 200 

oscillations minute-1 for three minutes.  The (negligible) fragments of identifiable 

vegetation/litter retained on the topmost sieve were discarded. The retained fractions 

were weighed, air-dried and stored at room temperature for potential future analysis of 

total C and N (pending; not presented here).  

 

Mean weighted diameter (MWD) of aggregates was calculated using the following 

equation, where 𝑥! is the mean diameter (mm) of that soil aggregate size fraction and 𝑤! 

is the proportion of each aggregate relative to the total weight of the sample (g): 

𝑀𝑊𝐷 = 𝑤!

!

!!!

𝑥!  

 

Samples with less than 90% recovery on a mass basis were discarded from the analyses  

 

4.2.6 PLFA - Laboratory Analysis   

The phospholipid fatty acid (PLFA)/fatty acid methyl ester (FAME) extraction and 

analysis I used was according to methods from Clapperton et al. (2005). 9.5 mL of a 

dichloromethane:methanol:citrate buffer (1:2:0.8 v/v) was added to each 4 g dry weight 

equivalent frozen soil sample in a test tube, and shaken for two hours. After the two hours 

was complete, 2.5 mL dichloromethane and a 10 mL saturated NaCl solution were added 

to each of the test tubes, which were then shaken for an additional five minutes. Tubes 

were centrifuged for ten minutes at 3000 RPM, and the organic fraction transferred to 

new vials. Five mL of a methanol:citrate (1:1 v/v) solution was added to the original 

samples in the test tubes, and the mixture was again shaken for 15 minutes and 
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centrifuged for ten minutes at 3000 RPM. The organic fraction was combined with 

the organic fraction extracted earlier in the corresponding vials. The organic fractions 

were dried in a fume hood under heat (37 ° C) and a flow of N2 gas. 2mL of 

dichloromethane was added to the dry samples to dissolve the organic fraction for storage 

at -20 ° C and eventual analysis (within 14 days). Samples were loaded into silica gel 

columns, pipetting dichloromethane into the vials to rinse any residual sample from the 

vial into the column. Lipid-class separation was conducted as follows: neutral, 

glycolipids, and phospholipids fractions were eluted using sequential leaching with ~2 

mL dichloromethane, 2 mL acetone or methanol, respectively. The neutral and 

phospholipids fraction was retained in separate vials, and glycolipids fraction discarded. 

The phospholipid and neutral fraction samples were dried in the hood under heat (37 ° C) 

and a flow of N2 gas and then dissolved in ~2 mL of methanol or dichloromethane, 

respectively, and stored at -20 ° C.  

 

Fatty acid methyl esters analyzable on a gas chromatograph (GC) were generated from 

these samples through mild acid methanolysis. The neutral and phospholipid fractions 

were thawed and again dried in the hood under heat (37 ° C) and N2 gas flow, and all 

samples in their vials received ~1 mL methanol/H2SO4 (25:1 v/v) and were placed in an 

oven for ten minutes at 80 ° C. After removal from the oven, samples were left to cool to 

room temperature upon which they received 2 mL hexane, were vortexed for thirty 

seconds, and left to sit for five minutes. After five minutes, settling allowed the aqueous 

fraction of the mixture to be removed carefully and discarded. After adding 10 μL methyl 

nonadecanoate fatty acid (19:0; Sigma Aldrich), samples were dried in the hood under 
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heat (37 ° C) and a flow of N2 gas. Fifty μL hexane was added to the dried samples, 

which were immediately transferred to 100 μL glass inserts placed into a GC vial.  

 

Samples were analyzed using a flame ionization detector, a 50-m Varian capillary Select 

FAME # cp7420, and helium as the carrier gas (30 mL min-1). 2 μL samples were 

injected at 5:1 split mode at 250 ° C, and the flame ionization detector was held at 300 ° 

C. The oven was held at 140 ° C for five minutes, raised to 210 ° C at a rate of 2 °C min-1, 

at which point the heating rate was increased to 5 ° C min-1 until the temperature reached 

250 ° C, and then held at 250 ° C for twelve minutes. Peak identification was conducted 

by comparing retention times to the standards (Supelco Bacterial Acid Methyl Esters 

#47080-U, and MSJ Biolynx #MT1208 for 16:1ω5). The 19:0 standard peak values was 

used to calculate relative area under specific peaks corresponding to known PLFAs to 

determine abundance of PLFAs in each sample. The nomenclature for PLFAs is as 

follows: the number of carbon atoms, followed by a colon, followed by the number of 

double bonds, the lower case omega (ω), and the position of the first double bond from 

the methyl end of the molecule. If stable cis and trans configurations of the PLFA 

molecules (isomers) exist, they are indicated with c or t. Methyl and hydroxyl groups are 

indicated with (meth) and (OH) before the number of carbon atoms, and if the PLFAs are 

isoforms or anteisoforms, an “i-” or “a-”, respectively, is added at the beginning of the 

name. The PLFAs we measured and the microbial groups to which they are assigned can 

be found in Table 4.2. The abundance of PLFAs was reported as ng PLFA g-1 soil. 

16:1ω7c:cy17:0 and 18:1ω7c:cy19:0 were used to calculate the ratio of monounsaturated 

to cyclounsaturated PLFAs, and gram-negative to gram-positive ratios, bacteria to fungal 

ratios, and community structure were calculated from PLFAs in Table 4.2.  
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4.2.7 Extracellular Enzyme Activity 

Modifying a protocol developed by Steinweg and McMahon (2012), I mixed 1.375 g of 

soil with 45 mL of 50 mM sodium acetate buffer with a pH adjusted to match that of the 

soil sample (~5.5-7) in a metal cup (vol: 475 mL) using a Cuisinart® SmartStickTM 

immersion hand blender on high for 60 seconds. The soil solution was placed on a weigh 

boat with a stir bar on a stir plate at medium rotations to keep the solution suspended and 

then pipetted into deep-well plates using a multichannel pipette. Fluorescently-tagged 

substrates BG, CB, NAG, P, and S (see Table 4.1 for descriptions) were added to in 

excess in order to measure potential activity.  

 

The deep-well plates containing the soil sample solution and substrate were covered, 

shaken gently on a shaker table for two minutes, and incubated at 35 º C for 1.5 hours. 

The same was repeated for an additional replicate at 20 º C but for 4.5 hours to maintain 

equal degree hours. The fluorescent tags on the substrates only absorb electromagnetic 

radiation and fluoresce when separated from the substrate, which occurs when extra-

cellular enzymes catalyze the mineralization of the fluorescently labeled substrate. Using 

a plate reader, I analyzed the amount of fluorescence emitted by the incubated slurries. 

Known amounts of fluorescent substrate 4-methylumbelliferone (MUB) was added to a 

concurrent set of standard plates to account for natural fluorescence in the soils, and data 

from samples with corresponding high slope, low slope, and total slope standard curves 

below a threshold (R2 < 0.999) for any temperature were discarded and both samples and 

standards were resampled at both temperatures. I used the standard Q10 formula to 
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determine the temperature sensitivity of the reaction i.e., the ratio of rate increase 

with a temperature increase of 10 degrees:  

𝑄!" =
𝑅!
𝑅!

!"°/(!!!!!)

 

I assessed potential enzyme activity rate in μmol activity g soil-1 h-1 at the high laboratory 

incubation temperatures (35 ° C), and calculated Q10 using enzyme activity rates (μmol 

activity g-1 soil h-1) at the low (25 ° C) and high (35 ° C) assay incubation temperatures.  

 

4.2.8 Data Analysis 

I assessed the effect of year, treatment, and block on percent soil carbon (% C), labile 

carbon (Solvita C), soil inorganic N (H3A NO3
-, H3A NH4

+, and total inorganic H3A 

nitrogen which is the sum of H3A NO3
- and H3A NH4), soil P, aggregation, PLFA 

biomass, ratio of PLFA fungal to bacterial ratios, and enzyme dynamics using an analysis 

of variance (ANOVA).  Prior to analysis, I checked normality of residuals using a visual 

inspection of qqplots. If heteroscedasticity was present, I used a Box-Cox (Box and Cox, 

1964; Osborne, 2010) transformation. Significance was decided a priori as P < 0.05, with 

nominal significance set at P < 0.1.  My study design was a randomized complete block 

design with only one replication per block by treatment combination, meaning I had no 

way to directly measure experimental error. As a result, I applied the Tukey 1-df test for 

non-additivity to make sure the block-treatment interaction was not significant and that 

the means square error (error variance) could be used to estimate experimental error. 

When the Tukey 1-df rejected the null hypothesis (i.e., P < 0.05), I included block as an 

explanatory variable; otherwise I assumed that treatment alone was a sufficient 

explanatory variable.  
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To generate the model residual and predicted values needed to test assumptions, I first 

performed an analysis of variance using treatment, time, and block as the explanatory 

variables. I used a Shapiro-Wilk normality test of residuals (significance level set at P < 

0.05) and visual inspection of the plot of residuals versus predicted values (the latter of 

which, in this case of a complete randomized block design, are the sum of the overall 

mean) to assess whether errors were normally distributed. In the second ANOVA 

(without or without block; depending on the Tukey 1-df test for non-additivity), if 

treatment was significant (P < 0.05) or nominally significant (P < 0.1), I performed a 

Tukey HSD as a post-hoc analysis to find which treatment means were significantly 

different from one another.   

 

4.3 RESULTS  

There was no evidence to include block in the models (because I did not reject the null 

hypothesis of Tukey’s 1-df test for non-additivity) for percent carbon (P = 0.09), H3A 

total nitrogen (P = 0.08), H3A nitrate (P = 0.43), H3A ammonium (P = 0.30), and 

phosphorus (P = 0.31). There was however evidence non-additivity for Solvita C (P < 

0.001), and I included block in that ANOVA as an explanatory variable. 

 

Almost immediately following treatment (the first samples were collected within two 

weeks of treatments) inorganic nitrogen (mostly in the form of NO3
-) was significantly 

elevated in the herbicide treatments relative to other treatments and controls.  Total H3A 

inorganic nitrogen and H3A NO3
- were highest in the first two sampling periods (spring 

and summer 2014) and declined in the summer 2015. H3A NH4
+ was much lower than 
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H3A NO3
-, and did not vary significantly over time. The ANOVA assessing total 

H3A inorganic nitrogen showed that treatment and time were significant (P < 0.01) 

explanatory variables. A post-hoc Tukey HSD analysis revealed differences between the 

herbicide versus control and the herbicide versus disk H3A total inorganic nitrogen 

treatment means (see Appendix I) (Figure 4.3). There were also nominally significant 

differences (P < 0.1) between herbicide versus burn, and interseed and control disk H3A 

total inorganic nitrogen treatment means. Unsurprisingly (total H3A inorganic nitrogen is 

the sum of NO3
- and NH4

+), I found a similar pattern for H3A NO3
- (Figure 4.4) and 

NH4
+), (Figure 4.5). Treatment and time were significant explanatory variables for H3A 

NO3
- (P < 0.01) and treatment was a significant explanatory variable for NH4

+ (P < 0.01). 

A post-hoc Tukey HSD analysis revealed differences between herbicide versus control 

and herbicide versus disking for H3A NO3
- treatment means (see Appendix I). The only 

significant difference treatment means for H3A NH4
+ occurred between interseed versus 

burn, and I found nominally significant differences between the interseed versus control, 

interseed versus disk, and herbicide versus burn treatments means. Neither time nor 

treatment was a significant explanatory variable for total soil phosphorus.  

 

Soil carbon did not vary over time (P = 0.67), and while treatment was significant (P = 

0.05) soil carbon was only slightly higher in the herbicide treatment relative to the 

disking plot, and (nominally) higher relative to the control in the post-hoc Tukey HSD 

(see Appendix I) (Figure 4.6). Soil carbon in the control and treatments was lower (± SE) 

0.65 (± 0.02), versus the windbreak interspace, which had an average percent soil carbon 

of 1.65 (± 0.14). Neither time nor treatments were significant explanatory variables for 

Solvita carbon, but block was (P < 0.01), with higher carbon in blocks 1, 4, and 7 (the 
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southern most blocks that are closest to the nearest road and farthest from the 

Niobrara) (Figure 4.7). There was no evidence to include block in the ANOVA for 

aggregate mean weighted diameter (Tukey 1-df Test for non additivity P value of 0.73). 

However, treatment was not a significant explanatory variable in the ANOVA (P = 0.15). 

The windbreak interspace soils did not differ in their mean weighted diameter from that 

of the control and treatment soils.  

 

Even though it appear as though there was a decline in fungal to bacterial ratios in the 

herbicide treatment in summer 2014 and 2015, it was not captured by this analysis, which 

found no differences in fungal to bacterial ratios in response to treatment or over time 

(Figure 4.8). PLFA biomass, however, was significantly higher in the interseed treatment 

relative to the control treatment, and nominally higher biomass in the interseed relative to 

the disk (see Appendix I for post-hoc Tukey HSD analysis results) (Figure 4.9). There 

was no evidence to include treatment block in the PLFA ANOVAs, because I did not 

reject the null hypothesis of Tukey’s 1-df test for non-additivity for microbial PLFA (P =  

0.101) or for the fungal to bacterial biomass (P = 0.2509).  Treatment was a significant 

explanatory variable in the ANOVA for microbial PLFA biomass (P = 0.01).  

 

The herbicide treatment shift microbial functioning towards higher CB and especially P 

activity. There was no evidence to include treatment block in the following enzyme 

activity ANOVAs, because I did not reject the null hypothesis of Tukey’s 1-df test for 

non-additivity for BG activity (P = 0.22), NAG (P =  0.42), P (P = 0.22), and S (P = 

0.08). I did include block for CB, because I rejected the null hypothesis of Tukey’s 1-df 

test for non-additivity (P = 0.045). Treatment was not a significant explanatory variable 
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for BG in the ANOVA (P = 0.11) or NAG (P = 0.33). Treatment was significant for P 

activity (P < 0.01), S activity (P = 0.04), and nominally significant for CB (P = 0.054). 

Block was not a significant explanatory variable in the CB ANOVA (P = 0.37). A post-

hoc Tukey HSD analysis for CB activity (see Appendix I) showed significant differences 

between the herbicide versus disk, and nominally significant differences between the 

herbicide versus interseed treatment means yet did not show meaningful differences 

among blocks even though that explanatory variable was included in the ANOVA (Figure 

4.10). The post-hoc Tukey for P activity showed significant differences between in the 

herbicide versus burn, herbicide versus disk, and herbicide versus interseed treatments, 

with nominally significant differences between the herbicide versus control treatment 

means. The only significant difference for S activity was in the disk versus control 

treatment means (see Appendix I).  

 

The burn treatment significantly reduced Q10 for BG, CB, and NAG relative to other 

treatments, indicating higher labile carbon in response to that treatment. There was no 

evidence to include treatment block for any of the enzyme Q10 ANOVAs, because I did 

not reject the null hypothesis of Tukey’s 1-df test for non-additivity for BG Q10 (P = 

0.83), CB (P = 0.26), NAG (P = 0.72), P (P = 0.97), or S (P = 0.56). Treatment was 

significant for Q10 for BG (P = 0.01), CB (P = 0.01), NAG (P < 0.01) but not for P (P = 

0.21) or S (P = 0.14). A post-hoc Tukey HSD showed significant difference between the 

burn versus disk treatment means for BG, the burn versus herbicide treatment means for 

CB, burn versus herbicide and disk treatment means for NAG, and nominally significant 

(P < 0.1) differences between the interseed versus disk means for NAG (see Appendix I).   
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4.4 DISCUSSION 

The different mid-contact management practices influenced soil differently, as I 

hypothesized, but in some unexpected ways. Disking did not select for bacteria over 

fungi or appreciably drive declines in soil carbon. Soil carbon also did not increase over 

time, even though higher levels in the windbreak interspace indicated that they are far 

from potential carbon (C) saturation points. Instead, the herbicide treatment most strongly 

and surprisingly influenced the belowground by eliciting high soil inorganic nitrogen, 

likely through suppressed plant uptake, mineralization of root necromass, and/or 

glyphosate induced priming of soil organic nitrogen.  

 

Soil C, both total C and the Solvita C (a measure of labile C) fraction, did not change 

appreciably over time. While soil carbon was slightly higher in the herbicide relative to 

the disked plots, which represent the treatments with the least and highest bare ground, 

respectively, the herbicide treatment also had significantly higher mean percent carbon 

than the control, which had the second highest litter cover (see Chapter 3). So it is 

unlikely that litter cover is a driver of carbon sequestration in my study. Moreover, it is 

unclear whether higher soil carbon in the herbicide treatment is a result of any process 

that I measured. Soil carbon was also (much) higher in the undisturbed soils from the 

shelterbelt area in the field, yet without concurrently higher aggregation. The carbon 

saturation hypothesis posits that soils most depleted of carbon should store carbon fastest 

when they are furthest from their saturation point, which did not occur in my study, even 

with varying levels of disturbance to possible aggregate formation and differences litter 

cover. This may be attributable to low large aggregate formation, which is a mechanism 

for carbon storage in other studies of grassland soils but which may be inhibited in sandy 
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soils (Baer at el., 2010). Interestingly, the three experimental blocks closest to the 

windbreak had significantly higher Solvita C, perhaps indicating a legacy effect of the 

Niobrara River to the north or from the road or shelterbelt of trees along to the south of 

the study area. So it is inconclusive whether mechanisms related to lack of physical 

mixing disturbances are alone responsible for higher carbon in the windbreak interspace. 

It is therefore possible that the legacy of low soil carbon was driven by other mechanisms 

including fewer inputs under rowcrop systems, and activities that accelerate 

decomposition, like irrigation.  

 

The elevated nitrogen in the herbicide treated is likely attributable to either lack of plant 

uptake upon death, root necromass turnover, microbial priming of soil organic matter in 

response to glyphosate, or some combination thereof. Priming is a short-term increase in 

microbial turnover of soil organic matter in response to relatively moderate increases in 

available labile substrate (Kuzyakov, 2000). If the microbial community was primed by 

glyphosate as a labile substrate, elevated soil nitrogen could be attributable to 

mineralization of SOM. Fortunately, studies examining the effect of glyphosate on 

microbial communities under glyphosate-resistant crops disentangle somewhat the effect 

of plant death from direct non-target herbicide impacts. Newman et al. (2016) found 

increases in Proteobacteria and attributed this to increases in members of the 

Proteobactera family Xanthomondacadeae. The authors noted that, because in a different 

study (Campbell et al., 2010) Xanthomondacadeae increased in response to fertilizer 

treatments, soil disturbance in general may give the taxa a competitive advantage over 

other microbiota. However, Campbell et al. 2010 assessed mineral nitrogen fertilization 

on arctic tundra microbial communities, and did not include glyphosate or glyphosate-
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resistant plants in their assessment. Additionally, Newman et al. did not assess soil 

nutrient status in their study, so it is feasible that glyphosate stimulated mineralization of 

soil nitrogen, which in turn selected for Xanthomondacadeae (a bacteria). This line of 

reasoning points to glyphosate-induced priming as a potential mechanism for elevated 

soil nitrogen. While my statistical approach could not detect shifts towards bacterial 

dominance in the multiple replicates and treatments over time, it does appear that while 

fungi increasingly dominated the belowground in all treatments as time progressed, the 

trend was moderated somewhat by elevated nitrogen in the herbicide treated soils. 

 

It also appeared that the herbicide treatment functionally shifted the belowground 

towards carbon and phosphorus limitation, evidenced by elevated increased production of 

CB and P, which are carbon and phosphorus acquisition enzymes, respectively. The 

phosphorus atoms in glyphosate molecules may be available for microbial uptake, which 

further underlines the shift away from nitrogen limitation that may have occurred in 

response to the glyphosate treatment. Additionally, because enzymes are nitrogen rich 

molecules, excess nitrogen in the herbicide treated soils could have provided additional 

microbial currency needed to mineralize the now non-nitrogen limiting resources from 

soil organic matter.  

 

Another interesting microbial functional response was that of enzyme activity Q10, which 

is the amount of increased reaction rate due to an increase by 10 ° C, or the temperature 

sensitivity of a reaction. It can be used to detect the lability or recalcitrance of soil 

carbon, as more biochemically complex organic matter is more sensitive to increases in 

temperature (Conant et al., 2011). The enzymes from the burn treatment had lower Q10, 
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which could be due to plants releasing labile carbon in an effort to stimulate 

mineralization of organic matter to release nutrients for regrowth following fire. 

However, this is speculative, as I did not find concurrently higher PLFA biomass, Solvita 

or total C, which would support this hypothesis.  

 

Herbicide is commonly used to control undesirable plant species. In this study, it elicited 

increased soil nitrogen, which may have influenced belowground community structure 

and more likely influenced functioning by shifting the belowground towards greater 

phosphorus and carbon demand. Additionally, the aboveground consequences of 

herbicide (discussed in Chapter 3) included higher nonnative plant abundance –a result 

not uncommon in response to elevated soil nitrogen. These coupled aboveground and 

belowground responses to the herbicide treatments reveal complex feedbacks that can 

arise from management practices seeking to optimize for a few ecosystem services (e.g., 

eliminating nuisance plant species) ultimately influencing the initial management 

objective in surprisingly ways.  

4.5 CONCLUSION 

Herbicides are the most common agricultural pesticides on earth (Grube et al., 2011), at 

an estimated 1.35 million metric tons per year applied by 2017. While the soil is directly 

and indirectly responsible for numerous ecosystem services upon which society depends 

for its survival and well-being, this study on a single field in the North Central Great 

Plains reveals how much we have yet to learn about the cryptic belowground and its role 

in mediating management outcomes. While soil carbon was much higher in the never-

tilled windbreak interspace, the mechanism for this difference could not apparently be 
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explained by differences in aggregate size between the never tilled and field matrix 

soils. Without this understanding, managing such soils for high contents of organic matter 

–which is central to soil functioning and ecosystem services production –is relegated to 

guesswork. Fortunately, scientific knowledge of the soil system is continuously 

expanding, providing opportunities to test mechanisms in a variety of settings so that we 

can understand how best to manage soils for multiple, simultaneous ecosystem services.  

 

4.6 TABLES AND FIGURES  

Table 4.1 Extracellular hydrolytic enzymes assessed in the study, the target organic 

matter component they hydrolyze, and the synthetic substrate used in the assay for their 

assessment (MUB: 4-methylumbelliferone).  Adapted from German et al. (2012) and 

Steinweg and McMahon 2012. 

Enzyme Target Synthetic Substrate 

β-glucosidase (BG) Cellulose degradation 4-MUB-b-D-
glucopyranoside 

Cellobiohydrolase (CB) Cellulose degradation 4-MUB-b-D-cellobioside 
N-acetyl-β-D-glucosaminidase 

(NAG) Chitin degradation 4-MUB-N-acetyl-b-D-
glucosaminide 

Phosphatase (PHOS) Phosphate acquisition 4-MUB phosphate 

Sulfonatase (S) Sulfate acquisition 4-MUB sulfate 
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Table 4.2 The PLFA/FAME biomarkers used to assess fungi, bacteria, Gram-negative 

and Gram-positive bacteria, and more specific taxonomic groups 

 

 

 

PLFA/FAME Biomarkers Specific Group Family Class
10:0 2OH Gram - Bacteria
10:0 3OH Gram - Bacteria

11:0 iso 3OH Gram - Bacteria
12:0 2OH Gram - Bacteria
14:0 iso Gram + Bacteria

14:0 2OH Gram - Bacteria
14:0 iso 3OH Gram - Bacteria

15:0 Gram + Bacteria
15:0 iso Gram + Bacteria

15:0 anteiso Gram + Bacteria
16:0 iso Gram + Bacteria
16:1 w5c Arbuscular Mycorrhizal Fungi
16:1 w7c Gram - Bacteria
16:1 w9c Gram - Bacteria
16:0 2OH Gram - Bacteria

16:0 10-methyl Actinomycetes Gram + Bacteria
17:0 Gram + Bacteria

17:0 iso Gram + Bacteria
17:0 anteiso Gram + Bacteria

17:0 10-methyl Actinomycetes Gram + Bacteria
17:0 cyclo Gram - Bacteria

18:0 10-methyl Actinomycetes Gram + Bacteria
18:1 w5c Gram - Bacteria
18:1 w7c Gram - Bacteria
18:1 w9c Saprophytes Fungi
18:2 w6c Saprophytes Fungi
18:3 w3c Saprophytes Fungi
19:0 iso Gram -/Gram + Bacteria

19:0 anteiso Gram -/Gram + Bacteria
19:0 cyclo w8c Rhizobia Gram - Bacteria
19:0 cyclo w9 Gram - Bacteria
19:0 cyclo w6 Gram - Bacteria

20:1 w9c Arbuscular Mycorrhizal Fungi
20:2 w3c Protozoa
20:2 w6c Protozoa
20:3 w3c Protozoa
20:4 w6c Protozoa
22:1 w9c Arbuscular Mycorrhizal Fungi
20:5 w3c Saprophytes Fungi
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Figure 4.1 Aerial photos of the study area from USGS indicating different land use and 

the presence of the southern border windbreak, starting in 1936 and until 2014. The 2014 

photos show the mid-contract management treatments applied in this study.  
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Figure 4.2 A custom soil report from the NRCS Web Soil Survey with a map of the 220 

ha study area with the 2.4 ha interseed (green rectangles) and other mid-contract 

management treatments (20 x 20 m white, red, blue, and yellow squares) indicating the 

relative position and size of the nine replicates on the field. Although here they are shown 
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in the same order, the mid-contract management squares (save the interseed 

replicates) were randomized on the field. The yellow lines were planted in winter wheat 

in 2013 and 2014 as a firebreak. Map unit legend for the orange numbers, which indicate 

soil types are as follows, with percent cover of the study area in parentheses: 4499 – 

Dunday loam sand, 3-6% slope (0.1%); 4781 – Valentine fine sand, 0-3% slope (4.6%); 

4791 –Valentine fine sand, 3-9% slope (6.3%); 4871 – Valentine-Dunday loamy fine 

sands, 0-3% slope (39.0%); 4881 – Valentine-Simeon sands, 3-9% slope (11.4%); 4882 –

Valentine-Simeon sands, 9-30% slopes (6.9%); 8925 – Simeon loamy sand, 0-3% slope 

(31.7%).  
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Figure 4.3 Mean H3A inorganic nitrogen (ppm) in the treatments and control from the 

three sampling period. Error bars are ±SE.   
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Figure 4.4 Mean H3A nitrate (ppm) in the treatments and control from the three sampling 

periods. Error bars are ±SE.   
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Figure 4.5 Mean H3A ammonium (ppm) in the treatments and control from the three 

sampling periods. Error bars are ±SE.   

 

0.00

0.25

0.50

0.75

1.00

Spring 2014 Summer 2014 Summer 2015
Time

H
3A

 A
m

m
on

iu
m

 (p
pm

)

Treatment
Burn
Control
Disk
Herbicide
Interseed



 124 

 

Figure 4.6 Mean percent soil carbon in the treatments and control from the summer 2014 

and 2015 sampling periods. Error bars are ±SE.   
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Figure 4.7 Mean Solvita carbon (mg CO2 carbon per kg soil) in the field blocks, with all 

sampling periods and treatments combined. Error bars are ±SE.   
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Figure 4.8 The ratio of fungal to bacterial PLFAs (ng g-1 soil) in the treatments and 

control from the three sampling time periods. Error bars are ±SE.   
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Figure 4.9 Microbial PLFA biomass in the treatments and control over three sampling. 

Error bars are ±SE.   
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Figure 4.10 Mean enzyme activity (μmol activity g-1 soil h-1) at 35 ° C of β-glucosidase 

(BG), cellobiohydrolase (CB), N-acetyl-β-D-glucosaminidase (NAG), phosphatase 

(PHOS), and Sulfonatase (S) extracellular hydrolytic enzymes in the treatments and 

control. Error bars are ±SE.   
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Figure 4.11 Mean Q10 of β-glucosidase (BG), cellobiohydrolase (CB), N-acetyl-β-D-

glucosaminidase (NAG), phosphatase (PHOS), and Sulfonatase (S) extracellular 

hydrolytic enzymes in the treatments and control. Error bars are ±SE.  	
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ABSTRACT: The Conservation Reserve Program (CRP) began in 1985 as an incentive 

for landowners to take marginal land out of production for the purpose of soil 

conservation. Yet in the years since the CRP’s inception, new programs have been added 

to target non-soil related management outcomes. The need for species-focused 

management of CRP lands has become especially apparent in the case of grassland birds 

and pollinators, as their populations have declined throughout their historic ranges in 

recent decades despite 9.7 million ha of enrolled CRP grasslands. In addition to grassland 

birds and pollinators, the effect of CRP grasslands and management on invertebrate 

communities, which play a central role in ecological functioning including as a critical 

food source for upland game birds, is uncertain. By measuring invertebrate abundance, 

blooming forbs, and rearing quail chicks in situ on both the field matrix control plots and 

plots interseeded with a high diversity pollinator seed mix I attempted to evaluation a 

common management practice already being used on conservation land within the state 

of Nebraska for various, simultaneous habitat management objectives. Ground dwelling 

macroinvertebrate abundance was higher in a pollinator treatment versus the control, with 

lowest abundance in 2013, followed by peak abundance in 2014, and a slight decline in 

2015. Forbs were higher in the pollinator versus control plots, and a blooming forb 

survey on other common CRP management practices showed significantly higher number 

of blooms and number of plants with blooms in burn treatment relative to others. A 
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predation event reduced the statistical robustness of the bobwhite quail study, but the 

primary objective was to develop methodology for habitat assessment, which my 

methods accomplished. Nevertheless, my less-robust analysis did reveal that bobwhite 

quail chick weight gain was significantly higher (P < 0.05) in the pollinator treatment 

versus the control treatment. These results show that a single management treatment may 

be used to generate habitat for multiple taxa. However, while it appears that the pollinator 

treatment, intended to provide higher quality for the many taxa, succeeds in its objective, 

there remain gaps in scientific understanding that must be addressed before such results 

can be applied more broadly. Specifically, interseeding is typically used in conjunction 

with other treatments, as was the case in my study as the interseeding followed light 

disking, and in the year prior to my study the entire field was emergency hayed in 

response to a regional drought. As a result, care must be taken with the interpretation of 

these result.  
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5.1 INTRODUCTION 

5.1.1 Habitat Provisioning and The Conservation Reserve Program  

The Conservation Reserve Program (CRP) began in 1985 as an incentive for landowners 

to take marginal land out of production for the purpose of soil conservation (FSA, 2014). 

In the years since the program’s implementation, knowledge to improve the management 

of natural resources has improved, and new programs have been added to target non-soil 

related management outcomes. Indeed, while not initially an explicit objective of the 

Program, its wildlife recreation benefits are estimated at $428 million year-1 (Feather et 

al., 1999; Sullivan et al., 2004). As a result, and there is growing interest among policy 

makers, agency personnel, and private landowners to manage CRP land for multiple 

purposes, including wildlife habitat (FSA, 2014). The need for species-focused 

management has become especially apparent in the case of grassland birds and 

pollinators in recent decades, as their populations decline throughout their historic ranges 

despite 9.7 million ha of enrolled CRP grasslands (Brennan and Kuvlesky, 2005; Veech, 

2006). It is increasingly apparent that simply setting land aside does not meet the diverse 

habitat requirements for pollinator species and grassland birds, the latter of which have 

shifting needs unique to specific live stages. Programs tailored to meet the needs of target 

species on CRP lands are widespread in an effort to retain these populations in North 

America (Herkert, 2009).  

 

In Nebraska where little public lands are available for hunting access and wildlife 

management, there is a great deal of interest among landowners, management agencies, 

and private citizens to increase upland bird populations, especially game species 

including ring-necked pheasants, prairie chickens, and bobwhite quail. To that end, the 
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Focus on Pheasants program was established in 2002 in Nebraska to provide research, 

implementation, and learning opportunities for groups interested in improving habitat for 

game birds (NGPC, 2011). However, little work has been done to determine which of 

several possible management strategies will provide optimal forage conditions for game 

bird chicks. This aspect of habitat management is crucial because of the high mortality 

rates of young chicks (VDG, 2015). If certain management strategies demonstrably 

improve survival, this information has the potential to advance management of game bird 

populations on current CRP lands.  

 

In their Focus on Pheasants 2011-2021 report, the Nebraska Game and Parks 

Commission noted that to retain landowner cooperation, habitat management strategies 

must not be aesthetically or ecologically disruptive, and to secure government funding 

they must be cost-efficient and able to provide demonstrated improvements in habitat 

over a no-management strategy (NGPC, 2011). On Conservation Reserve Program lands, 

however, mid-contract management requirements may dovetail with those of Focus on 

Pheasants.  

 

Several studies have examined the effect of management on bird habitat indicators and 

residency in restored grasslands and CRP set-asides (Herkert, 2009; Veech, 2006). 

However, to our knowledge no research has yet assessed the effect of such treatments on 

weight gain and survival in upland game bird hatchlings –a critical life stage –which 

could serve as an essential indication of habitat quality in management plans (2015 ISI 

Web of Science search). The objective of this study was to address this gap, using 

bobwhite quail chicks as the study organism.  
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5.1.2 Bobwhite quail as a study organism  

Though omnivorous as adults, bobwhite chicks feed exclusively on small ground-

dwelling macroinvertebrates for the first three weeks of life (Taylor et al., 1999). Because 

they weigh only a quarter of an ounce at hatching, the chicks cannot penetrate ground 

litter when foraging and thus require direct access to the ground in order to forage (VDG, 

2015). Studies of bobwhite quail suggest growth rates are highest and most variable in 

the first thirty days (Lusk et al., 2005), and by six weeks the birds have developed 

juvenile feathers and begin an omnivorous diet (NGPC, 2015).  

 

Though many management strategies, including burning and tilling, increase bare 

ground, they may not all improve the availability of the small insects vital to the chicks 

survival due to insufficient vegetative cover or insect abundance (VDG, 2015). Past 

habitat management strategies have included expensive feed supplementation (Guthery, 

1997) or caused inadvertent biological invasions that undermined manager-landowner 

relations (NGPC, 2011), thus making them unsustainable according to the constraints 

outlined by the Nebraska Game and Parks Commission’s guidelines (as of 2011). As 

Guthery (1997) notes in his review of Bobwhite management, the cost of continuous 

management and feed additions are often prohibitive, and many areas, such as hayfields, 

which supposedly provide quail habitat are only useful for part of the year as cutting the 

fields eliminates a large portion of that habitat from use. Additionally, research on the 

potential for mid-contract management in CRP lands to improve game bird survival has 

been limited to surveys of wild populations, which are often not abundant enough to 

provide significant results.  
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5.1.3 Does a High Diversity CRP Seed Mix Treatment Provide Simultaneous 

Habitat for Multiple Taxa?  

In CRP grasslands, a common management strategy is to seed mixes with high species 

diversity and high forb abundance to establish habitat for pollinators. Often, light disking 

precedes the interseeding to release resources sequestered by late successional species. 

This leads to higher bare ground and high biomass of ground dwelling insects. 

Invertebrate communities comprise approximately 94% of all animal species, influence 

and indicate soil functioning (Rousseau et al., 2013; Schon et al., 2012; Stork and 

Eggleton, 1991) and are an integral component of soil food webs either directly as prey or 

indirectly through carbon and nutrient cycling (Stork and Eggleton, 1991; Wiens, 1973). 

Their dynamic ecological role is pronounced following disturbance such as disking and 

interseeding, by capitalizing on a flush of resources and rapidly increasing their overall 

biomass and diversity (e.g., Hodkinson et al. 2002), and playing an important role in 

restructuring the post-disturbance system (Gunderson and Holling 2002).  

 

By rearing quail chicks in situ on both the field matrix control plots and plots interseeded 

with a high diversity pollinator seed mix, continuing to assess invertebrate abundance, 

and assessing the number of blooming forbs as a proxy for pollinator habitat, I attempted 

to systematically assess the value of the common management strategy used on 

conservation land within the state to accomplish various habitat management objectives. 

 

The results of this study should provide better information about what type of 

management may be most effective in increasing brood survival, and thus the overall 

population, of bobwhite quail and other game birds experiencing a loss of habitat 
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throughout their historic ranges, and will serve as a the first type of study design for 

assessing ecosystem quality under a variety of management and environmental 

conditions. 

 

5.2 METHODS 

5.2.1 Ground dwelling macroinvertebrate 

In summers of 2013, 2014, and 2015, I measured ground dwelling invertebrates in the 

nine replicate pollinator interseeded treatment (interseeding with a high diversity, high 

forb seed mix) plots and in the field matrix (control) four times, spanning early June 

through mid-August. In each plot, I established a 50 m transect, with a pair of pitfall traps 

spaced every 10 m along the transect. The pairs of pitfall traps were placed 1 m on either 

side of the transect. At the start of each field season, the traps were installed using a 

polyvinyl chloride [PVC] sleeve in the ground (diam = 1.7 cm) sleeves placed into a hole 

excavated by a hand auger so that the top of the PVC tubing was flush with the soil 

surface. This established a way to repeatedly re-sample the same traps throughout a 

season. 

 

Labeled, uncapped 15 mL Falcon™ polypropylene conical centrifuge tubes were filled 

with ~8mL SIERRA® ethylene glycol-free antifreeze and placed in the PVC traps for a 

rain-free period (very light precipitation permitted) for 72 hours. More than 0.5 cm of 

rain accumulation resulted in a failed sampling due to potential overflow from the 

centrifuge tubes (decided a priori), but this never at any point over the three years. When 

necessary, I pushed vegetation and litter closer to the trap for camouflage and protection 

against sun and light precipitation. At the end of the 72-hour sampling period, I removed 
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and capped the test tubes, and covered the PVC tubes with a cork to ensure they 

remain free of debris in the field between sampling times. Upon return to the field house, 

samples were stored at 4 ° C, and processed within 4 weeks.  

 

At the field house, samples were processed by depositing the entire sample on a plastic 

tray, picking individual invertebrates out of the sample using soft body tweezers, gently 

rinsing them free of debris and antifreeze with 75% EtOH, and transferring them to 25 

mL glass scintillation vials filled with 75% EtOH. For samples containing an excess of 

sand, I gently poured the liquid fraction of samples between trays, “washing” them of 

sand and plant fragments with 75% EtOH.  Once in scintillation vials of EtOH, the 

samples were stored at room temperature and transferred to University of Nebraska-

Lincoln, where they were processed within six weeks under a dissecting scope to assess 

the abundance of species per replicate, combining insects from all ten traps within the 

field replicate. I used a one-way ANOVA to assess the effect of treatment and year on 

insect abundance.  

 

5.2.2 Bobwhite quail chick weight gain  

To evaluate the effect of different management strategies on bobwhite quail chick growth 

and survival, for eight hours each day for thirteen days in June 2015 I put hatchling 

bobwhite quail chicks on two 20 m x 20 m blocks within the fifth pollinator treatment 

and control replicates (located most centrally in the study area), for a total of four blocks. 

In both blocks, vegetation was clipped to < 10 cm in height to help us disentangle the 

effects of vegetation from insect abundance on chick weight gain and survival. I re-

clipped vegetation in all plots once to maintain < 10 cm height. In these 40 m2 plots, quail 
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had access to fresh water at all times, and a 0.5 m x 20 m strip of burlap across the top 

of the enclosure along one side to provide shade. In each block, there were 25 chicks, 

identified with labeled leg bands, for a total of 100 chicks. Individual chicks served as the 

experimental replicates to ensure accurate measurements, limit the effects of individual 

mortality or extreme outliers on average group weights, and perform repeated measures 

ANOVA.  

 

Chicks were transported to and from the field in cardboard boxes. Immediately upon 

return to the field house, chick weight was recorded using a triple beam balance. After 

weighing, chicks were placed in 1 m x 1 m enclosures inside of the field house with free 

access to water and grain, and with both direct overhead heat lamps and shade available 

for chicks to self regulate temperature overnight. An initial pilot study revealed that 

without grain available overnight, chicks lost weight, so feed was nonnative part way 

through the study, rendering the data unusable. The study was thus repeated with grain 

freely available overnight. Both during transport and overnight, chicks were kept with 

their own blocks. Both the outdoor plots and overnight enclosures provided well over the 

recommended density for pen-raised chickens of the same age (which are also 

significantly larger) to minimize the chance of stress-related health effects due to 

overcrowding (FASS, 2010). 

 

5.2.3 Plant response to mid-contract management treatments 

In summer of 2012, the entire study site was emergency hayed in response to drought. In 

fall of 2012, the 220 ha field was divided into nine areas separated by windbreaks planted 

with winter wheat. In each of these nine sections, a 2.4 ha plot was lightly disked and 
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seeded with a CR25 pollinator seed mix using a drill seeder at the NRCS 

recommended seeding rate (see appendix for species). The rest of the site was planted 

with a standard CRP tallgrass prairie seed mix (CP25 mix, 15 species) using a drill seeder 

at the NRCS recommending seeding rate (~40 seeds ft-1). 

 

In April 2014, we applied three additional treatments to the study site in a randomized 

block design, with nine 20 m x 20 m blocks in each of the nine sections made by the 

pollinator replicates and windbreak design in the field, and each block containing four 

plots assigned to the three treatments plus a control. Treatments consisted of: 1) burning, 

2) disking, and 3) herbicide application. The herbicide replicates were sprayed on April 

14, 2014 with a glyphosate herbicide 32 oz acre-1, or at half-label-rate (which is generally 

as effective as full label rate; Knezevic, 2008).  The burn replicates were burned on April 

17, 2014. The temperature was 6 ° C, relative humidity was 30%, and wind speed was 13 

MPH. The disk replicates were heavily disked to > 30 cm on April 20, 2014 with a disc 

harrow pulled behind a tractor.  

 

The mid-contract management treatments burn, disk, herbicide, and pollinator seed mix 

interseeding were arranged with 20 x 20 m replicates of field matrix that served as a 

control. In 2014 and 2015, I sampled plant communities with two 1 m x 1 m quadrats in 

each field replicate twice throughout the growing season. At each field replicate, the 1 m 

x 1 m quadrat was placed randomly within the replicate, and item (bare ground, litter, and 

plant identity) and abundance (as canopy cover) was recorded.  This was repeated within 

the field replicate for a total of two 1 m x 1m quadrats per sampling and data were 

combined for that field replicate (i.e., abundance per replicate was on a 2 m2 basis). This 
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was repeated for each replicate a total of four times: twice per year in 2014 and 2015. 

Nearly all plants were identified to the species level with the following exceptions, which 

were identified to genus level: Ambrosia, Andropogon, Carex (combined with Cyperus), 

Chenopodium, Helianthus, and Solidago. At this site, Andropogon gerardii and 

Andropogon hallii showed evidence of hybridization, so while they were often recorded 

separately, they were combined for analysis.   

 

Each plant was assigned a grouping according to its growth habit using assignations from 

the USDA NRCS PLANTS Database (accessed 2016). Growth habits assignments were 

graminoid, forb, or shrub. Subshrubs versus shrubs are a porous delineation that I 

eliminated due to low numbers in each group resulting in weak statistical power. As a 

result, I reclassified two species (Rosa arkansana and Yucca glauca) as shrubs that are 

classified as subshrubs on the PLANTS database as of spring 2017.  

 

I also counted each individual blooming forb plant, the total number of blooms, and the 

plants’ identity (to the species level) the on each of the 20 x 20 m mid-contract treatment 

replicates in mid-July 2014. Blooming forb dynamics were captured only on the 20 x 20 

m mid-contract management plots as a proxy of pollinator habitat because actual 

pollinator assessments were being conducted by a concurrent study on the 2.4 ha 

pollinator treatment replicates. 

 

5.2.4 Plant response – data analysis 

I used multi-model inference to assess how much variability in growth habit was 

described treatment, sampling year or month, location on the field (site), along with the 



 141 

null and global against which the candidate models were tested. The following 

models were included in multi-model inference (MMI) frameworks, with the response 

variable (Y) for each MMI as species richness, diversity, evenness, growth habit, native 

status, growth duration, bare ground abundance, or litter abundance (i.e., eight MMIs in 

total):  

Treatment model: Y ~ Treatment 

Time model: Y ~ SamplingTime 

Block model: Y ~ Block 

Null model: Y ~  1  

I used a one-way ANOVA to assess the effect of treatment on total number of flowering 

plants, total number of blooms, and flowering species richness.  

 

5.3 RESULTS 

5.3.1 Bobwhite quail 

On day seven one of the blocks in the control plot experienced almost 100% mortality 

due to a predation event, and high mortality across all other blocks required me to pool 

data and simply assess overall day six weight gain in the treatment versus the control 

using a one-way ANOVA, removing the blocking and the repeated measures. This 

reduced the statistical robustness of the study, but the primary objective of this study was 

to develop methodology for habitat assessment, which this method describes. The coarse-

scale analysis did reveal that weight gain was significantly higher (P < 0.05) in the 

pollinator treatment versus the control (Figure 4.1). 
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5.3.2 Ground dwelling macroinvertebrates 

Ground dwelling macroinvertebrate abundance varied significantly in response to year 

and in response to treatment, with the lowest abundance in 2013, followed by peak 

abundance in 2014, and a slight decline in 2015, and higher abundance in the pollinator 

treatment relative to the control (Figure 4.2). Separating the datasets into individual years 

revealed that the higher abundance in the pollinator treatment was significant (P < 0.05) 

in 2013 and 2015 but only nominally significant (P < 0.1) in 2014. The pitfall traps in 

field pollinator treatment replicate number 8 were consistently disturbed during the 

sampling period, likely by a raccoon that was frequently spotted in the area during early 

mornings and late evenings. The perpetrator dug up PVC tubes, spilled trap contents, and 

disrupted the ground around the sampling area. After repeated failed efforts to establish a 

sampling transect in this replicate in both 2013 and 2014, I abandoned the pollinator and 

control replicate 8 from my study (and from all analyses).  

 

5.3.3 Flowering plants 

The models that best fit forb abundance (Figures 5.4a and 5.4b) in the multimodel 

inference framework were the global (AICc = 0.52) and treatment models (AICc = 0.36) 

(Tables 5.1 and 5.2). Time was the third best fitting model (AICc = 0.09). The summary 

of the treatment model revealed that the interseed treatment resulted in significantly (P < 

0.05) higher forb abundance than all other treatments and control. A summary of the time 

model showed that forb abundance was also significantly higher in 2014 versus 2015 

(Figure 3.7).  

 



 143 

Treatment was not significant for average total number of flowering plants but it was 

for average number of total blooms, with significantly higher number of blooms on the 

burned and control plots relative to the disked and herbicide treated plots (Figure 4.5). 

Richness of flowing plants was also higher on the burned and control plots relative to the 

disked plots. Additionally, biennial Oenothera rhombipetala (four point evening 

primrose) bloomed in 2013, leading to a high abundance of blooming forbs across the 

entire study area.  

5.4 DISCUSSION 

While the hatchling bobwhite quail chicks gained significantly more weight in the 

pollinator treatments relative to the control in the first 6 days of their life (Figure 5.1), 

this result must be taken in context: the original experimental design was compromised, 

and a priori analyses were discarded in lieu of a more coarse scale analysis that, for 

instance, fails to accommodate outlier chicks and non-insect related field variability 

(blocks were combined). As a result, while this is an interesting result that supports the 

premise that greater abundance of ground dwelling macroinvertebrates leads to higher 

weight gain in bobwhite quail chicks, it should serve as a starting point for additional 

inquiry, rather than a guide for land management practice.  

 

I did, however, find strong evidence that insects responded to the pollinator treatment, 

with consistently higher abundance in 2013 and 2015, and slightly higher abundance in 

2014 (Figure 5.2). Following the drought and haying of 2012, summer 2013 invertebrate 

abundance was unsurprisingly low in the control and pollinator treatments, but seemed to 

respond to the pollinator treatment (light disking and interseeding), likely due to insects’ 
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ability to rapidly capitalize on newly available soil resources. In 2014, restructuring 

of the system through increased nutrient cycling, productivity, and biological diversity 

likely elicited higher invertebrate biomass, especially in the pollinator treatment. This is 

possibly due to higher resources as a legacy of the pollinator treatment, positive 

feedbacks as macroinvertebrates improve and benefit from improving their habitat (e.g., 

enhancing decomposition or soil porosity), more bare ground and leafy forb cover, or 

some combination thereof. The slight trend of ground dwelling macroinvertebrates 

downward in 2015 perhaps supports the legacy resources hypothesis, as it indicates that 

as resources begin to be tied up in biomass and interactions dictating resource transfer 

through the ecosystem become more complex (Angeler et al., 2015), invertebrates 

become more scarce. In patches with slightly higher resources, this is commensurately 

alleviated, which could explain why the pollinator treatment continues to host higher 

macroinvertebrate abundance nearly three years post treatment.  

 

While the number of species and species evenness (and, consequently Shannon Weiner 

diversity) did not respond meaningfully to the pollinator treatment versus the control, the 

treatment did result in significantly higher forb abundance (Figure 5.4a). This indicates 

that managing for pollinator habitat should focus on treatments that nudge the system 

towards forbs, because setting richness targets may be difficult to obtain. In the other 

treatments (the 20 x 20 m mid-contract management plots), the richness of blooming 

forbs diverged from the total number of blooms (Figure 5.5) (a possible indicator of the 

amount of pollinator food available), indicating again that species identity does not 

predict the abundance of traits that are of interest to managers (Chapter 3), in this case 

forbs for pollinator sustenance. This is an especially interesting finding because, during 
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the sampling period, there was a biennial flush of Oenothera rhombipetala (four point 

evening primrose), and it was apparent (visual observations) that some treatments 

variably influenced primrose specifically (disking seemed to diminish this species’ 

abundance), so there is likely enough diversity in functional response among blooming 

plant species that overall numbers of blooms were not affected.  

5.5 CONCLUSION 

My results show that a single management treatment can be used to elicit habitat for 

multiple taxa. In such systems where uncertainty and controllability are both high, my 

findings provide insight for future studies seeking to simultaneously generate habitat for 

taxa ranging from blooming forbs and pollinators, to macroinvertebrates, to bobwhite 

quail chicks. While it appears that the pollinator treatment, intended to provide higher 

quality for the aforementioned taxa, succeeds in its objective, there remain gaps in 

scientific understanding that must be addressed before my results can be applied more 

broadly (i.e., whether it was the interseeding, the preceding light disking, the 2012 

drought, or some combination thereof that elicited the response). It is becoming 

increasingly clear through this work and that of others that management actions often 

have multiple, complex, and even conflicting outcomes that must be better understood so 

that management objectives come into better alignment with management practices. 

 



 146 

5.6 TABLES 

Table 5.1 Multimodel inference table showing the global and treatment models as tied for 

the top model (within two AIC) out of the candidate model set for forb abundance per 

two m2. 

  Model K AICc Delta AICc AICc weight 
log-

Likelihood 

4 Global 17 6249.64 0 0.52 -3107.48 

1 Treatment 6 6250.43 0.78 0.36 -3119.17 

3 Time 5 6253.11 3.47 0.09 -3121.52 

2 Block 10 6256.56 6.91 0.02 -3118.16 

5 Null 2 6257.37 7.73 0.01 -3126.68 

 

 

Table 5.2 Summary of the treatment model from the forb abundance multimodel 

inference framework per two m2.  

 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) 4.9766 0.5446 9.14 0 

Control -0.3109 0.7691 -0.4 0.6861 

Disk -0.2858 0.7461 -0.38 0.7017 

Herbicide 0.9401 0.7605 1.24 0.2167 

Interseed 1.9868 0.7376 2.69 0.0072 
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5.7 FIGURES 

 

Figure 5.1 Average day-six weight gain (g) of the bobwhite quail chicks on the pollinator 

treatment versus the control in 2015.  Error bars are ±SE.   

 



 148 

 

Figure 5.2 Average ground dwelling insect abundance in response to the pollinator 

treatment (lightly disked + interseeded with a high diversity, high flowering forb seeding 

mix in late fall 2012) versus controls over three years of data collection. The site 

experienced an intensive drought and was subsequently hayed in summer of 2012. Error 

bars are ±SE.   
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Figure 5.4a Mean abundance of plants per two m2 grouped by growth forms (forb, 

graminoid, and shrub+subshrub combined into shrub), in the treatments and control. 

Error bars are ±SE.   
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Figure 5.4b Mean abundance of plants per two m2 grouped by growth forms (forb, 

graminoid, and shrub/subshrub combined into shrub) over the four sampling periods. 

Error bars are ±SE.   
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Figure 5.5 Average total number of flowering plants (blue bars), average number of total 

blooms (purple bars), and species richness (grey bars) in the 20 x 20 m mid-contract 

management and control plots (nine field replicates of each) in 2014. Error bars are ±SE.   
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ABSTRACT: Ecosystem services provided by soil include regulation of the atmosphere 

and climate, primary (including agricultural) production, waste processing, 

decomposition, nutrient conservation, water purification, erosion control, medical 

resources, pest control, and disease mitigation. The simultaneously production of these 

multiple services arises from complex interactions among diverse aboveground and 

belowground communities across multiple scales. When a system is mismanaged, non-

linear and persistent losses in ecosystem services can arise, such as desertification, soil 

salinization, or biological invasions. Adaptive management is an approach to 

management designed to reduce uncertainty as management proceeds. By developing 

alternative hypotheses, testing these hypotheses and adjusting management in response to 

outcomes, managers can probe dynamic mechanistic relationships among aboveground 

and belowground soil system components. In doing so, soil ecosystem services can be 

preserved and critical ecological thresholds prevented. Here, we present an adaptive 

management framework designed to reduce the uncertainty surrounding the soil system, 

even when soil ecosystem services production is not the explicit management objective, 

so that managers can reach their management goals without undermining soil 

multifunctionality or contributing to an irreversible loss of soil ecosystem services. 
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6.1 INTRODUCTION 

6.1.1 Managing for Soil Ecosystem Services  

Ecosystem services provided by soil include regulation of the atmosphere and climate, 

primary (including agricultural) production, waste processing, decomposition, nutrient 

conservation, water purification, erosion control, medical resources, pest control, and 

disease mitigation (Wall et al., 2004; Bardgett, 2005; de Deyn and van der Putten, 2005; 

Wall et al., 2015). Many of these services emerge from cryptic processes in the 

rhizosphere (the interface between soil and plant roots characterized by high biological 

activity), creating uncertainty for managers seeking to improve or increase the delivery of 

soil ecosystem services. Adaptive management, a form of learning-while-doing that seeks 

to reduce uncertainty surrounding key questions in the landscape of interest and to adjust 

procedure as new information is gained (Allen and Garmestani, 2015), provides the 

opportunity to manage soils for multiple services while learning what strategies work in 

individual environments. Here, we discuss the unique challenges soils present to an 

adaptive management approach and then offer an adaptive management approach for soil 

service provisioning that can be applied to multiple management contexts.  

 

6.1.2 Multifunctionality: the role of biodiversity in ecosystem service production 

Ecological multifunctionality refers to the simultaneous production of numerous 

ecosystem services, and relies on a diverse community of species with a variety of 

functional traits (Wall et al., 2004; Gamfeldt et al., 2008; Maestre et al., 2012; Wagg et 

al., 2014). For example, the multiple functions of nutrient transformation, primary 

production, and carbon sequestration arise from the processes and interactions of, and 

among, a variety of species in one place in time (de Vries et al., 2012; Bradford et al., 
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2014). To maintain multifunctionality through time, a diverse community includes 

functional replacements for species excluded by shifting conditions (“functional 

redundancy”), or species with high plasticity (Isbel et al., 2011; de Vries et al., 2012). 

The link between multifunctionality and biodiversity is especially apparent in 

communities with low diversity or for a specialized function, where the loss of one biotic 

group can be especially impactful (Nielsen et al., 2011). 

 

In terrestrial ecosystems, functioning among aboveground and belowground systems is 

tightly linked through the rhizosphere (de Deyn and Van der Putten 2005) (Figure 6.1). 

Plants exude up to 40% of their fixed carbon into the rhizosphere as easily decomposable 

carbon (e.g., glucose), which is the major “currency” for the belowground system (Lynch 

and Whipps, 1990; Brussard, 2012). Most carbon in soils is protected from microbial 

metabolism, resulting in a high concentration of soil microbes in the rhizosphere, mostly 

inhabiting the zone within 5mm of plant roots (Kennedy, 2005). Relative to the rest of the 

ecosystem, microbial biomass (i.e., bacteria and fungi) is not impressive. However, 

microbial transformations of materials and energy in the rhizosphere influence ecosystem 

functioning (Alphei, 1996; de Deyn and Van der Putten 2005). Microbiota mineralize 

nutrients for plant uptake, permanently remove reactive nitrogen from the system 

(Schlesinger and Bernhardt, 2013), remediate toxins (Reynolds and Skipper, 2005), alter 

gas and water flow around roots by increasing soil aggregation (Jastrow, 1987; Kennedy, 

2005; Kibblewhite et al., 2008), and serve as a food source for microfaunal grazers, like 

protozoa and nematodes (Griffiths, 1990). These grazers provide food for higher tropic 

levels, excrete nutrients for plant uptake, and engineer the soil (Bonkowski, 2004; 

Ekelund et al., 2009). Availability of nutrients for plant uptake may stimulate root carbon 
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exudation, creating a potential feedback between aboveground and belowground 

through the rhizosphere, and affecting where and how a plant allocates its carbon stores 

(i.e., growth, nutrient mining, or reproduction) (Bonkowski, 2004). In addition to root 

exudates, plants provide carbon to the soil surface and belowground through 

aboveground litter fall and large root turnover, stimulating a diverse soil food web 

through changes in the quality and quantity of inputs (Eisenhauer et al., 2013; Lange et 

al., 2015; Steinhauer et al., 2015). 

 

Plants also interact directly with various herbivores, pollinators, pathogens, and 

symbiotic endophytes aboveground, and root herbivores, parasites, pathogens, symbiotic 

nitrogen fixing bacteria, and arbuscular mycorrhizal fungi belowground (Bezemer and 

van Dam, 2005; De deyn and Van der Putten 2005; Bardgett and van der Putten; 2014). 

These interactions affect plant community structure and plant contributions to ecological 

multifunctionality, such as biomass production, invasion resistance, and belowground 

carbon sequestration (Zavaleta et al., 2010; Isbell et al., 2011; Eisenhauer et al., 2013).  

These interactions result in tightly coupled aboveground and belowground functioning. 

Ignoring the cryptic, complex, multi-scale interactions occurring in soil can result in non-

linear responses to management and irreversible failures. An adaptive management 

framework for managers seeking to improve soil ecosystem services across a landscape 

must account for these cryptic and cross-scale interactions in order to avoid undesirable, 

unrecoverable system behavior. 

 



 156 

6.1.3 Soil feedbacks and non-linear systems shifts: implications for management 

Given the generally positive relationships between biodiversity and multifunctionality, 

greater ecosystem service outputs could be achieved by managing for higher plant and 

soil biodiversity. However, there are spatial and temporal constraints on the provisioning 

of any ecosystem services (Birge et al., 2016b). For example, intensive agriculture 

generates valuable textile and food ecosystem services (MA 2005), but reduces soil 

diversity and multifunctionality (Brussaard 1997; DeFries et al., 2004). The tradeoffs 

between agriculture and biodiversity may not be apparent until a threshold is exceeded 

and ecosystem services are lost, and/or significantly reduced (Walker and Salt 2008). In 

many cases, this unintended loss of ecosystem services is irreversible and sudden 

(Holling and Meffe, 1996; Scheffer et al., 2011).  

 

Indeed, slowly developing feedbacks between intensive production of a single 

agroecosystem service and soil functioning have been responsible for multiple social-

ecological regime shifts associated with a catastrophic loss of ecosystem services, both 

now and throughout human history (Pitman, 2002; Peters, 2015). Soil salinization in 

some arid agricultural areas is catastrophic shift as a result of altered plant–soil feedbacks 

and/or intensifying irrigation (Smedema, 1990, Folke et al., 2004). In Australia, 

replacement of native woody vegetation with shallow-rooted wheat crops results in rising 

groundwater tables. This leads to the mobilization of deep salt stores to shallower soils, 

reducing plant productivity and soil biological activity (McFarlane et al., 1992; Pankhurt 

et al., 2001; Gorden et al., 2003). In the arid “Wheatbelt Region” of Australia, continual 

groundwater recharge combined with low precipitation (i.e., lack of flushing events) 

means there is no hydrologic mechanism for reversing upper horizon soil salinity. 
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Irrigation has a similar effect in arid climates and/or for poorly drained soils due to 

evaporation of irrigation water containing salts or waterlogged soil with natural salt 

deposits.  

 

The ecological impacts of soil salinization are widespread globally (e.g., Rietz and 

Haynes, 2003; Houk et al., 2006). Loss of ecosystem services associated with soil 

salinization as a result of agricultural intensification is not a new problem – it was a 

contributing factor to the dissolution of the Sumerian nation-state in ~1800 BCE 

(Jacobsen and Adams, 1958). Irreversible loss of riverine and wetland ecosystem services 

from saline soil runoff reveals the potential for long-term, watershed-scale impacts of soil 

salinization (Hart et al., 1991; Delaney et al., 2015). Today, roughly 50% of agricultural 

soils worldwide are affected by salinization, with associated costs estimated at US $12 

billion annually (Smedema and Shiati, 2002; Pitman and Läuchli, 2002).  

 

Another result of intensive agricultural ecosystem services production is desertification 

(Peters et al., 2013; Verstaete et al., 2009). Desertification is a broad-scale and persistent 

reduction in productivity that often arises from climatic, ecological, and social factors and 

occurs in arid, semi-arid, tropical, temperate, and high-latitude ecosystems (Verstraete et 

al., 2009). It is often characterized by a shift from native perennial plant cover to high 

bare ground, annual, non-native and/or xeric shrubby plant cover (Peters et al., 2015). 

Replacement of deep-rooted, drought tolerant perennial grassland species by drought 

intolerant wheat crops in the early 20th century U.S. Great Plains by European settlers 

resulted in a reduced rhizosphere and high bare ground cover, contributing to a loss of 

soil stability. An especially intense and long lasting drought in the 1930s (Miao et al., 
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2007; Cook et al., 2009) was the proximate cause of a desertification event that 

displaced nearly 39 million ha of topsoil across the Southern Great Plains, USA. In the 

case of the Dust Bowl, as is common in desertification, a stochastic event triggered a 

catastrophe by overwhelming other system feedbacks that were previously altered, 

making it difficult to disentangle the individual drivers of system state changes (Rietkerk 

and van der Koppel 1997; Peters et al., 2006; Scheffer et al., 2011). Yet, poor land 

management at least partially contributes to the 12 million hectares of newly desertified 

land each year (UNCCD, 2011). Losses in agricultural, cultural, hunting, tourism, and 

carbon sequestration ecosystem services due to desertification (UNCCD, 2013) cost 

roughly US $3 trillion globally, or 3-5% of gross world product (Berry and Campbell, 

2003).  

 

Non-linear losses of soil ecosystem services also result from alterations to soil nutrients, 

driving bottom-up changes in the plant community. Even following the cessation of 

agriculture, high loads of phosphorus acquisition enzyme dynamics did phosphorus 

acquisition enzyme dynamics did phorus and nitrogen can persist in soils, undermining 

restoration targets due to their unexpected interactions with biodiversity, carbon 

sequestration, and water quality (Isbell et al., 2013; Graham and Mendelssohn, 2016). For 

example, “Hole-in-the-Donut” is a tract of agricultural land formerly surrounded by 

Everglades National Park, Florida, USA. In 1975, after eighty years of intensive 

agricultural pesticide and fertilizer inputs, the Hole-in-the-Donut was incorporated into 

the park. Bedrock plowing, which crushes and mixes the limestone bedrock into the 

overlying marl and organic horizons, and fertilizer inputs created a deeper, more nutrient 

rich soil type relative to the surrounding matrix. As a result, the non-native, shrubby 
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Schinus terebinthifolius (Brazilian pepper or Christmas berry), formerly recorded 

only in small numbers in southern Florida, found favorable conditions in the well 

drained, phosphorus rich Hole-in-the-Donut restoration site (Smith et al, 2011; Ewel, 

2013). Exacerbating this is Brazilian pepper’s beneficial association with mycorrhizal 

fungi (Figure 6.1), which are obligate aerobes and thus uncommon among native plants 

inhabiting the hydric soils characteristic of the Everglades ecosystem (Ewel et al., 1982). 

Despite intensive mechanical tree removal, herbicide application, and prescribed burning 

on the site, Brazilian pepper persisted for decades, eventually forming a near monoculture 

on the site (Ewel et al., 1982; Smith et al., 2011). Eventually, managers removed the 

entirety of the phosphorus rich, rock-plowed soil down to the bedrock over the entire 22 

km2 expanse of Hole-in-the-donut –an expensive undertaking. Eleven years after soil 

removal, Hole-in-the-Donut had nearly 4cm of newly formed topsoil, and was dominated 

once again by native plant cover (O’Hare, 2008; Smith et al., 2011). 

 

As these examples illustrate, when landscapes are optimized for the intensive production 

of a single service, the system may cross a threshold where not even the desired service 

can be adequately produced. Soil degradation, such as salinization, erosion, and changes 

in nutrient cycling are recognized as threats to the security of soil as a global resource for 

food and fiber production, water purification, a reservoir of biodiversity, and climate 

regulation (CEC, 2006; Lal, 2010; McBratney et al., 2014). Management of ecosystems 

is often necessary even when there is uncertainty regarding soil and plant response to 

management actions because the cost of inaction is too high. As managers seek to 

improve the output of soil multifunctionality, or at least ensure that their management 

actions do not contribute to non-linear system shifts arising from feedbacks with or 
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within the soil system, it is imperative to reduce uncertainty surrounding management 

decisions. One such approach is adaptive management, which offers managers a method 

to proceed with management actions while learning about mechanistic system 

relationships so that soil ecosystem services can be improved and increased, and critical 

thresholds can be avoided.  

 

6.2 Incorporating soil into an adaptive management framework 

In any ecosystem, the amount of services available for production is finite. Top-down 

constraints such as climate, topography, and soil type dictate the range of services an 

ecosystem can provide, and management decisions further constrain the realized set of 

ecosystem services.   

 

No single ecosystem can produce every service possible at its optimized output 

consistently throughout space and time, but a diverse, functionally connected 

aboveground and belowground contributes to multifunctionality and safeguards against 

regime shifts (Wall et al., 2004; Foley et al., 2005). In a management context, 

stakeholders may not be immediately concerned with ecosystem service losses associated 

with potential future regime shifts. Yet the costs associated with these shifts are high, and 

complex soil feedbacks are poorly understood, creating uncertainty around important 

mechanisms driving these shifts. This uncertainty can be addressed in management plans 

to avoid an inadvertent loss of soil multifunctionality and ecosystem services. Managers 

attempting to generate multiple ecosystem services also face tradeoffs – especially if their 

plans require a reduction in biodiversity. Thus, we are challenged to reduce these areas of 

uncertainty associated with the belowground system while proceeding with management.  
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6.3 FRAMEWORK  

6.3.1 The soil adaptive management cycle 

One approach to reducing uncertainty surrounding soil multifunctionality is adaptive 

management. Adaptive management is designed to reduce uncertainty and winnow 

amongst competing hypotheses of system response as management proceeds (Allen and 

Garmestani, 2015). Adaptive management involves generating alternative hypotheses, 

testing these hypotheses and adjusting management in response to outcomes, and 

embracing unpredictable events as opportunities to reveal mechanisms and unknown 

relationships (Williams 2011). Here, we present an adaptive management framework 

designed to reduce this uncertainty surrounding the soil system –even when soil 

ecosystem services production is not the explicit management objective. 

 

Adaptive management is appropriate when there is uncertainty regarding response to 

management, but an ability to manage (i.e., there is “controllability”) (Allen et al., 2011).  

An adaptive management cycle begins with explicit conceptual models of the system at 

hand, and addresses a management problem with actions that can be tested as alternative 

hypotheses through monitoring and assessment (Figure 6.2). Knowledge gained through 

evaluation of monitoring data can be used to improve the next round of adaptive 

management, through adjustments to the hypotheses tested and management used. 

Regardless of whether the management goal is enhancing soil ecosystem services 

production, a straightforward and inexpensive way to improve an adaptive management 

plan for soils and increase the output of ecosystem services is to integrate the 

belowground into the conceptual model of the system. This inclusion may reframe the 
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decision making steps of the adaptive management approach by outlining important 

soil feedbacks that might otherwise go unmonitored.  

 

For example, after incorporating a soils perspective into his or her conceptual model, a 

manager may alter management actions and monitoring variables to account for 

belowground processes and feedbacks. The significance of the monitored soil variables 

(Table 5.1) to the management problem can then guide the manager’s future allocation of 

monitoring resources. This contrasts with trial and error management, in which 

management is only adjusted when an error occurs, and lack of error is interpreted as a 

successful application of management, regardless of the mechanism driving the system’s 

behavior. Adaptive management promotes learning about the system regardless of 

outcome (Holling 1978), and is thus well suited for the dynamic, non-equilibrium soil 

system. By promoting the inclusion of soil processes in the adaptive management cycle, 

managers may improve the output of soil ecosystem services such as food and fiber 

production, water purification, carbon sequestration, atmospheric and hydrologic 

regulation, erosion control, and pest and pathogen control (Wall et al., 2004; Wall et al., 

2012). 

 

An adaptive management approach that accounts for soil components can reduce overall 

system uncertainty. However, the soil system operates at multiple scales across space and 

time –not all of which are commensurate with management. Moderately slow variables 

that vary over months to decades could be missed by a cursory inclusion of soil 

components in an adaptive management plan (Table 5.1). Similarly, a snapshot of a 

rapidly shifting variable from a single point in time may not capture key trends, such as 
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changing soil microfaunal diversity. In the previous examples of desertification, 

salinization, and a species invasion, feedbacks between the aboveground and 

belowground result in non-linear and persistent reductions in ecosystem services. The 

processes driving these shifts may be detected and avoided using adaptive management. 

By adding an additional, soil feedback-specific adaptive management cycle to an overall 

adaptive management program (Figure 6.3), managers can continue to address the 

fundamental management objective while accounting for soil “means objectives” that 

could otherwise be overlooked and thus potentially result in a persistent loss of 

ecosystem services.  

 

Much like adaptive management, the soil adaptive management cycle should be system-

specific, and alternative hypotheses should address key uncertainties about system 

functioning. Many ecosystems have multiple possible alternative, persistent states, and 

soil feedbacks may not contribute, either ultimately or proximately, to every critical shift 

among states. The determination of the soil’s significance in a given state shift should be 

made using a priori system indicators monitored during the learning stage of adaptive 

management (Figure 6.3). These indicators may include increasing bare ground cover, or 

a change in aboveground plant diversity (particularly a loss of productive native species), 

both of which are tightly coupled to belowground functioning and biodiversity (Wardle et 

al., 2004; Bardgett et al., 2014). Because belowground-aboveground linkages create 

complex feedbacks, simple cause and effect relationships are difficult to ascertain from 

changes in the aboveground system alone.  
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6.3.2 The soil adaptive management cycle: application 

For example, a one-time measure of bare ground may not indicate a meaningful reduction 

in belowground functioning, but persistent or otherwise unexplainable bare ground could 

suggest belowground processes in need of further probing. Setting threshold levels of 

indicators that, once reached, initiate the soil adaptive management cycle can guide soil 

management (much like the invasive species triggers used in adaptive management of 

some protected areas, e.g., van Wilgen and Biggs [2011]). When a soil adaptive 

management cycle is initiated, alternate hypotheses should be developed and tested to 

address whether the system uncertainty is arising from feedbacks with the soil system. 

The specific steps of the structured decision making stage can be adjusted based on the 

evaluation stage (Figure 6.2, Table 6.1). As uncertainty is reduced or resolved, different 

outcomes can arise. Uncovering new information about the belowground system may 

reveal uncertainty in a different process and their importance to the management 

problem, resulting in another round of the soil adaptive management cycle to test 

alternative hypotheses, i.e., double loop learning (Lee, 1993).  

 

By identifying alternative hypotheses and indicators based on soil ecosystem services and 

thresholds to which the system may vulnerable, managers have explicit targets that allow 

them to proactively decide when to devote additional resources to monitoring and 

learning about the soil system. Take for example, if a perennial grassland system 

typically that cross an a priori determined management threshold for bare ground (i.e., % 

extent, duration, or both). When perennial grasslands experience a broad shift to a 

desertified state, aboveground-belowground activity may be isolated to spaces occupied 

by shrubby or xeric plants, and the interspaces barren, making the shift persistent (Peters, 
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2015). When evaluation of the bare ground monitoring data triggers a soil adaptive 

management cycle, a conceptual model of the system can guide managers to target 

system-specific and problem-specific soil variables, such as root biomass, fungal 

biomass, soil nutrient status, and cation exchange capacity (Table 5.1) in the bare ground 

versus under vegetation over multiple sampling time points. Monitoring these variables 

can help explore hypotheses regarding the proximate and ultimate drivers of a system 

shift that would undermine not only soil ecosystem services but also the fundamental 

management objective.   

 

Eventually, uncertainty surrounding the soil should be also be resolved in a way that 

eliminates the need for an additional soil adaptive management loop, either by identifying 

the soil variable for inclusion in ongoing monitoring, or because new information from 

the soil system alters the overarching, fundamental adaptive management objective. 

There may be no simple management recipe for increasing belowground 

multifunctionality and avoiding regime shifts, but this approach offers a structured way to 

proceed with management while constantly seeking to uncover mechanistic relationships. 

By learning about the system through management, a richer, more complex 

understanding of the soil system and its mechanistic relationship to system components 

and external drivers can emerge.  

 

6.4 CONCLUSION 

Drivers of global change such as global nitrogen deposition, climate change, and species 

invasions are creating uncertainty surrounding the future of soil biota and the ecosystem 

services they underpin. Poor land management that optimizes intensive production of a 
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narrow suite of ecosystem services may result in non-linear, persistent losses of soil 

ecosystem services. Thus, in order to preserve the essential benefits soil provides to 

human society, there is a pressing need to manage ecosystems with diverse, 

multifunctional belowground systems (Wall et al., 2015) while reducing uncertainty 

surrounding belowground response to management and global change. By constantly 

working to reducing this uncertainty, adaptive management can target biodiversity 

objectives while avoiding critical system thresholds in a dynamic, no-analog future.  
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Figure 6.1 A conceptualization of the tightly coupled aboveground-belowground 

biodiversity and functioning. Primary production (1) is the ultimate source of energy in 

all ecosystems. Plant materials provide food for a variety of aboveground chewing, 

sucking, mining (2), and pollinating (3) insects. These plant-insect interactions affect 

plant chemistry, plant community structure, plant and insect dispersal, and an abundance 

and diversity of other herbivores and higher trophic levels in the ecosystem (not all 

shown) (de Deyn and Van Der Putten, 2005). Changes in the quantity and/or quality of 

litter inputs to the soil (4) can result from aboveground herbivory, and alter the food 

source for a variety of belowground detritivores (5) (Wardle et al., 2002; de Deyn and 

van der Putten, 2011). Bacteria, protozoa, and arbuscular mycorrhizal (AM) fungi in the 

rhizosphere (6) directly influence the mineralization of organic carbon and nitrogen 

(CeN) stored in humus (7), affecting available nutrients for plants, who may alter fine 

root turnover (8), and/or release labile carbon (9) to the surrounding soil microbiota in 

response, stimulating mineralization activity, and indirectly influencing higher trophic 

levels, such as nematodes that feed on roots and bacteria (10) (Brussaard, 2012). Soil 

nutrient availability in turn influence plant community structure (Isbell et al., 2013), 

affecting the quality and quantity of litter inputs back to the soil and thus tightening 

aboveground-belowground diversity and functional linkages. Vector symbols used in the 

figure courtesy of Tracey Saxby, Jane Hawkey, and Dieter Tracey of Integration and 

Application Network of the Center for Environmental Science as University of Maryland.  
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Figure 6.2 The adaptive management cycle [modified from Allen et al. (2011)].  
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Table 6.1 Testable soil variables, their speeds, and the associated ecosystem system 

services which they help to maintain. Approximate time scales for each variable include: 

Very Slow = millenia, Slow = centuries, Moderately Slow = decades, Moderately Fast = 

years, or Fast = seasons). The level of estimated training or soil-related expertise required 

(Low, Medium, or High) and cost estimates for field and laboratory measurements (Low, 

Medium, or High) are also provided.  

Variable Variable 
Speed Associated Ecosystem Services Expertise Cost1 

Texture Very slow Landscape diversity, primary 
productivity, CO2 sequestration Med. to high Low to 

med. 

Horizon depth Slow Erosion control, primary 
productivity Med. to high Med. to 

high 

Compaction/ 
bulk density 

Moderately 
Fast 

Generation of soil structure, 
runoff control, water-holding 

capacity, nutrient cycling 
Medium Low to 

medium 

Aggregation Moderately 
Fast 

Erosion control, landscape 
diversity/microhabitats, H2O and 

nutrient transport, CO2 
sequestration 

Med. to high Low to 
high 

Root biomass Moderately 
Fast 

Erosion control, maintenance of 
above/belowground biodiversity, 
soil structure, CO2 sequestration, 

porosity 

Med. to high Low to 
high 

Nematodes Moderately 
fast 

Bioturbation, decomposition, soil 
porosity, biodiversity, nutrient 

mineralization, CO2 sequestration 
 

Med. to high Low to 
high 

Surface residue Moderately 
fast 

Topsoil formation, microhabitats, 
CO2 sequestration, soil stability, 

water-holding capacity 
 

Low to med. Very low 

Fungal biomass 
Fast to 

moderately 
fast 

Biodiversity, primary 
productivity, CO2 sequestration 

soil structure, nutrient 
mineralization 

 

Med. to high High 

Salinity Slow Primary productivity, Med. to high Med. to 
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biodiversity, habitat quality high 
Trace nutrients 

(e.g. iron, 
manganese) 

 

Slow Landscape diversity, primary 
productivity, CO2 sequestration High Med. to 

high 

Cation exchange 
capacity (CEC) 

Moderately 
slow 

Soil fertility, primary 
productivity Med. to high Low to 

high 

Total carbon 
Slow to 

moderately 
fast 

Soil stability, primary 
productivity, CO2 sequestration, 

water-holding capacity, 
biodiversity 

 

High Med. to 
high 

Nitrogen 
availability Slow to fast 

Soil fertility, biodiversity, 
primary productivity, CO2 

sequestration 

Med. to 
high 

 

Low to 
high 

Total organic 
matter 

Moderately 
fast 

Soil stability, fertility, 
microhabitats, water cycling, 

nutrient mineralization 
High Med. to 

high 

Soil pH Fast Nutrient cycling, microbial 
activity, decomposition 

Low to med. 
 Low 

Water-holding 
capacity Slow Irrigation, water cycling, nutrient 

cycling Med. to high Low to 
high 

Infiltration Moderately 
slow 

Runoff control, water cycling, 
nutrient cycling Low to med. Low to 

med. 

Decomposition Fast 
Nutrient cycling, topsoil 

production, soil stability, fertility, 
bioremediation 

Med. to high Low to 
high 

Plant defense 
compounds Fast Primary productivity, pathogen 

control, nutrient cycling High High 

     

 



 171 

 

 

Figure 6.3 An adaptive management framework for reducing uncertainty in the soil 

system while proceeding with the fundamental management objective.  
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7 SYNTHESIS  

Hannah Eliza Birge, Ph.D. 

University of Nebraska, 2016 

Advisers: Craig R. Allen and David A. Wedin 

ABSTRACT: In Chapters 2, 3, and 4, I reported how four common mid-contract 

management practices had different effects on soil, plant, and habitat dynamics of a 

North Central Great Plains Conservation Reserve Program (CRP) grassland. Notable 

findings include herbicide treatment eliciting higher abundance of nonnative plant species 

and a belowground shift towards higher carbon and phosphorus requirements, likely due 

to elevated nitrogen in response to plant death or microbial priming of organic matter. 

Additionally, I found that interseeding with a high diversity seed mix provided enhanced 

habitat for multiple taxa and led to increased forb abundance. My statewide survey results 

show that while landowners identify soil health and habitat as ecosystem services and 

burning as an effective practice to achieve those ends, they more commonly use herbicide 

as a management practice. My results supported burning as an effective management 

strategy for achieving soil and habitat ecosystem services, especially relative to herbicide 

application. By capitalizing on landowner amenability to burning, influence of agency 

personnel over management decisions, and high controllability necessary for adaptive 

management to proceed, my results reveal an opportunity for agencies to assess the effect 

of herbicide versus burning across the range of past land uses, soil types, and 

environmental variables that comprise Nebraska’s CRP grasslands to achieve multiple, 

simultaneous ecosystem services.  
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7.1 DISCUSSION 

In Chapters 2, 3, and 4, I discussed how four common mid-contract management 

practices had different effects on soil, plant, and habitat dynamics of a North Central 

Great Plains Conservation Reserve Program (CRP) grassland. Notable findings include 

herbicide treatment eliciting higher abundance of nonnative plant species and a 

belowground shift towards higher carbon and phosphorus requirements, likely due to 

elevated nitrogen from lack of plant uptake, root necromass mineralization, and/or 

microbial priming of organic matter. I also found that interseeding with a high diversity, 

high forb seed mix provided enhanced habitat for multiple taxa and led to higher forb 

abundance. These results are especially interesting in light of the statewide CRP enrollee 

survey I administered, in which respondents identified soil health and habitat as the most 

desirable ecosystem services, and burning as an effective practice to achieve those ends –

even though they more commonly use herbicide as a management practice.  

 

My results support burning as an effective management strategy to achieve simultaneous 

benefits to soil and habitat, with burning eliciting higher bare ground and slightly higher 

forb abundance, which are typically considered important for critical life stages of upland 

game birds, but without concurrent shifts in belowground functioning divergent from that 

of the control soils. Burning also did not to elicit undesirable aboveground changes such 

elevated nonnative species abundance. This is likely because the system is adapted to fire 

disturbance relative to the other types of mid-contract management practices. However, 

only 26% of landowners are burning on Nebraska CRP lands according to the survey 

responses, and respondents appear to attribute their decision to instead apply herbicide 

largely to agency recommendation –rather than to cost or ease of practice. By capitalizing 
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on landowner amenability to burning and high controllability necessary for adaptive 

management to proceed, my results provide a rare opportunity for agencies to compare 

the efficacy of two management practices on ecosystem services identified as important 

by both landowners and included as overarching objectives of the CRP: soil conservation 

and habitat provisioning. 

 

Respondents identified nonnative species as the top ecosystem disservice associated with 

the CRP. The two management practices of herbicide and burning are interesting in 

comparison to one another in that herbicide is commonly used to control nonnative 

species and considered at least somewhat effective by landowners in Nebraska, even 

though my results reveal that it may elicit soil feedbacks that ultimately undermine that 

management objective. The other, burning, is less commonly used but seen as more 

effective in the state, and was supported by my results as better supporting respondents’ 

management objectives. Whether my results translate to other contexts that comprise a 

range of past land uses, soil types, and environmental variables represent the uncertainty 

needed to enact an adaptive management plan. Specifically, state agencies could design 

county or even a state level burning versus herbicide experiments on multiple CRP fields 

to measure various soil and habitat outcomes in response to the two treatments. My own 

study represents a first round in a structured decision-making and learning loop so that a 

second round of adaptive management, such as a state-level adaptive management plan, 

could proceed.  

 

When landowners formulate management decisions, they are faced with multiple explicit 

and hidden tradeoffs that may inadvertently influence their ultimate management 
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objectives. Surprising feedbacks in response to herbicide in my study reveal the 

challenge of managing ecosystem service tradeoffs and system complexity even at 

manageable scales, such as two years over ~200 ha. With increasing scales, to the state, 

regional, and national level where the CRP operates, more ecosystem services can be 

generated with fewer tradeoffs, but with decreasing control and increasing uncertainty. 

Assessing where critical uncertainty can be reduced at each of these scales is essential for 

ensuring the Conservation Reserve Program lives up to its potential as the largest 

conservation policy in United States history. My work represents one such effort, by 

reducing uncertainty in the social and ecological components of a Conservation Reserve 

Program grassland in the North Central Great Plains.  
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9 APPENDIX 
 

Tukey HSD treatment mean comparisons for H3A total soil nitrogen 

Treatment Comparisons diff lwr upr p adj 

Control-Burn -0.12 -0.61 0.37 0.96 

Disk-Burn -0.08 -0.57 0.41 0.99 

Herbicide-Burn 0.48 -0.01 0.97 0.06 

Interseed-Burn 0.38 -0.15 0.92 0.28 

Disk-Control 0.04 -0.45 0.53 1 

Herbicide-Control 0.6 0.1 1.1 0.01 

Interseed-Control 0.5 -0.03 1.04 0.08 

Herbicide-Disk 0.56 0.07 1.06 0.02 

Interseed-Disk 0.46 -0.07 1 0.12 

Interseed-Herbicide -0.1 -0.64 0.44 0.99 
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Tukey HSD treatment mean comparisons for H3A total soil nitrate 

Treatment Comparisons diff lwr upr p adj 

Control-Burn -0.17 -0.56 0.23 0.77 

Disk-Burn -0.1 -0.49 0.3 0.96 

Herbicide-Burn 0.35 -0.04 0.75 0.1 

Interseed-Burn 0.21 -0.22 0.63 0.66 

Disk-Control 0.07 -0.32 0.47 0.99 

Herbicide-Control 0.52 0.12 0.92 0 

Interseed-Control 0.37 -0.06 0.81 0.12 

Herbicide-Disk 0.45 0.05 0.84 0.02 

Interseed-Disk 0.3 -0.12 0.73 0.29 

Interseed-Herbicide -0.14 -0.58 0.29 0.88 
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Tukey HSD treatment mean comparisons for H3A total soil ammonium 

Treatment Comparisons diff lwr upr p adj 

Control-Burn 0.03 -0.55 0.61 1 

Disk-Burn 0.06 -0.51 0.63 1 

Herbicide-Burn 0.19 -0.39 0.76 0.9 

Interseed-Burn 0.65 0.03 1.27 0.04 

Disk-Control 0.03 -0.55 0.6 1 

Herbicide-Control 0.16 -0.43 0.74 0.95 

Interseed-Control 0.62 -0.01 1.25 0.06 

Herbicide-Disk 0.13 -0.45 0.71 0.97 

Interseed-Disk 0.59 -0.03 1.22 0.07 

Interseed-Herbicide 0.46 -0.17 1.09 0.25 
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Tukey HSD treatment mean comparisons for percent soil carbon 

Treatment Comparisons diff lwr upr p adj 

Control-Burn -0.17 -0.56 0.23 0.77 

Disk-Burn -0.1 -0.49 0.3 0.96 

Herbicide-Burn 0.35 -0.04 0.75 0.1 

Interseed-Burn 0.21 -0.22 0.63 0.66 

Disk-Control 0.07 -0.32 0.47 0.99 

Herbicide-Control 0.52 0.12 0.92 0 

Interseed-Control 0.37 -0.06 0.81 0.12 

Herbicide-Disk 0.45 0.05 0.84 0.02 

Interseed-Disk 0.3 -0.12 0.73 0.29 

Interseed-Herbicide -0.14 -0.58 0.29 0.88 
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Tukey HSD treatment mean comparisons for PLFA biomass 

 

Treatment Comparisons diff lwr upr p adj 

Control-Burn -74.52 -324.86 175.83 0.92 

Disk-Burn -19.58 -269.93 230.77 1 

Herbicide-Burn 118.71 -134.23 371.65 0.69 

Interseed-Burn 240.67 -32.93 514.28 0.11 

Disk-Control 54.94 -195.41 305.28 0.97 

Herbicide-Control 193.23 -59.71 446.17 0.22 

Interseed-Control 315.19 41.59 588.8 0.02 

Herbicide-Disk 138.29 -114.65 391.23 0.55 

Interseed-Disk 260.25 -13.35 533.86 0.07 

Interseed-Herbicide 121.96 -154.02 397.95 0.74 
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Tukey HSD treatment mean comparisons for phosphatase (P) enzyme activity at 35 

°C. 

Treatment Comparisons diff lwr upr p adj 

Control-Burn 0.04 -1.34 1.41 1 

Disk-Burn -0.4 -1.74 0.93 0.9 

Herbicide-Burn 1.33 0 2.67 0.05 

Interseed-Burn -0.58 -1.96 0.79 0.73 

Disk-Control -0.44 -1.81 0.94 0.88 

Herbicide-Control 1.3 -0.08 2.67 0.07 

Interseed-Control -0.62 -2.04 0.79 0.71 

Herbicide-Disk 1.74 0.4 3.07 0.01 

Interseed-Disk -0.18 -1.56 1.19 1 

Interseed-Herbicide -1.92 -3.29 -0.54 0 
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Tukey HSD treatment mean comparisons for S enzyme activity at 35 °C. 

Treatment Comparisons diff lwr upr p adj 

Control-Burn 0.02 -0.02 0.06 0.63 

Disk-Burn -0.03 -0.07 0.01 0.34 

Herbicide-Burn 0 -0.05 0.04 1 

Interseed-Burn 0 -0.05 0.04 1 

Disk-Control -0.05 -0.09 -0.01 0.02 

Herbicide-Control -0.02 -0.07 0.02 0.49 

Interseed-Control -0.03 -0.07 0.02 0.46 

Herbicide-Disk 0.02 -0.02 0.07 0.47 

Interseed-Disk 0.02 -0.02 0.07 0.55 

Interseed-Herbicide 0 -0.04 0.04 1 
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Tukey HSD treatment mean comparisons for CB enzyme activity at 35 °C. 

Treatment Comparisons diff lwr upr p adj 

Control-Burn -0.02 -0.25 0.21 1 

Disk-Burn -0.11 -0.33 0.12 0.64 

Herbicide-Burn 0.12 -0.11 0.34 0.56 

Interseed-Burn -0.09 -0.32 0.14 0.78 

Disk-Control -0.09 -0.32 0.14 0.8 

Herbicide-Control 0.14 -0.1 0.37 0.45 

Interseed-Control -0.07 -0.31 0.16 0.89 

Herbicide-Disk 0.23 0 0.45 0.05 

Interseed-Disk 0.02 -0.22 0.25 1 

Interseed-Herbicide -0.21 -0.44 0.02 0.09 
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Tukey HSD treatment mean comparisons for BG Q10 

Treatment Comparisons diff lwr upr p adj 

Control-Burn 0.79 -0.71 2.29 0.56 

Disk-Burn 1.87 0.42 3.33 0.01 

Herbicide-Burn 1.07 -0.38 2.53 0.24 

Interseed-Burn 0.59 -0.91 2.09 0.8 

Disk-Control 1.08 -0.42 2.58 0.25 

Herbicide-Control 0.28 -1.22 1.78 0.98 

Interseed-Control -0.2 -1.75 1.34 1 

Herbicide-Disk -0.8 -2.26 0.65 0.52 

Interseed-Disk -1.29 -2.79 0.21 0.12 

Interseed-Herbicide -0.48 -1.99 1.02 0.89 
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Tukey HSD treatment mean comparisons for CB Q10 

Treatment Comparisons diff lwr upr p adj 

Control-Burn 1.03 -1.18 3.24 0.67 

Disk-Burn 1.65 -0.56 3.86 0.22 

Herbicide-Burn 2.8 0.59 5.01 0.01 

Interseed-Burn 0.8 -1.41 3 0.84 

Disk-Control 0.62 -1.65 2.89 0.93 

Herbicide-Control 1.77 -0.5 4.04 0.19 

Interseed-Control -0.23 -2.5 2.04 1 

Herbicide-Disk 1.15 -1.12 3.42 0.6 

Interseed-Disk -0.85 -3.12 1.42 0.82 

Interseed-Herbicide -2 -4.27 0.27 0.11 
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Tukey HSD treatment mean comparisons for NAG Q10 

Treatment Comparisons diff lwr upr p adj 

Control-Burn 0.78 -0.64 2.2 0.5 

Disk-Burn 2.35 0.25 4.45 0.02 

Herbicide-Burn 1.58 0.16 3 0.02 

Interseed-Burn 0.32 -0.98 1.63 0.95 

Disk-Control 1.57 -0.63 3.76 0.25 

Herbicide-Control 0.8 -0.75 2.35 0.57 

Interseed-Control -0.46 -1.91 0.99 0.88 

Herbicide-Disk -0.77 -2.97 1.43 0.84 

Interseed-Disk -2.03 -4.15 0.1 0.07 

Interseed-Herbicide -1.26 -2.71 0.19 0.11 

 

 


