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Multiscale environmental processes determine in-stream habitat conditions which 

drive species distributions. Habitat constitutes the physical template upon which 

ecological processes occur and species conduct life stage activities. Habitat heterogeneity 

promotes biodiversity of aquatic systems. Stream classification informs freshwater 

conservation by providing a useful framework to account for habitat heterogeneity, often 

based on landscape regions of similar environmental processes. A greater understanding 

of landscape-based classification frameworks as means to classify stream systems may 

improve understanding of drivers of biodiversity. Using Nebraska as a case study, on a 

statewide scale, objectives were 1) to characterize habitat availability for several at-risk 

fish species, and 2) to assess the categorization of stream habitat heterogeneity within 

multiple classification systems. Species distribution models provide a tool to characterize 

spatial habitat patterns and quantify species-habitat relations. Species distribution models 

were constructed from environmental data and historical presence data for 3 at-risk 

cyprinid species including Flathead Chub, Plains Minnow, and Northern Redbelly Dace. 

Our results support current knowledge of impactful habitat features based on species 

traits and environmental processes shaping site-scale habitat conditions. For all 3 species, 

hydrological factors such as flow velocity and discharge were among the most influential 

habitat conditions of examined variables. Further, variables representing stream size and 



 
 

 

position in the drainage network consistently carried high influence. We used site-level 

stream data collected by the Nebraska Department of Environment and Energy (NDEE) 

from 1995-2021 to assess stream habitat heterogeneity among Biologically Unique 

Landscapes (BUL) at a statewide spatial extent. Multivariate cluster analysis and 

statistical similarity tests were used to determine if aquatic habitat within the BULs is 

unique and by which features they vary. No significant differences were found between 

aquatic environmental conditions within and outside BULs. Evidence for unique aquatic 

habitat conditions among BULs was limited, shown in minimal pairwise differences 

among BULs in statistical similarity tests. Furthermore, the classificatory power of the 

BULs underperformed all other classifiers and, as such, BULs may not improve statewide 

stream classification.  
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CHAPTER 1 

INTRODUCTION 

Physical Template of Streams 

Stream habitat characteristics are a result of a series of complex, hierarchical 

interactions between broad geographic, climatic, and geologic conditions and finer-scale 

physical and ecological processes (Hynes 1975; Frissell et al. 1986; Ward 1998; Davies 

et al. 2000; Brewer et al. 2018). The underlying hierarchical structure and dynamic nature 

of aquatic systems are key drivers of in-stream habitat conditions at multiple spatial 

scales (Frissell et al. 1986; Ward 1998). Geology directly influences and is reflected by 

drainage and channel patterns (Frissell et al 1986; Ward 1998). Channel patterns are 

constrained where geologic features such as bedrock limit channel movement leading to 

more straight channels or alluvial where unconsolidated sediment is eroded and forms 

more sinuous channels (Ward 1998). Macrohabitat, mesohabitat, and microhabitat 

features are determined by processes driven by drainage and channel patterns (e.g., 

sediment transport and deposition; Ward 1998; Benda et al. 2004). Macrohabitat refers to 

large-scale (i.e., 1 km – 10 km) physical features, such as geological or topographical, 

encompassing both meso- and microhabitats. Mesohabitats often refer to mid-scale (i.e., 

10 m – 1 km) hydrological features such as riffles, runs, and pools, and can be further 

categorized into microhabitat at small-scales (i.e., < 10 m; Vannote et al. 1980; Able et al. 

1987; Ward 1998). Overall, broad-scale geomorphological and hydrological 

characteristics directly influence local-scale habitat features and biodiversity patterns 

(Frissell et al. 1986; Ward 1998). 
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Hydrological and geomorphological dynamics of stream systems may shape 

available habitat and drive community structure and diversity (Hynes 1975; Vannote et 

al. 1980; Poff 1997; Frothingham et al. 2002; Benda et al. 2004). For example, the River 

Continuum Concept (RCC) identifies longitudinal trends in stream habitat and biotic 

community variation, where habitat conditions and resulting biological communities 

follow a gradient in stream size and position in the drainage network (Vannote et al. 

1980; Minshall et al. 1985; Frothingham et al. 2002; Benda et al. 2004). Although the 

linear perspective of the RCC has dominated fluvial ecology in the past, modern 

approaches favor a perspective of streams as a discontinuum (Townsend 1989; Poole 

2002; Benda et al. 2004). Discontinuum perspectives emphasize the nonuniform and 

patchy nature of habitat heterogeneity along stream lengths (Townsend 1989; Benda et al. 

2004; Thorp et al. 2006). Freshwater biodiversity is often attributed to habitat 

heterogeneity maintained through stochastic processes and disturbance regimes (e.g., 

periodic flood and drought) that are better represented in a discontinuum perspective 

(Ward 1998; Benda et al. 2004; Mayor et al. 2009). Investigations of habitat 

heterogeneity, hierarchical scaling, and stochastic disturbance have led to arguments for 

viewing streams under principles of landscape ecology (Wiens 1989; Fausch et al. 2002; 

Benda et al. 2004). Thus, emphasizing stochasticity and habitat heterogeneity as drivers 

of biodiversity under a riverscape approach could enhance understanding of ecological 

processes in freshwater systems at large spatial scales (Ward 1998; Fausch et al. 2002). 

The Importance of Habitat Heterogeneity 

Heterogeneity in physical habitat sets the spatial template for multiple ecological 

processes (Wiens 1989; Fausch et al. 2002; McManamay et al. 2018). Habitat 
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heterogeneity is often described as habitat patches, where discrete areas differ in 

structure, composition, or function of environmental features (Fausch et al. 2002; Wohl 

2016). Heterogeneity may then be assessed by number, type, size, and connectivity of 

habitat patches (Fausch et al. 2002; Wohl 2016). Observed habitat characteristics are 

determined by grain (i.e., spatiotemporal resolution of data) and extent (i.e., the overall 

size of the focal area) as components of the focal scale (Wiens 1989). Assessing 

heterogeneity in this manner is scale dependent, as the degree of heterogeneity observed 

is determined by the spatiotemporal grains and extents exercised (Fausch et al. 2002; 

Wohl 2016).  

Hydrologic and geomorphologic features are generally heterogenous in streams 

and may influence stream community health (Wohl 2016; Stein et al. 2018). Habitat 

heterogeneity promotes species diversity as increased habitat types, resources, and 

structural complexities broaden available niches and decrease competition (Wohl 2016; 

Stein et al. 2018). At broad spatiotemporal extents, habitat heterogeneity increases the 

probability of speciation due to adaptation to diverse environmental conditions (Stein et 

al. 2018). Within drainage networks, habitat heterogeneity has a compounding effect 

where complexity upstream positively influences that downstream, especially in solutes, 

sediment, and organic matter (Vannote et al. 1980; Wohl 2016; McManamay et al. 2018). 

Habitat heterogeneity reflects environmental processes and drives ecological processes; 

as such, it may be used to provide insight into these processes (Wohl 2016; McManamay 

et al. 2018). Furthermore, understanding patterns of habitat heterogeneity helps detect 

changes in environmental and ecological processes (Wohl 2016; McManamay et al. 

2018). Scale dependence of habitat heterogeneity may lead to a negative relationship with 
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species diversity, however, as the area of suitable habitat patches for a species may 

decrease as habitat types increase in smaller areas (Stein et al. 2018). Further, 

disturbances and limited connectivity can disrupt the translation of complexity of stream 

hydrology and geomorphology into habitat heterogeneity (Wohl 2016; Stein et al. 2018).  

Anthropogenic Disturbances 

Anthropogenic modification of stream habitat through fragmentation can reduce 

stream connectivity and disrupt natural disturbance regimes, greatly reducing a stream’s 

capacity to sustain biodiversity (Gido et al. 2019). Fragmentation via culverts and dams 

can decrease biodiversity through changes to spatial configuration of drainage networks 

that limit connectivity among stream reaches (Jackson and Fahrig 2015; Perkin et al. 

2017). Biodiversity in fragmented stream reaches is reduced given limited recolonization 

following local extirpation (Fausch et al. 2002; Perkin and Gido 2011; Perkin et al. 

2017). Impacts on biodiversity as a result of fragmentation have been observed in 

pelagic-spawning cyprinids of the Great Plains, USA (Perkin and Gido 2011; Perkin et al. 

2017). Fragmentation results in an increased likelihood of range restriction and local 

extirpation by limiting species movement and ability to conduct life-stage activities at 

broad spatial extents (Staude et al. 2020). The importance of movement in maintaining 

population connectivity is apparent in recolonization of habitat patches where fish were 

extirpated by drying or flooding in streams (Fausch et al. 2002; Falke and Fausch 2010). 

Source-sink dynamics describe how variation in habitat availability or quality, as well as 

species movement between variably suitable habitat patches, may affect growth or 

decline of spatially isolated populations of organisms (Pulliam 1988; Ziv 1998). Source 

populations in the highest quality habitats keep sink populations in low quality habitats 
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extant through immigration (Pulliam 1988; Ziv 1998). Fragmentation limits immigration, 

which is integral to offsetting reduced breeding success resulting from low habitat 

quality, endangering sink populations (Pulliam 1988; Ziv 1998; Staude et al. 2020). 

Furthermore, reduced range (i.e., geographic distribution) could increase inter- and 

intraspecies competition for source populations (Ziv 1998; Staude et al. 2020). 

Individuals may recolonize reaches due to their ability to track shifting mosaics of 

suitable habitat (Alford and Walters 2021; Rohr et al. 2021). Though some fish are well 

adapted to natural disturbance regimes that reflect the dynamic nature of freshwater 

environments, species richness often decreases following anthropogenic disturbance 

(Rohr et al. 2021). However, community structure may be resilient and persistent, as 

some species quickly return to pre-disturbance abundances within their native reaches 

(Lytle and Poff 2004; Alford and Walters 2021; Rohr et al. 2021). Thus, repeated 

extirpation and recolonization processes maintaining species distributions at different 

spatial and temporal scales are disrupted by habitat fragmentation (Albanese et al. 2009; 

Falke and Fausch 2010; Stoll et al. 2014).  

Homogenization of habitat caused by anthropogenic activities has resulted in 

declines of freshwater biodiversity at a greater rate than most other taxa (Cardinale et al. 

2002; Saunders et al. 2002; Göthe et al. 2014; Sievert et al. 2016). Stream ecosystems 

have arguably undergone the most dramatic homogenization of any ecosystem type 

(Cardinale et al. 2002). Within the United States of America, 85% of large rivers have 

been straightened for navigation and flood control, altering flow regimes and reducing 

sediment transport (Strayer and Dudgeon 2010; Vörösmarty et al. 2010; Perkin and Gido 

2011; Comte et al. 2021). Homogenized streams tend to exhibit disturbed hydrology, 
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manifesting as increased minimum flow velocity, decreased maximum flow velocity, and 

decreased hydrograph variability (McManamay et al. 2012; Paukert et al. 2020; Comte et 

al. 2021). Homogenization lowers biodiversity of impacted stream reaches as alterations 

simplify hydrology, geomorphology, and natural disturbance regimes of aquatic systems 

(Lytle and Poff 2004; Paukert et al. 2020; Comte et al. 2021). Such shifts in conditions of 

aquatic ecosystems reduce the diversity, abundance, and connectivity of available habitat 

for some species and reduces biodiversity by extension (Radinger et al. 2017; Paukert et 

al. 2020; Booher and Walters 2021). For example, human development of streambanks 

can remove large sections of riparian vegetation and render areas uninhabitable for 

species dependent on pre-disturbance habitat (Comte et al. 2021).  

Stream systems remain under persistent threat stemming from shifts in climate 

and land-use patterns (Worthington et al. 2014). Climate change is a significant threat to 

habitat heterogeneity and stream-fish communities (Sievert et al. 2016). Changes in 

maximum water temperature of only a few degrees can result in major shifts in the 

occurrence, abundance, survival, growth, size distribution, and reproduction of many 

species (Davies et al. 2000; Lyons et al. 2010). Land-use change is another major and 

persistent driver of biodiversity loss in freshwater systems (Carpenter et al. 2011; Comte 

et al. 2021). Terrestrial landscape features that influence physiochemical processes (e.g., 

nutrient cycling), and biotic structure within streams are altered through land-use (Hynes 

1975; Frissell et al. 1986; Vörösmarty et al. 2010; Brewer et al. 2018). Human 

appropriation of land for agriculture and infrastructure may drive habitat fragmentation 

and loss, homogenization, hydrological modification, shifting suspended nutrient loads, 

and alteration of riparian areas (Carpenter et al. 2011; Comte et al. 2021). Stream 
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sinuosity and middle stream orders are correlated with biodiversity, as both contribute to 

habitat heterogeneity (Ward 1998). As such, it is important to recognize the high degree 

of influence anthropogenic alterations have on the physical features of streams as 

biodiversity is threatened with changing climate conditions and habitat degradation 

(Carpenter et al. 2011; Comte et al. 2021). 

Study Area 

Streams of Nebraska, USA resemble those of the larger American Great Plains 

(henceforth Great Plains), a level 1 ecoregion covering approximately 1.3 million km2 of 

the central USA (Dodds et al. 2004). Streams and rivers of the Great Plains are 

characterized by wide variations in stream temperature, flow regime, and water quality 

(Dodds et al. 2004). Flow sources vary in different regions with many low-order streams 

being primarily groundwater fed and others being precipitation (i.e., rainfall and 

snowfall) fed (Dodds et al. 2004; Ojima et al. 1999; Winter 2007). The largest source of 

groundwater in Nebraska is the underlying Ogallala Aquifer, also known as the High 

Plains Aquifer (Ojima et al. 1999; Winter 2007). Overuse of the Ogallala Aquifer (e.g., 

irrigation and drinking water) causes a retreat of the underground water table (Sohl et al. 

2012). This has contributed to a reduction of wide floodplains and wetlands historically 

found in the Great Plains (Dodds et al. 2004; Sohl et al. 2012). The Ogallala Aquifer 

reaches saturated depths of up to 390 m, with the deepest saturation near its recharge 

zones in the Sandhills ecoregion (Sohl et al. 2012). Precipitation events are key to 

maintaining flow in Great Plains streams (Ojima et al. 1999; Dodds et al. 2004). 

Precipitation recharges groundwater deposits through infiltration, while runoff during 

precipitation events also supplies water to intermittent or ephemeral streams in more arid 
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regions (Ojima et al. 1999; Dodds et al. 2004; Winter 2007). Snowmelt plays a critical 

role in supplying water to Nebraska, as well, with the headwaters of the Platte River in 

Colorado, USA receiving up to 1000 mm of snowfall annually (Ojima 1999; Daniels 

2007). Periods with a complete loss of surface water may be common in low-order 

Nebraska streams (Fausch and Bramblett 1991; Dodds et al. 2004). Evidence suggests 

that droughts may become more frequent due to climate change, while precipitation 

events are also becoming more extreme and unpredictable (Ojima et al. 1999; Christian et 

al. 2019). The increased frequency and severity of disturbance events (i.e., drought and 

precipitation) may shift in-stream habitat conditions, disconnect habitat patches, and 

restrict species movement, further threatening aquatic ecosystems (Matthews and Marsh-

Matthews 2003). 

Study Objectives 

Using the state of Nebraska as a case study, the overall objectives of this thesis 

are 1) characterize habitat availability for several at-risk fish species, and 2) to assess the 

categorization of stream habitat heterogeneity within multiple classification systems. 

Objective 1 aims to use species distribution models to inform conservation of at-risk fish 

species in Nebraska by identifying ecologically relevant multiscale habitat features. 

Objective 2 aims to assess the classification of habitat features in conservation 

frameworks and introduce multivariate cluster analysis as a similarity-based classification 

system to improve stream classification in Nebraska. Both objectives serve to increase 

understanding of the structure and function of stream ecosystems and translate this 

understanding into effective conservation frameworks. 
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CHAPTER 2 

HABITAT RELATIONS OF FLATHEAD CHUB, PLAINS MINNOW, AND 

NORTHERN REDBELLY DACE 

Abstract 

 Multiscale environmental processes determine in-stream habitat conditions 

selected by fish at local spatial scales. Habitat includes the physical template upon which 

ecological processes occur and species conduct life-stage activities. Spatiotemporal 

availability of habitat is a fundamental driver of species distribution whereby presence of 

a species is determined by the structure of habitat patches. Reduction in habitat 

availability drives species declines. Understanding habitat features driving species 

presence in a stream informs conservation and management decision making. Species 

distribution models provide a tool to characterize spatial habitat patterns and quantify 

species-habitat relations. Boosted regression tree models of species distributions were 

constructed from environmental data and historical presence data for three at-risk 

cyprinid species including Flathead Chub (Platygobio gracilis), Plains Minnow 

(Hybognathus placitus), and Northern Redbelly Dace (Chrosomus eos). For all three 

species, hydrological factor (i.e., flow velocity and discharge) and stream size and 

position in the drainage network (i.e., stream order and upstream drainage area) were 

among the most influential habitat conditions of examined variables. Further, our results 

may indicate ecological uniqueness among selected species. For example, network 

connectivity showed high relative influence for Flathead Chub presence but not for that 

of Plains Minnow or Northern Redbelly Dace. Understanding multiscale environmental 

influences on species presence may target research of fine-scale species-habitat relations 
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and direct conservation and management efforts for at-risk fish species. Our results 

support current knowledge of impactful habitat features based on species traits and 

environmental processes shaping site-scale habitat conditions. 

Introduction 

Understanding the abiotic environmental context in which habitat conditions exist 

is of importance to quantifying species-habitat relations (Poizat and Pont 1996; Aarts et 

al. 2013). In ecology, habitat may be defined as the range of environmental conditions 

that produce occupancy, including those necessary for an organism to conduct life-history 

stages (Krausman and Morrison 2016). Spatiotemporal habitat heterogeneity in fluvial 

systems is largely driven by hydrological and geological processes (Frissell et al. 1986; 

Poizat and Pont 1996; Benda et al. 2004). For example, the geology of a catchment 

determines stream sinuosity (Frissell et al 1986; Ward 1998). Where a catchment with 

more consolidated sediments will exhibit straighter stream channels, a catchment with 

unconsolidated sediments will contain more sinuous streams as sediment is more easily 

transported by flowing water (Ward 1998). Stream sinuosity may drive riffle and pooling 

characteristics at smaller scales, while riffle and pooling characteristics may determine 

the deposition of debris serving as shelter at even smaller scales (Vannote et al. 1980; 

Able et al. 1987; Ward 1998). As such, the hierarchical structure and dynamic nature of 

aquatic systems are key drivers of local (i.e., site-scale) in-stream habitat conditions 

(Frissell et al. 1986; Ward 1998; Benda et al. 2004). Representing the patterns of stream 

habitat heterogeneity at site-scales has proved to be a fundamental challenge to aquatic 

conservation (Fausch et al. 2002; Falke and Fausch 2010). A site is defined as a sampling 

unit of stream reaches with a minimum extent of 150 meters and a maximum extent of 
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300 meters, often including a grain of 1/10th the sampled extent (USEPA 2019; NDEE 

2020). Due to the highly dynamic and heterogenous nature of stream systems, reporting 

of ever-changing environmental conditions at a site-scale (e.g., at a temporal grain of one 

day over an extent of one year for multiple sites) can become resource and time intensive 

(Fausch et al. 2002; Brewer et al. 2018). This leads to potential scale mismatches in the 

application of environmental data to conservation and management decisions (Poizat and 

Pont 1996; Helmsetter et al. 2021). Nonetheless, such efforts are integral to representing 

the full hierarchy of environmental processes driving local conditions from which species 

select habitat. 

Species presence in a given stream reach is determined via a hierarchical habitat 

filtering and selection processes whereby large-scale processes such as geomorphology or 

elevation provide an initial filter with respect to physiological constraints of species (Poff 

1997; Mayor et al. 2009; Keller 2023). For example, a coolwater fish species will not 

exist in warmwater streams because large-scale climatic filters create ecosystems non-

conducive to the species physiology (Mayor et al. 2009; Keller 2023). Thus, the 

environmental processes acting as filters to species presence do so in driving site-scale 

habitat conditions (Poff 1997; Poizat and Pont 1996; Benda et al. 2004; Aarts et al. 2013). 

Individuals select site-scale habitat conditions to conduct life-stage activities (e.g., 

feeding, reproduction, refuge seeking) within the larger-scale environmental context 

(Mayor et al. 2009; Keller 2023). Major drivers of habitat selection by individuals 

include thermal variability, hydrologic regime, spatial configuration of streams, water 

quality, and associated biota (Durance et al. 2006; Keller 2023). Stream fish species also 

require multiple habitat types throughout their life stages (spawning, rearing, and refuge) 
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as larval and juvenile individuals may require different habitat conditions compared to 

adults of the same species (Poff 1997; Falke and Fausch 2010). As such, species-habitat 

relations may be based on hierarchical processes shaping available habitats at different 

times (e.g., life stages) as well as the complimentary structure and spatial configurations 

of those habitats. 

The interplay between habitat availability and species dispersal ability governs 

species distribution (Aarts et al. 2013). Habitat for a species may exist at spatial scales 

such that individuals must move among diverse habitat patches to conduct life stages 

(Albanese et al. 2009; Mayor et al. 2009; Falke and Fausch 2010; Aarts et al. 2013). The 

metapopulation concept describes this paradigm wherein habitat patches support 

populations within a matrix of unsuitable habitat (Falke and Fausch 2010). Movement of 

individuals among patches is necessary to maintain population size and health as well as 

support recolonization of patches by individuals following disturbance-driven extirpation 

(Albanese et al. 2009; Falke and Fausch 2010). Further, unsuitable habitat may need to be 

traversed as individuals move between patches of suitable habitat, especially in fluvial 

systems where habitat availability may fluctuate seasonally with hydrological regimes 

(Albanese et al. 2009; Falke and Fausch 2010). As such, habitat availability for a species 

is also dependent on temporal contexts, wherein species presence necessitates individual 

ability to track and move among shifting habitat patches in time (Falke and Fausch 2010; 

Aarts et al. 2013). Thus, species presence in a given stream reach may imply habitat 

suitability for a given life stage or dispersal pathways with connection to suitable habitat 

in spatiotemporal contexts (Albanese et al. 2009; Mayor et al. 2009; Aarts et al. 2013). 

Where species presence denotes occurrence at a site-scale, species distribution represents 
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the entire geographical range of a species across multiple sites (Fausch et al. 2002; Sowa 

et al. 2008). As species distribution is also dictated by habitat availability and species 

dispersal at large scales, species distribution may then provide insight into habitat 

distribution and availability (Sowa et al. 2008; Falke and Fausch 2010; Aarts et al. 2013).  

Species distribution models (SDMs) are powerful tools with diverse applications 

in ecology (Elith et al. 2008; Helmsetter et al. 2021). SDMs have been used to explore 

climate impacts on species, establish conservation areas, guide restoration, aid in invasive 

species management, and as components in risk analyses (Guisan and Zimmermann 

2000; Kery et al. 2010; Jarnevich et al. 2015). In most instances, SDMs may be viewed as 

exercises in modeling spatial patterns in habitat conditions and their influence on species 

presence or abundance (Sowa et al. 2008). Approaching SDMs in such a manner 

identifies environmental processes influencing site-scale habitat conditions and 

emphasizes representing these processes in environmental data (Fausch et al. 2002; Sowa 

et al. 2008). Representing multiscale environmental processes increases certainty in 

ecological interpretation of species-habitat relations by addressing the different scales at 

which species select habitat (Wiens 1989; Poizat and Pont 1996; Mayor et al. 2009; 

Helmsetter et al. 2021; Keller 2023). SDMs use detection (i.e., presence or absence 

observations) and environmental data to quantify species-habitat relations and predict the 

occurrence of species at multiple spatiotemporal scales (Davies et al. 2000; Guisan and 

Zimmermann 2000; Fausch et al. 2002; Helmsetter et al. 2021). These predictions can 

then be used to map environmental suitability and target conservation and management of 

target species (Guisan and Zimmermann 2000; Fausch et al. 2002; Helmsetter et al. 

2021). SDMs are also useful for the ability to extrapolate environmental scenarios 
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spatiotemporally, wherein models may be used to predict habitat suitability at greater 

extents (Guisan and Zimmermann 2000; Kery et al. 2010; Helmsetter et al. 2021). Thus, 

SDMs identify habitat variables influencing species distributions and use mapping of 

influential habitat features to facilitate focused conservation of in-stream habitat and 

resulting fish populations.  

As in-stream habitat conditions continue to change due to natural and 

anthropogenic disturbances, assessing the distribution patterns of at-risk fish species 

becomes integral to their conservation (Lytle and Poff 2004; Worthington et al. 2014; 

Paukert et al. 2020; Martin 2022). Habitat loss is the primary driver of species 

imperilments and reductions in distributions as habitat patches become reduced in 

abundance and connectivity (Lytle and Poff 2004; Jelks et al. 2008; Mayor et al. 2009). 

Shifts in habitat availability and resulting fish assemblage structures have been attributed 

to altered hydrology, habitat homogenization, and nonnative species introduction (Rahel 

and Thel 2004; Jelks et al. 2008; Perkin and Gido 2012; Senecal et al. 2015; Perkin et al. 

2017). The high degree of shifting habitat in North America has resulted in 

approximately 39% of all native fishes having received some form of conservation status 

(Jelks et al. 2008; Senecal et al. 2015). In the USA, at-risk species are categorized by the 

degrees of their imperilments and risk of extinctions as endangered, threatened, or 

vulnerable (Jelks et al. 2008). Reduction in the distribution of a species, often viewed 

over 50-year periods, is key to at-risk listing (Jelks et al. 2008; Senecal et al. 2015). 

Study Species 

The Nebraska Natural Legacy Project (NNLP) developed a two-tiered approach to 

listing at-risk species (Schneider et al. 2011). Tier-1 fish species are defined by the NNLP 
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as species found in Nebraska that are globally or nationally at-risk of extinction, whereas 

tier-2 fish are those that are at-risk in Nebraska but have healthy populations elsewhere in 

their global or national distributions (Schneider et al. 2011; Schneider et al. 2018). Tier-1 

listing is attributed to state or federal listing as threatened or endangered, declining or 

disjunct populations, and endemism to Nebraska (Schneider et al. 2011; Schneider et al. 

2018). From the tier-1 list, three cyprinids including Flathead Chub (Platygobio gracilis), 

Plains Minnow (Hybognathus placitus), and Northern Redbelly Dace (Chrosomus eos), 

were chosen as case studies for these SDMs because of differing habitat preferences 

across their life-stages. These species select for different habitat conditions that result in 

unique distribution patterns that may reflect a range of habitat types and indicate differing 

conservation needs (Table 1; Midway and Peoples 2019). Though habitat associations for 

these species are theoretically known, these associations have yet to be or have not in a 

contemporary context been quantified through methods such as SDMs (Rahel and Thel 

2004; Rees et al. 2005; Stringer and Clancy 2020). Further, gaps in knowledge of these 

species’ life-histories exist that may be filled with targeted research informed by habitat 

relations (Rahel and Thel 2004; Frimpong and Angermeier 2009; Stringer and Clancy 

2020). Understanding the relations between these species and their habitats is imperative 

to prevent future listings and help population recovery (Schnieder et al. 2011; Schneider 

et al. 2018).  

Flathead Chub occupy turbid rivers and larger tributaries from Canada to Texas 

(Hesse 1994; Rahel and Thel 2004; Frimpong and Angermeier 2009). Flathead Chub are 

most commonly associated with small substrate like sand and gravel (Hesse 1994; Rahel 

and Thel 2004). Though Flathead Chub are found in all habitat types including main 
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channels, side channels, and backwaters, adults show preference for faster flowing main 

channels (Rahel and Thel 2004). Flathead Chub are thought to move upstream for 

spawning from mid-July to mid-September (Hesse 1994; Frimpong and Angermeier 

2009; Walters et al. 2014). Females age two and older lay an average of 4,974 eggs in a 

spawning season, though there is some debate on this value based on the maturity of the 

eggs (Rahel and Thel 2004). Though found across Nebraska in the past, Flathead Chub 

are now at-risk due to reduction in spawning habitat availability including connected 

stretches of river to support drifting eggs (Worthington et al. 2014; Perkin et al. 2017). 

The estimated minimum threshold of stream fragment length for Flathead Chub is 183 

km (Perkin and Gido 2011; Walters et al. 2014). Anthropogenic modification in habitat 

fragmentation by culverts, dams, and roads has reduced the availability of long reaches of 

uninterrupted fluvial ecosystems, which has greatly restricted Flathead Chub range 

(Worthington et al. 2014; Perkin and Gido 2011; Walters et al. 2014; Perkin et al. 2017). 

Plains Minnow is found throughout the Great Plains from southern Saskatchewan, 

Canada to Texas, USA (Osterhaus and Martin 2019). Plains Minnow is associated with 

perennial streams with dense vegetation, sand substrate, and show preference for water 

temperatures around 17°C (Bryan et al. 1984; Rees et al. 2005; Osterhaus and Martin 

2019). Within their resident streams, Plains Minnow select for slower flow (0.05 m/s) 

areas such as pools and backwaters (Rees et al. 2005; Osterhaus and Martin 2019). Plains 

Minnow spawn at the downstream edges of pools between late April and early August 

(Rees et al. 2005; Osterhaus and Martin 2019). Females release 417-4,134 (mean = 817) 

semi-buoyant eggs per spawning season that are communally scattered (Taylor and 

Miller 1990; Rees et al. 2005; Frimpong and Angermeier 2009). Spawning events appear 
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to be intermittent and revolve around periods of high flow (Taylor and Miller 1990; Rees 

et al. 2005; Frimpong and Angermeier 2009). Females mature rapidly, reaching peak 

sexual maturity by June of their first year (Lehtinen and Layzer 1988). As pelagic 

spawners, Plains Minnow have experienced declines in geographic range reflective of 

decline in available habitat (Hesse 1994; Osterhaus and Martin 2019). Habitat 

fragmentation also impacts Plains Minnow populations, with the estimated species’ 

minimum threshold of fragment length being 115 km (Perkin and Gido 2011). Further, 

tributary desiccation and mainstream alterations have extirpated and isolated populations 

(Rees et al. 2005). In Kansas, declines in the distribution and abundance of Plains 

Minnow have been attributed to anthropogenic stressors and the species has been listed as 

endangered (Osterhaus and Martin 2019). 

Northern Redbelly Dace are found in southern Canada and the northern USA, 

with southern populations in Colorado, South Dakota, and Nebraska (Stringer and Clancy 

2020). The Nebraska population of Northern Redbelly Dace is restricted to headwater 

streams in the Sandhills Ecoregion and disjunct from core distributions (Schnieder et al. 

2011). Northern Redbelly Dace select for slow-flowing, clear, cool-water streams with 

fine substrate and an abundance of filamentous algae in which they lay eggs (Stringer and 

Clancy 2020). Unfortunately, there are many gaps in knowledge of Northern Redbelly 

Dace life-history, though it is known that sexual maturity is typically reached by first 

summer and third summer at the latest (Frimpong and Angermeier 2009; Stringer and 

Clancy 2020). Phytophilic spawning (i.e., egg depositing in vegetation) occurs from May 

to August, in which females lay batches of up to 30 non-adhesive eggs in algal mats that 

hatch in 8-10 days after fertilization by multiple males (Frimpong and Angermeier 2009; 
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Stringer and Clancy 2020). Habitat fragmentation, climate change, and increasing water 

temperatures caused by anthropogenic activities may negatively influence Northern 

Redbelly Dace distribution (Whittier et al. 1997; Schneider et al. 2011). Studies in 

Montana have shown little co-occurrence of Northern Redbelly Dace with larger 

piscivores, such as Northern Pike (Esox lucius), indicating that the species may be 

particularly vulnerable to predation by invasive species (Stringer and Clancy 2020).  

The primary goal of this study was to assess distributional patterns among the 

ecologically unique Flathead Chub, Plains Minnow, and Northern Redbelly Dace and 

quantify their species-habitat relations. Study objectives included 1) determine which 

environmental features most influence the presence of these species in river and stream 

reaches across Nebraska, and 2) determine where these features exist in Nebraska. Based 

on differential species traits, I predict that 1) Flathead Chub presence will be most related 

with high flow velocity and discharge, greater connectivity, and larger upstream drainage 

area apparent in higher order rivers and streams; 2) Plains Minnow presence will be most 

related with moderate flow velocity and discharge and greater connectivity found in 

higher order rivers and tributaries; and 3) Northern Redbelly Dace presence will be 

highest with features conducive to headwaters, such as lower flow velocity and discharge, 

higher groundwater input, and lower upstream drainage area consistent with headwater 

streams (Table 1). In a broader sense, I predict that variables representing hydrological 

processes and anthropogenic disturbances will most influence the presence of all three 

species. Both environmental processes and anthropogenic disturbances largely drive site-

scale habitat conditions in the modern environmental context, which will be reflected in 

their influence on the distribution of all three species. A greater understanding of species-
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habitat relations of these at-risk species will inform their conservation in establishing 

ecologically relevant habitat conditions and direct conservation efforts in the spatial 

locations of these conditions. 

Methods 

Environmental data 

Multi-scale environmental data for Nebraska streams were acquired from the 

National Hydrography Dataset (NHD) Plus Version 2 (McKay et al. 2012; U.S. 

Geological Survey 2022) and the StreamCat Dataset (Hill et al. 2015). The NHD Plus 

Version 2 is a publicly available geospatial framework consisting of modeled flowlines 

generated from the original NHD, National Elevation Dataset (NED), and Watershed 

Boundary Dataset (WBD; McKay et al. 2012; U.S. Geological Survey 2022). The 

StreamCat dataset supplements the NHD Plus Version 2 with over 600 metrics compiled 

or derived from environmental data (Carlisle et al. 2009; Falcone et al. 2010; Wang et al. 

2011; Hill et al. 2015). Soil data were acquired from the Natural Resource Conservation 

Service State Soil Geographic (STATSGO2) database (Schwarz and Alexander 1995). 

Groundwater depth for wells across Nebraska was acquired from the University of 

Nebraska-Lincoln School of Natural Resource’s Conservation and Survey Division 

(CSD) interactive data map (CSD 2023). Groundwater depth for statewide wells was 

averaged across years (variable temporal range by well) to generate a mean annual depth 

to groundwater (MADTW) predictor variable. 

Three additional metrics were added to represent anthropogenic influences in the 

form of land-use and fragmentation. Landcover data from 2019 were acquired from the 

National Land Cover Database (NLCD; Dewitz et al. 2021). Two land-use metrics 
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including dominant (i.e., greatest area) landcover class and Shannon’s diversity index 

were generated within 12-digit hydrological unit code (HUC12) subwatersheds. Pixel 

counts of landcover classes within subwatersheds were generated using the summarize 

raster tool in ArcGIS Pro (ESRI Inc. 2022). The class of highest proportional cover (i.e., 

most pixels) was noted as a categorical variable of matrix (i.e., dominant) landcover 

class. Shannon’s Diversity Index was calculated for landcover classes within 

subwatersheds using vegan package in program R (R Core Team 2021; Okansen et al. 

2022). Shannon’s diversity index (H) represents the diversity of landcover as 𝐻 =

 −∑ 𝑝𝑖
𝑠
𝑖=1 𝑙𝑛(𝑝𝑖), where s is the number of landcover classes and pi is the proportion of 

pixels belonging to i landcover class (Spellerberg and Fedor 2003). Further, Shannon’s 

diversity index better represents rare habitat types than the alternative Simpson’s 

diversity index (Spellerberg and Fedor 2003). A discontinuity index (DCI) was derived 

from the NHD flowlines and a dam layer including all recorded dams ≥1.8 m tall via the 

Nebraska Department of Natural Resources (McKay et al. 2012; USDA 2015). Flowlines 

and dams were organized by subwatershed using the spatial join tool in ArcGIS Pro 

(ESRI Inc. 2022). A DCI was then calculated for each HUC12 subwatershed by: 

𝐷𝐶𝐼 =  
𝑛

𝐿𝑡
 , 

where n is the number of dams and Lt is the total length (km) of stream flowlines (an 

adaptation of methods by Prato et al. 2011). Overall, these environmental data were 

chosen to represent processes driving site-scale habitat conditions from which species 

select habitat, such as hydrology, drainage network connectivity, position in the drainage 

network, and anthropogenic alteration. 
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Statistical Analysis 

Correlation analysis was conducted on the environmental data and calculated 

metrics to identify collinearity among predictor variables and inform variable reduction 

(Figure 1). For pairs of variables with Pearson correlation of r ≥ 0.70, the variable with 

lower correlations to other variables in the dataset was retained. Furthermore, 

environmental variables that may not have been highly correlated but provided similar 

information were retained based on prevalence or descriptiveness. For example, despite a 

Pearson correlation of only r = 0.56 between incision height and incision width-to-depth 

ratio, only incision width-to-depth ratio was retained as it is more descriptive (Tang et al. 

2014; Borboudakis and Tsamardinos 2019). The selected predictor variables represent 

environmental conditions that may impact species distributions at relatively large spatial 

scales, such as hydrologic regimes (flow velocity and discharge) and water source 

(baseflow, runoff; Table 2.2; Durance et al. 2006; Keller 2023). A rule of thumb for 

variable selection in species distribution modeling is to maintain a sample size 10 times 

the number of predictors (Breiner et al. 2015). In this case, with 15 selected predictors a 

sample size of at least 150 training data points was maintained. 

Presence:Absence Data 

Historical species presence data for Flathead Chub, Plains Minnow, and Northern 

Redbelly Dace were contributed by the Nebraska Game and Parks Commission (NGPC), 

the Nebraska Natural Heritage Program (NNHP), the Nebraska Department of 

Environment and Energy (NDEE), and acquired from the online Biodiversity Information 

Serving Our Nation (BISON) database (BISON 2022). Only presence points postdating 

1969 were maintained as most large-scale river and stream alterations (i.e., dam, 
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reservoir, and levee construction and channelization) occurred before this time, especially 

in the Missouri, Platte, and Republican rivers and their larger tributaries (Schneiders 

1996; Murphy et al. 2004). Alteration continues today, but the scale of alteration has been 

reduced and implemented water-management strategies have grown more sophisticated 

(Schneiders 1996). Where necessary, presence points were remapped to overlap with the 

NHD flowlines using the Near tool in ArcGIS Pro (ESRI Inc. 2022). As the provided data 

was presence-only, the spsurvey package was used to generate spatially balanced (i.e., 

evenly dispersed in space) pseudoabsences along the NHD flowlines in Program R (R 

Core Team 2021; Dumelle et al. 2023). Spatial balance is desirable for SDM practices in 

minimizing biases and yielding more precise predictor-response relationships (Cerasoli et 

al. 2017; Dumelle et al. 2023). The SDMs constructed with spatially balanced 

pseudoabsences explain more deviance in predictor-response relationships than randomly 

generated pseudoabsences using presence only datasets (Barbet-Massin et al. 2012; 

Cerasoli et al. 2017). Pseudoabsences were generated by a 1:10 presence to 

pseudoabsence ratio as this ratio yields adequate predictive accuracy for boosted 

regression tree models (Barbet-Massin et al. 2012).  

Model Construction and Validation 

 Boosted Regression Tree (BRT) models of species distributions were constructed 

using the dismo package in Program R (R Core Team 2021; Hijmans et al. 2022). Using 

both statistical and machine learning approaches, BRTs establish patterns between 

predictors and a response variable (Elith et al. 2008). Preparation and selection of input 

variables are simplified under a BRT framework because predictor variables can be of 

any type (i.e., numeric, categorical, binary, etc.; De’ath 2007; Elith et al. 2008). Input 
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data consisting of a species presence or pseudoabsence response variable and 16 spatially 

related predictor variables were used to train the model for each species. BRTs 

recursively construct decision trees on random subsets of the input data (De’ath 2007; 

Elith et al. 2008). Decision trees partition the predictor space using split points, or 

variable values at which the response changes, to classify ranges of predictor values with 

homogenous responses (Elith et al. 2008). Over the boosting process, different 

combinations of variables and split points are tested to produce the decision tree with the 

lowest error (De’ath 2007; Elith et al. 2008). The first decision tree is built to minimize 

error, then subsequent decision trees are iteratively built from the error of the previous 

tree (i.e., second tree uses residuals from the first, third tree uses residuals from the 

second, etc.) in a manner emphasizing poorly modeled observations (De’ath 2007; Elith 

et al. 2008). Each subsequent tree compensates for and corrects error in the previous trees 

by focusing on poorly characterized interactions between ranges of predictor variable 

values and the response (De’ath 2007; Elith et al. 2008). The final tree is considered a 

linear combination of all previous trees in which the overall error is maximally reduced 

and the relationship between predictor and response variables is best characterized 

(De’ath 2007; Elith et al. 2008). Tree complexity, or the number of split values in each 

tree, was set at five for the Flathead Chub and Plains Minnow models and at three for the 

Northern Redbelly Dace model. The selected tree complexity optimizes model 

performance for the sample size of input data, 5159 points for Flathead Chub, 3234 

points for Plains Minnow, and 814 points for Northern Redbelly Dace including both 

presences and pseudoabsences (Elith et al. 2008; Elith and Leathwick 2017). 

Furthermore, a learning rate of 0.01 was used as standard with boosted regression tree 
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models constructed from datasets of comparable type and size to our own (Elith et al. 

2008; Elith and Leathwick 2017). 

Models were internally validated using 10-fold cross validation wherein input 

data were broken into ten equally sized data subsets (Hastie et al. 2001; Allouche et al. 

2006; Elith et al. 2008; Hao et al. 2020). Nine of these subsets were training datasets used 

in model constructions and the tenth subset was a testing dataset used to test the 

sensitivity and specificity of the models (Hastie et al. 2001; Allouche et al. 2006; Hao et 

al. 2020). Sensitivity quantifies omission error, or the ability of the models to accurately 

predict presences, whereas specificity quantifies commission error, or the ability of the 

models to accurately predict absences (Hastie et al. 2001; Allouche et al. 2006; Cerasoli 

et al. 2017). Both sensitivity and specificity measure accuracy on a 0 to 1 scale (Hastie et 

al. 2001; Allouche et al. 2006; Cerasoli et al. 2017). A receiver-operating characteristic 

(ROC) curve plotting sensitivity against false positives (i.e., 1 ─ specificity) then assesses 

model fit, wherein the area under curve (AUC) ranging from 0 to1 denotes better model 

fit at higher values (Hastie et al. 2001; Allouche et al. 2006; Cerasoli et al. 2017; Artaev 

2023). However, AUC is threshold-independent and for models with presence:absence 

predictions accuracies should be complemented with threshold-dependent metrics 

(Allouche et al. 2006; Artaev 2023). A true skill statistic (TSS) is a threshold-dependent 

measure of model accuracy using TSS = Sensitivity + Specificity ─ 1 (Allouche et al. 

2006; Artaev 2023). TSS ranges from -1 to +1, where more positive values reflect more 

accuracy and values 0 or below indicate model performance is no better than random 

chance (Allouche et al. 2006; Artaev 2023). In general, models with TSS above 0.7 are 

considered good quality (Artaev 2023). 
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Results 

The Flathead Chub model was trained on 5159 data points comprised of 469 

presences and 4690 absences. The Flathead Chub model had flow velocity, discharge, 

upstream drainage area, and organic substrate as the most influential predictor variables 

at 72.65% cumulative influence (Table 3). Flow velocity (30.50%) and discharge 

(29.94%) have the greatest relative influences on Flathead Chub presence, while 

upstream drainage area (6.87%) and percent organic substrate (5.34%) carry strong 

influence as well (Table 3). Discharge had a spike in effect on presence at approximately 

200 m3/s, then gradually decreases in effect until increasing above 1000 m3/s (Figure 2). 

Flow velocity shows spikes in positive effect around 0.50 m/s and 0.75 m/s, and 

generally higher effect above 1.00 m/s (Figure 2). Total upstream drainage area shows a 

positive effect spike around 200,000 km2 and plateaus after a small drop in effect (Figure 

2). Percent organic substrate has peak effect at approximately 1.50%, dropping to a 

plateau in effect just after (Figure 2). The Flathead Chub model performed well under 10-

fold cross validation, exhibiting high accuracy with sensitivity = 0.86 and specificity = 

0.89 (Table 6). The model also has strong fit and accuracy with AUC = 0.94 and TSS = 

0.75 (Figure 3; Table 6).  

The Plains Minnow model was trained on 3234 data points comprised of 294 

presences and 2940 absences. The Plains Minnow model has discharge (30.11%), 

upstream drainage area (20.86%), stream order (10.49%), flow velocity (9.09%), 

landcover diversity (6.72%), and slope (6.36%) as the most influential predictor variables 

at 83.63% cumulative influence (Table 4). Discharge has a positive effect on presence 

across its range of values, with the consistently strongest effect above 1000 m3/s (Figure 
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5). Total upstream drainage area starts with strongly negative effect at low values, 

increasing to positive effect past 200,000 km2 (Figure 5). Effect on presence increases 

with stream order, with orders 7 and above showing positive effect and stream order 8 

having the strongest effect (Figure 5). Flow velocity reaches positive effect around 0.50 

m/s, increases up to 0.65 m/s, and then decreases until a spike at 1.00 m/s (Figure 5). 

Landcover diversity has positive effect at lower values and slowly decreases to negative 

effect across its range (Figure 5). Slope exhibits stronger effect at low values (Figure 5). 

The Plains Minnow model also performed well under 10-fold cross validation, reaching 

high accuracy with sensitivity = 0.84 and specificity = 0.88 (Table 6). The model also has 

strong fit and accuracy with AUC = 0.94 and TSS = 0.72 (Figure 6; Table 6). 

The Northern Redbelly Dace model was trained on 814 data points comprised of 

74 presences and 740 absences. The Northern Redbelly Dace model had flow velocity 

(19.99%), dominant landcover class (14.71%), stream order (12.03%), upstream drainage 

area (10.03%), discharge (8.76%), mean annual precipitation (7.81%), and slope (6.10%) 

as the most influential predictor variables at 79.43% cumulative influence (Table 5). 

Flow velocity shows positive effect on presence above 0.25 m/s with peak effect at 

approximately 0.40 m/s (Figure 8). The effect on presence is positive for low-intensity 

developed and grassland dominated subwatersheds and negative for cropland dominated 

subwatersheds (Figure 8). Stream order 7 has the strongest effect on presence, with 

orders 1 and 2 having positive effect as well (Figure 8). Total upstream drainage area 

reaches positive effect and plateaus around 68,000 km2 (Figure 8). Discharge has positive 

effect on presence above approximately 20 m3/s (Figure 8). Mean annual precipitation 

reaches positive effect at -7.5 mm/year and remains positive afterwards (negative values 
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denote more evapotranspiration than precipitation in a given year; Figure 8). Slope has 

positive effect at lower values but decreases to remain neutral past 0.005 m/m (rise over 

run in meters; Figure 8). Despite this, the Northern Redbelly Dace model has the best 

performance under 10-fold cross validation of the three models, reaching high accuracy 

with sensitivity = 0.91 and specificity = 0.94 (Table 6). The model also has strong fit and 

accuracy with AUC = 0.98 and TSS = 0.85 (Figure 9; Table 6). While the total sample 

size is greater than 10 times the number of predictor variables, the Northern Redbelly 

Dace model may exhibit overfitting when considering the presences sample size of 74 

(Breiner et al. 2015). 

Discussion 

Model Interpretation 

Influential features from the Flathead Chub SDM support theory on 

environmental processes driving local habitat conditions and habitat use by Flathead 

Chub. Adult Flathead Chub are known to occupy main channels in large rivers, which is 

supported by the high influence of flow velocity and discharge at high values (Hesse 

1994; Rahel and Thel 2004; Frimpong and Angermeier 2009). The positive effect of 

greater upstream drainage area further supports the selection of high order rivers, as the 

most positively impactful value at approximately 200,000 km2 is relatively large within 

the variables range for Flathead Chub presences. Though Flathead Chub select for sand 

substrate, substrate diversity may also be important given the positive effect of organic 

material from approximately 1.37% to 1.53% (Hesse 1994; Rahel and Thel 2004; 

Frimpong and Angermeier 2009). The necessity of uninterrupted stretches of fluvial 

habitat for spawning is supported by the high influence of DCI at lower values (Hesse 
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1994; Rahel and Thel 2004). This relation reinforces the imperilment of Flathead Chub as 

a result of anthropogenic disturbance in the form of habitat fragmentation (Schneider et 

al. 2018; Perkin and Gido 2017). The positive effect of depth to groundwater at lower 

values may indicate that groundwater supply is an important driver of local conditions 

from which Flathead Chub select habitat. The role of precipitation in water supply is also 

captured in the similar influences and positive effects of precipitation and runoff at high 

values, though these variables were less influential than direct representatives of 

hydrology such as flow velocity and discharge (Dodds et al. 2004; Winter 2007). The 

relative influence of groundwater and precipitation related variables supports findings of 

their importance in supplying water to Nebraska rivers and streams, which goes on to 

shape habitat availability at small scales (Dodds et al. 2004; Winter 2007). Shannon’s 

diversity index of subwatershed-scale landcover shows a positive effect on Flathead 

Chub presence at relatively high values. This may indicate that in-stream habitat 

heterogeneity positively effects Flathead Chub presence because diversity in the 

landscape drives that of the riverscape (Frissell et al. 1986; Fausch et al. 2002). Stream 

orders 4, 6, and 7 have positive effect on Flathead Chub presence, indicating that 

individuals may prefer habitat in tributaries rather than high order mainstems (Hesse 

1994; Rahel and Thel 2004). The low influence and neutral effect of flood frequency 

across its range may also support findings of resilience of pelagic spawners to 

disturbance regimes (Worthington et al. 2014; Perkin and Gido 2017). The influences of 

slope, mean summer stream temperature, and subwatershed-scale dominant landcover did 

not fluctuate as values changed. Thus, the range of these environmental features in 

Nebraska streams may not impact habitat selection by Flathead Chub. Overall, the high 
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relative influences of hydrological variables (i.e., flow velocity and discharge) and 

position in the drainage network (i.e., upstream drainage area) support the selection of 

high order rivers and tributaries by Flathead Chub. 

Influential features from the Plains Minnow SDM generally support processes 

driving site-scale conditions and theory on habitat use by Plains Minnow. Plains Minnow 

are thought to occupy pools in large rivers and tributaries, which is somewhat supported 

by the positive effects of discharge, upstream drainage area, stream order, and flow 

velocity on presence at high values (Hesse 1994; Rees et al. 2005; Osterhaus and Martin 

2019). However, the positive relation with high values of discharge and flow velocity 

contradicts selection of slower flowing pools, which may result from data being too 

coarse grain to characterize pool mesohabitat within segments. Slope shows positive 

effect at lower values, likely representing the flat topography of landscapes that Nebraska 

rivers and streams traverse (Dodds et al. 2004). The role of groundwater in water supply 

is also captured in the positive effect of depth to groundwater at low values, though the 

low relative influence of depth to groundwater shows this may be an indirect driver of 

Plains Minnow presence (Dodds et al. 2004; Winter 2007). The connectivity of fluvial 

habitat may not impact Plains Minnow as much as Flathead Chub due to the low relative 

influence of DCI and gradual increase of effect with DCI value (Rees et al. 2005; 

Osterhaus and Martin 2019). This relation may indicate Plains Minnow are not as 

dependent on movement for spawning and may contradict their imperilment as a result of 

stream habitat fragmentation (Schneider et al. 2018; Osterhaus and Martin 2019). The 

macrophyte based diet of Plains Minnow may also be represented in the positive effect of 

percent organic material in the substrate at values above approximately 1.50% (Frimpong 
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and Angermeier 2009; Osterhaus and Martin 2019). The low relative influence and 

neutral effect of flood frequency across its range may also support findings of resilience 

of pelagic spawners to disturbance regimes (Worthington et al. 2014; Perkin and Gido 

2017). Plains Minnow do not appear to respond to landscape features in the same way as 

Flathead Chub, as Plains Minnow presence shows little fluctuation as values of 

Shannon’s diversity of landcover and dominant landcover class change. Mean annual 

precipitation and runoff have little influence, thus may not have a meaningful role in 

shaping available habitat for Plains Minnow selection. Plains Minnow show resilience to 

temperature shifts in the low influence and neutral effect of mean summer stream 

temperature in the majority of its range and positive effect at high values, which may 

contradict previous studies findings of cooler water selection (Osterhaus and Martin 

2019). Overall, variable influences align with what is thought of as suitable habitat for 

Plains Minnow in uninterrupted lengths of higher order rivers and streams, which would 

have naturally high flow velocity and discharge. 

Influential features from the Northern Redbelly Dace SDM somewhat support 

previous studies on processes driving site-scale conditions habitat use by Northern 

Redbelly Dace. Northern Redbelly Dace selection of headwater habitat is supported by 

the high influence of flow velocity and positive effect at low values around 0.4 m/s 

(Frimpong and Angermeier 2009; Stringer and Clancy 2020). However, the positive 

effect of stream order 7 and upstream drainage area at high values and negative influence 

of discharge at low values directly contradicts Northern Redbelly Dace selection of 

headwater streams (Frimpong and Angermeier 2009; Stringer and Clancy 2020). Land 

use may impact Northern Redbelly Dace presence as indicated by the negative relation of 
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cultivated cropland dominated subwatersheds (class 82) and positive relation with 

grassland (class 71; Dewitz et al. 2021). Slope shows positive effect at lower values, 

likely representing the flat topography of landscapes through which Nebraskan rivers and 

streams run (Dodds et al. 2004). The positive effect of depth to groundwater at low 

values highlights the importance of groundwater in supplying water to the headwater 

streams for which Northern Redbelly Dace select (Dodds et al. 2004; Winter 2007; 

Frimpong and Angermeier 2009; Stringer and Clancy 2020). Further, depth to 

groundwater was more influential on Northern Redbelly Dace presence than Flathead 

Chub and Plains Minnow presence, reinforcing the differential selection of headwaters 

and high order rivers respectively. The role of precipitation in water supply is captured in 

the relative influence and positive effect of precipitation at high values (Dodds et al. 

2004; Winter 2007). However, runoff shows little influence and effect as values change, 

indicating groundwater may be a more critical water supplier to streams that Northern 

Redbelly Dace occupy. Organic material in the substrate shows little influence and effect 

as values change, which may reflect the more generalist approach Northern Redbelly 

Dace have to substrate selection (Frimpong and Angermeier 2009). Northern Redbelly 

Dace selection of headwater streams may be reflected in the positive effect of lower mean 

summer stream temperature (Stringer and Clancy 2020). Flood frequency shows little 

relative influence that did not fluctuate in effect as values changed, thus it may not effect 

habitat selection by Northern Redbelly Dace. Connectivity may not influence Northern 

Redbelly Dace presence as indicated by the low influence of DCI, though some positive 

effect is exhibited at lower values. Though land use shows high influence on Northern 

Redbelly Dace presence, landcover diversity shows little relation across its values. 
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Dominant landcover class, baseflow index, mean annual precipitation, and slope align 

with what is thought of as suitable habitat for Northern Redbelly Dace in the intermittent, 

groundwater- and precipitation-fed headwaters in the Sandhills Ecoregion. However, the 

Northern Redbelly Dace model is not as conducive with the literature as the previous 

models, wherein flow velocity, stream order, and total upstream drainage area imply 

some suitable habitat in high order streams where suitability in low order headwaters 

would be expected. 

Although SDMs are powerful tools it is important to note their limitations, 

namely that inferring habitat availability has the caveats of representing incomplete data, 

maintaining biases in the training data, and requiring validations of their predictions 

(Kery et al. 2010; Newbold 2010; Jarnevich et al. 2015). The accuracies of species 

identification and presence location in historical data are often uncertain (Newbold 2010). 

Historical datasets also often carry spatial, temporal, environmental, and taxonomic 

biases in their sampling methods (Newbold 2012). Use of historical datasets in SDMs is 

still commonplace, given recognition that model predictions are inherently theoretical 

and open to verification or refutation (Labay et al. 2011; Jarnevich et al. 2015; Senecal et 

al. 2015). Given the speed of environmental alteration and degradation in the modern 

day, there is an urgency to understand species-habitat relations and translate this 

understanding into effective management (Newbold 2012; Labay et al. 2011; Schneider 

et al. 2011). As such, historical datasets representing already accrued knowledge, such as 

the data used in this study, are still useful for informing species distributions and 

conservation (Newbold 2010).  



37 
 

 
 

Local-scale environmental data were not collected in conjunction with species 

presence data used in this study, which is common in historical datasets (Newbold 2010; 

Labay et al. 2011). As such, there is a disconnect between species presences and 

associated environmental conditions in spatiotemporal contexts. This introduces a large 

degree of uncertainty to model interpretations, as it is highly likely that the environmental 

data informing the species-habitat relations do not match the local-scale habitat selected 

by individuals at a given time. More robust modelling practices may backcast historical 

environmental conditions to compensate for missing environmental data (Labay et al. 

2011; Worthington et al. 2014). Some approaches view SDMs as snapshots in time and 

space. Thus, presence data must constitute both species presence and habitat conditions at 

a given site (Jarnevich et al. 2015). Nonetheless, species-habitat relations can still be 

established with historical presences related to larger-scale variables, such as those on the 

subwatershed or catchment scales. Larger-scale variables represent the environmental 

processes shaping local scale habitat conditions and can still inform how these processes 

impact species distributions (Poff 1997; Fausch et al. 2002). Thus, though a spatial and 

temporal disconnect exists between the environmental and species presence data used, the 

SDMs presented in this study may offer insight into species-habitat relations.  

The SDMs presented in this research were internally validated, which cannot 

overcome biases in their assessment of model fit through validatory metrics such as AUC 

and TSS (Hao et al. 2020). External validation, however, uses out-of-sample data to test 

the accuracy of SDM predictions (Hao et al. 2020). Some validation approaches withhold 

subsets of datasets for testing of model fit, as done in this study, but data subsets from the 

same overall sample maintain the same biases (Hao et al. 2020). External validation of 
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SDM predictions using field validation test the adaptability of the model to outside 

biases, thus offers a better performing assessment under broader model applicability and 

should be used when possible (Jarnevich et al. 2015; Hao et al. 2020). For example, field 

validation may not observe a species in a predicted suitable stream reach. Barring 

detection probability, this may be indicative that the model needs more data to better 

characterize species habitat relations. In such cases, newly sampled data may be 

contributed to the current model to improve performance. A benefit of boosted regression 

tree models is that new data can easily be added to the current model iterations to 

improve model certainty and interpretations of species-habitat relations (Hijmans et al. 

2022). However, lack of species detection at high predicted probability sites may also 

indicate that a site with habitat suitability for a target species is not accessible to 

individuals in space and time. In such a situation, a common conservation practice of 

translocation of individuals may help bolster species abundance at larger scales (George 

et al. 2009; Tarkan et al. 2015). 

Rare species pose a challenge to species distribution modeling techniques because 

of the low number of historical presences available in data resulting from either lower 

detection probabilities or true lower population numbers (Breiner et al. 2015; Martin et 

al. 2022). All three study species could be considered rare given the relatively low 

proportion of suitable fluvial habitat in the SDM predictions (Table 7). Especially in 

combination with high numbers of predictors, few presences can lead to model 

overfitting where the fit of the model predictions is misleadingly strong (Breiner et al. 

2015). In particular, the Northern Redbelly Dace model appears to exhibit overfitting due 

to the rarity of presence points in the historical datasets used. For example, 5 out of 74 of 
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the Northern Redbelly Dace presence points occurred in stream order 7, yet the SDM for 

Northern Redbelly Dace showed some strong relation of presence to characteristics of 

higher order rivers. Certainty in interpreted species-habitat relations from SDMs can be 

improved with the introduction of more spatially and temporally robust environmental 

and species presence data (Breiner et al. 2015; Martin et al. 2022). The addition of new 

data reduces overfitting by increasing species presence points, while also increasing 

certainty by building relationships from more spatially and temporally appropriate 

environmental data (Breiner et al. 2015; Martin et al. 2022). Overall, the models 

presented in this study should not be perceived as absolute definitions of species-habitat 

relations, rather tools for their examination to be iteratively improved through direction 

of future sampling. 

Research Implications 

SDMs map habitat suitability for target species, spatially directing conservation 

and management actions to reaches where a species presence is likely. For a rare and at-

risk species, where habitat availability may be unknown or decreasing in the greater 

environmental context, maps of habitat suitability may expedite the conservation process. 

This may be especially useful given time is of concern to build understanding of these 

species and take effective conservation actions (Newbold 2010). For example, maps of 

habitat suitability for Flathead Chub, Plains Minnow, and Northern Redbelly Dace 

produced in this study may be used for targeted future research of these species and 

sampling of their habitats (Figure 4; Figure 7; Figure 10). Where gaps in knowledge exist 

for the life-histories of these at-risk minnow species, habitat suitability maps can be used 

to inform targeted studies to fill these gaps. SDMs are easily constructed for any target 
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species, given appropriate data for model training, to serve similar functions (Elith et al. 

2008). Further, various model types with different applications are available including 

boosted regression tree, random forest, general additive, and general linear models 

(Guisan and Zimmerman 2000). For example, SDMs can be used to predict and prevent 

encroachment of invasive species through mapping habitat suitability along an invasion 

front (Marras et al. 2015).  

Characterizing species habitat-relations provides insight into patterns of 

environmental features for consideration in management of habitat for these at-risk 

species. Hydrological variables such as flow velocity and discharge were highly 

influential for all three species. This may reflect the role of large-scale hydrological 

processes in shaping site-scale habitat conditions (Fausch et al. 2002; Dodds et al. 2004). 

As such, consideration of hydrological processes may benefit conservation of at-risk fish 

species. For example, positive relations between flow and presence of a target species 

could serve as the goal for successful stream restoration efforts or development of flow 

standards (Radinger and Wolter 2015). Further, species distributions may reflect patterns 

in habitat heterogeneity (Sowa et al. 2008). Using the Flathead Chub model to examine 

this concept, stream reaches with high predicted presence likely align with influential 

values of selected variables (Sowa et al. 2008). Where predicted presence of Flathead 

Chub is high, one may observe discharge above 1000 m3/s, flow velocity of 

approximately 0.5 m/s to 0.8 m/s, and 1.50% organic matter in the substrate (Sowa et al. 

2008). Field validation of model predictions would allow further insight into the accuracy 

of translation of species distribution to habitat heterogeneity patterns.



 
 

 
 

Tables 

Table 2.1. Comparison of species traits for Flathead Chub, Plains Minnow, and Northern Redbelly Dace from the U.S. 

Geological Survey FishTraits Database (Frimpong and Angermeier 2009). 

Species Diet Longevity 

(Years) 

Spawning 

Season 

Spawning 

Strategy 

Flow Substrate 

Flathead Chub macrophytes, 

invertebrates, 

smaller fish  

6 July - September Nonguarding, 

Lithopelagophillic 

(sand) 

Moderate-

Fast 

clay, silt, sand 

Plains Minnow algae, 

phytoplankton, 

macrophytes, 

detritus 

2 April - July Nonguarding, 

Lithopelagophillic 

Slow-

Moderate 

clay, silt, sand 

Northern 

Redbelly Dace 

algae, 

phytoplankton, 

invertebrates 

3 May - August Nonguarding, 

Phytophillic 

Slow muck, clay, 

silt, sand, 

gravel, cobble, 

boulder, 

detritus 
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Table 2.2. Descriptions, units, and sources of environmental predictor variables used to train the species distribution models.  

Variable Description Units Source 

StreamOrde Stream order Strahler’s NHD+ v2 

SLOPE Slope of flowline m/m NHD+ v2 

TotDASqKM Total upstream drainage area km2 NHD+ v2 

V0001E Reach-scale flow velocity estimate with gage adjustments m/s NHD+ v2 

Q0001E Reach-scale flow discharge estimate with gage adjustments m3/s NHD+ v2 

Precip_Min Mean annual precipitation minus evapotranspiration within 

catchment 

mm StreamCat 

MSST_2014 Mean summer stream temperature °C StreamCat 

RunoffWs Mean annual runoff within watershed mm StreamCat 

Mx_class Dominant landcover class within HUC12, class 11 is open 

water, class 22 is developed (low intensity), class 71 is 

grassland, and class 82 is cropland 

 Calculated 

SDHI Shannon's diversity index for landcover classes within HUC12  Calculated 

DCI Discontinuity Index within HUC12  Calculated 

OM Organic matter in substrate % STATSGO 

AFLDFREQ Annual flood frequency (1 = frequent (>50% chance), 2 = 

occasional (5-50% chance), 3 = rare (<5% chance)) 

 STATSGO 

MADTW Annual mean depth to groundwater m Calculated 

4
2
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Table 2.3. Relative and cumulative influence of predictor variables from the Flathead 

Chub model. See Table 2.2 for variable definitions, units, and sources. 

Variable Relative Influence (%) Cumulative Influence (%) 

Q0001E 30.50 30.50 

V0001E 29.94 60.44 

TotDASqKM 6.87 67.31 

OM 5.34 72.65 

DCI 4.10 76.75 

SLOPE 3.93 80.68 

MADTW 3.91 84.59 

SHDI 3.64 88.23 

StreamOrde 3.18 91.41 

MSST_2014 2.48 93.89 

Precip_Min 2.20 96.09 

RunoffWs 2.07 98.16 

AFLDFREQ 1.06 99.22 

Mx_class 0.77 100.00 
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Table 2.4. Relative and cumulative influence of predictor variables from the Plains 

Minnow model. See Table 2.2 for variable definitions, units, and sources. 

Variable Relative Influence (%) Cumulative Influence (%) 

Q0001E 30.11 30.11 

TotDASqKM 20.86 50.97 

StreamOrde 10.49 61.46 

V0001E 9.09 70.55 

SHDI 6.72 77.27 

SLOPE 6.36 83.63 

MADTW 3.71 87.34 

DCI 3.50 90.84 

OM 2.48 93.32 

AFLDFREQ 2.08 95.40 

Mx_class 1.90 97.30 

RunoffWs 1.75 99.05 

Precip_Min 0.57 99.62 

MSST_2014 0.38 100.00 
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Table 2.5. Relative and cumulative influence of predictor variables from the Northern 

Redbelly Dace model. See Table 2.2 for variable definitions, units, and sources. 

Variable Relative Influence (%) Cumulative Influence (%) 

V0001E 19.99 19.99 

Mx_class 14.71 34.70 

StreamOrde 12.03 46.73 

TotDASqKM 10.03 56.76 

Q0001E 8.76 65.52 

Precip_Min 7.81 73.33 

SLOPE 6.10 79.43 

MADTW 4.63 84.06 

OM 4.34 88.40 

MSST_2014 3.78 92.18 

RunoffWs 3.43 95.61 

AFLDFREQ 2.03 97.64 

DCI 1.23 98.87 

SHDI 1.15 100.00 
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Table 2.6. Validation summary data for the species distribution models. Sensitivity 

denotes the rate of true positives in model predictions, while specificity denotes the rate 

of false positives. Area under curve (AUC) is a metric of model fit ranging from 0-1 

determined by a receiver-operating characteristic curve. True skill statistic (TSS) is a 

measure of model accuracy ranging from -1 to +1. 

Model Species Sensitivity Specificity AUC TSS 

Flathead Chub 0.85 0.87 0.93 0.73 

Plains Minnow 0.85 0.88 0.93 0.73 

Northern Redbelly Dace 0.83 0.94 0.97 0.77 
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Table 2.7. Proportion of total flowline with predicted presence greater than 0.7 for each 

species based on Figure 4, Figure 7, and Figure 10. High presence length (HPL) denotes 

the sum of flowline length with predicted presence greater than 0.7 in kilometers. Total 

length (TL) denotes the sum length of all flowlines across Nebraska in kilometers. 

Percentage of high presence (PHP) denotes the proportion of flowline length with 

predicted presence greater than 0.7 as a percentage. 

Species HPL (km) TL (km) PHP (%) 

Flathead Chub 3199.01 165615.90 1.93 

Plains Minnow 3993.13 165615.90 2.41 

Northern Redbelly Dace 6050.51 165615.90 3.65 
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Figures 

 

Figure 2.1. Correlation grid showing selected environmental predictor variables, all 

correlation ≤ 0.7. See Table 2.2 for variable definitions. 
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Figure 2.2. Partial Dependence plots from the Flathead Chub model ordered by relative 

influence. The y-axes of all plots are the fitted functions, denoting predicted response 

where values above zero are positive influence on presence and values below zero are 

negative influence on presence. The x-axes are variable values, with labels showing the 

relative influence of each variable as a percentage. The ticks on top of the x-axis denote 

data deciles (i.e., tenths of the total input points). See Table 2.2 for variable definitions, 

units, and sources. 
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Figure 2.3. The 10-fold cross validation reciever operating-characteristic curve plot of the 

Flathead Chub model. The y-axis is sensitivity, or the rate of true positives. The x-axis is 

specificity, or the rate of false positives. In the bottom right corner the area under the 

curve ranging from 0-1 is noted. 
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Figure 2.4. The model predicted probability of Flathead Chub occurrence mapped over 

the NHD Flowlines with additional metrics. Darker color denotes higher predicted 

probability of occurrence. 
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Figure 2.5. Partial dependence plots from the Plains Minnow model ordered by relative 

influence. The y-axes of all plots are the fitted functions, denoting predicted response 

where values above zero are positive influence on presence and values below zero are 

negative influence on presence. The x-axes are variable values, with labels showing the 

relative influence of each variable as a percentage. The ticks on top of the x-axis denote 

data deciles (i.e., tenths of the total input points). See Table 2.2 for variable definitions, 

units, and sources. 
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Figure 2.6. The 10-fold cross validation reciever operating-characteristic curve plot of the 

Plains Minnow model. The y-axis is sensitivity, or the rate of true positives. The x-axis is 

specificity, or the rate of false positives. In the bottom right corner the area under the 

curve ranging from 0-1 is noted. 
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Figure 2.7. The model predicted probability of Plains Minnow occurrence mapped over 

the NHD Flowlines with additional metrics. Darker color denotes higher predicted 

probability of occurrence. 
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Figure 2.8. Partial dependence plots from the Northern Redbelly Dace model ordered by 

relative influence. The y-axes of all plots are the fitted functions, denoting predicted 

response where values above zero are positive influence on presence and values below 

zero are negative influence on presence. The x-axes are variable values, with labels 

showing the relative influence of each variable as a percentage. The ticks on top of the x-

axis denote data deciles (i.e., tenths of the total input points). See Table 2.2 for variable 

definitions, units, and sources. 
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Figure 2.9. The 10-fold cross validation reciever operating-characteristic curve plot of the 

Northern Redbelly Dace model. The y-axis is sensitivity, or the rate of true positives. The 

x-axis is specificity, or the rate of false positives. In the bottom right corner the area 

under the curve ranging from 0-1 is noted. 
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Figure 2.10. The model predicted probability of Northern Redbelly Dace occurrence 

mapped over the NHD Flowlines with additional metrics. Darker color denotes higher 

predicted probability of occurrence. 
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CHAPTER 3 

AQUATIC HABITAT REPRESENTATION WITHIN NEBRASKA’S 

BIOLOGICALLY UNIQUE LANDSCAPES: IMPLICATIONS FOR STREAM 

CLASSIFICATION 

Abstract 

Stream classification informs freshwater conservation by providing a useful 

framework to account for natural habitat heterogeneity, establish ecologically relevant 

standards for comparison, and generalize ecological processes within larger spatial scales. 

Stream classification efforts are often based on landscape features and attempt to 

encompass the breadth of physical and chemical variability of streams across 

physiographic regions. A greater understanding of landscape-based classification 

approaches as means to classify site-scale stream habitat heterogeneity may improve 

understanding of drivers of biodiversity. We used site-level stream data collected by the 

Nebraska Department of Environment and Energy (NDEE) from 1995 to 2021 to assess 

stream habitat heterogeneity among Biologically Unique Landscapes (BUL) at a 

statewide spatial scale. Multivariate cluster analysis and statistical similarity tests were 

used to determine if aquatic habitats within the BULs are different from those outside and 

statewide and by which habitat characteristics. Silhouette values were also calculated 

using similarity-based clusters, level 3 ecoregions, hydrologically unique code (HUC) 12 

watersheds, Strahler’s stream order, matrix (i.e., dominant) landcover class, and BULs to 

provide a direct comparison of the classification power of the BUL construct to 
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commonly used classifiers. No significant differences were suggested between aquatic 

environmental conditions within BULs, outside BULs, and statewide. This implies that 

the BULs adequately capture habitat heterogeneity of selected metrics. Evidence for 

unique aquatic habitat conditions among BULs was limited, shown in minimal pairwise 

differences among BULs in statistical similarity tests, suggesting that the BULs may have 

minimal benefit in grouping their contained streams. Furthermore, the classificatory 

power of the BULs underperformed all other classifiers and, as such, BULs may not 

improve statewide stream classification. The similarity-based approach outperformed 

assessed landscape-based approaches, indicating that similarity-based stream 

classification may be considered in the development of standard stream classification 

systems in the future. 

Introduction 

Stream classifications provide frameworks to account for natural habitat 

heterogeneity, establish ecological standards for comparison, and generalize fine-scale 

processes across greater spatial scales (Hawkins and Vinson 2000; Mažeika et al. 2004; 

McManamay et al. 2018; McManamay and DeRolph 2019). Applications of stream 

classification systems may also serve conservation planning, direct environmental 

management programs, inform monitoring through reference sites, and reduce variables 

in model building (Wang et al. 2006; McManamay and DeRolph 2019). Streams contain 

variable physical templates driving biological processes (Vannote et al. 1980; Mažeika et 

al. 2004; McManamay et al. 2018). Broadly, stream classification systems group streams 

of similar physical characteristics and separate streams with different physical 

characteristics (Hawkins and Vinson 2000; McManamay et al. 2018). Stream 
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classifications are fundamental to understanding the diversity of stream habitat across 

large areas and the influence habitat heterogeneity has on biological community structure 

(Hawkins et al. 2000; Wang et al. 2006; McManamay and DeRolph 2019). An ideal 

classification system will account for environmental heterogeneity whereby shifts in 

observed and expected conditions will reveal potential system changes (Hawkins et al. 

2000). As such, strong stream classifications may be derived from reference sites within a 

region of interest (Hawkins et al. 2000). A site is defined as a sampling unit of stream 

reaches with a minimum length of 150 meters and a maximum length of 300 meters 

(USEPA 2019; NDEE 2020). Reference sites often exhibit environmental conditions 

reminiscent of the most natural conditions possible given human alteration of the 

surrounding landscape (Hawkins et al. 2000). Classification systems focused on site-scale 

conditions in streams may properly represent habitat heterogeneity and inform 

conservation decision making (Nel et al. 2011; Melles et al. 2012). Studies have shown 

that classifications based on site-level environmental conditions outperform those based 

on landscapes in regard to within group homogeneity and between group heterogeneity 

(Van Sickle and Hughes 2000; Caruso 2014). Representing site-scale heterogeneity in 

both sampling and classification is necessary to recognize degradation and define 

freshwater conservation areas (Hawkins et al. 2000; McManamay et al. 2018; 

McManamay and DeRolph 2019). 

Multiple classification approaches exist including those based on landscapes, 

stream order, and statistical similarity. Large-scale landscape-based classification systems 

are geographical in nature and group streams by climatic and geological features 

expected to drive similar biological community structures (Sokal 1974; Melles et al. 
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2012). Classification based on stream order groups streams by size and position in the 

drainage network assumed to be consistent with similar hydrological and 

geomorphological features (Vannote et al. 1980; Van Sickle and Hughes 2000; Melles et 

al. 2012; Caruso 2014). Similarity-based classifications are not often applied in fluvial 

ecology but offer an approach of grouping streams in a non-geographic context (McNeil 

et al. 2005). Classification systems generally function at single scales, depending on the 

management purposes leading towards their development. However, hierarchical (i.e., 

multiscale) classifications are increasing in popularity (Melles et al. 2012). Hierarchical 

classifications assume large-scale processes set constraints on small-scale processes, 

representing both multiple scales in nested groupings that may reflect the true 

hierarchical nature of aquatic systems (Melles et al. 2012).  

Landscape-based classifications have been applied to group freshwater systems 

by boundaries present across the landscape, such as ecoregions or watersheds (Hawkins 

et al. 2000; Heatherly et al. 2014). Landscape-based classifications assume streams can 

be grouped by landscape features because stream habitat conditions are determined 

directly and indirectly by the surrounding terrestrial environment (Hynes 1975; Baxter 

and Hauer 2000; Hawkins et al. 2000; Saunders et al. 2002). Ecoregions have been used 

as a fundamental biogeographic classification unit for freshwater conservation wherein 

aquatic features are assumed to correspond with terrestrial features such as landforms, 

vegetation, soils, and land use (Hughes et al. 1994; Hawkins et al. 2000; Heatherly et al. 

2014; Hughes et al. 2015). Hughes et al. (1994) provided evidence for the strength of 

ecoregion-based classification for aquatic environmental features like water quality and 

faunal assemblages (Hughes et al. 1994). Though ecoregion-based classification is useful 
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for its generality and inclusivity, finer-scale differentiation is often necessary to better 

represent the site-level heterogeneity of freshwater systems (Hawkins et al. 2000; Nel et 

al. 2011; Caruso 2014; Hermoso et al. 2015).  

Inclusion of hydrological units at the watershed and sub-watershed scales within 

landscape-based classification may represent spatially explicit landscape influence on 

streams (Hawkins et al. 2000; Nel et al. 2011; Heatherly et al. 2014). Watershed-based 

classifications assume that stream physical attributes and ecological responses are 

influenced by properties of their catchments including geologic and hydrologic (Hynes 

1975; Caruso 2014; Heatherly et al. 2014). In statistical assessments, watershed-based 

classification is weaker than ecoregion-based classification at larger spatial scales and 

stronger at smaller spatial scales. Causes of scale-dependent performance of watershed-

based classification may include the lower degree of variation within smaller catchments 

compared to larger catchments (Hawkins et al. 2000). However, ecoregions and 

watersheds as landscape classifiers poorly explain differences among streams and their 

communities in practice (Hawkins et al. 2000; Hawkins and Vinson 2000; Wang et al. 

2006; Heatherly et al. 2014). The statistical weakness of landscape-based classifications 

has been attributed to their coarseness as smaller-scale heterogeneity impacting biota is 

not accounted (Hawkins et al. 2000; Hawkins and Vinson 2000; Van Sickle and Hughes 

2000). This may also explain the disparity in watershed classifiers of varying size where 

smaller watersheds may better represent site-level features compared to larger 

watersheds. Though the generality of large catchments and ecoregions are initially useful 

for large-scale classification, they are unlikely to provide fine-scale specificity for any 
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single ecosystem feature including stream physical conditions (Sokal 1974; Hawkins et 

al. 2000; Van Sickle and Hughes 2000).  

Stream order serves as a classification framework and is positively related to 

biological community diversity and structure (Van Sickle and Hughes 2000; Caruso 

2014). Stream order is often used to group streams of similar hydrology and 

geomorphology (Melles et al. 2012; Caruso 2014). Stream order classifies streams 

starting with headwaters serving as stream order 1 (Vannote et al. 1980; Frissell et al. 

1986; Ward 1998). The confluence of two streams of the same order (i.e., two first-order 

streams) results in the formation of a larger-ordered stream downstream (i.e., second-

order stream; Vannote et al. 1980; Ward 1998). Broadly, low-order headwaters are 

proposed to have narrower channels, higher inputs from allochthonous sources, lower 

temperatures, less discharge, macroinvertebrates adapted to feeding on coarse particulate 

organic matter (CPOM), and low fish community diversity (Vannote et al. 1980). Mid-

order streams (4-6) are proposed to be larger, have more autochthonous energy input, a 

higher proportion of fine particulate organic matter (FPOM), warmer temperatures, more 

discharge, more macroinvertebrates adapted to feeding on FPOM, and the highest fish 

diversity (Vannote et al. 1980). High-order streams (7-9) are proposed to have the largest 

channel, more input from autochthonous sources, higher temperatures, greatest discharge, 

macroinvertebrates adapted to collecting FPOM, and reduced fish diversity (Vannote et 

al. 1980). While this pattern may not exist for all freshwater systems, classifications 

based on stream order generally assume that streams can be grouped by size and 

environmental conditions and follow the above longitudinal gradient (Vannote et al. 

1980; McCormick et al. 2000). Stream classifications based on stream order have similar 
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or better statistical strength than that of large watersheds (McCormick et al. 2000; Van 

Sickle and Hughes 2000). However, McCormick et al. (2000) noted that stream 

classification based on stream order still underperformed classifiers based on taxonomic 

groups. As such, there may still be disparity between fine-scale environmental conditions 

captured by classifiers based on stream size and those experienced by stream biota 

(McCormick et al. 2000).  

Similarity-based classification frameworks differ from landscape-based 

classification frameworks in that they are not reliant on physiographic constraints (Van 

Sickle and Hughes 2000; Heatherly et al. 2014). Similarity-based classification can be 

particularly useful as a framework for management decisions, where sites of similar 

conditions or quality are grouped for similar management (Van Sickle 1997; Van Sickle 

and Hughes 2000). Similarity-based approaches to classification may better represent 

site-level environmental conditions than solely landscape-based classification in 

classifying sites by similarity of observed conditions, rather than by assumed similarity 

by spatial proximity (Hughes et al. 1994; Van Sickle and Hughes 2000; Caruso 2014; 

Heatherly et al. 2014). Further, statistical assessment of classification strength at 

ecoregion, watershed, and stream order scales using site-level data is commonplace (Van 

Sickle 1997; Hawkins and Vinson 2000; McCormick et al. 2000; Van Sickle and Hughes 

2000). An example of similarity-based classification is hierarchical cluster analysis, 

wherein statistical dissimilarity approaches are used to group sites into classes where 

similarity is maximized within groups and minimized among groups (Van Sickle and 

Hughes 2000; McNeil et al. 2005; Long et al. 2010). In landscape analyses, cluster 

analysis is considered spatially neutral because sites are clustered by quantified 
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characteristics including physical features (Van Sickle 1997; Van Sickle and Hughes 

2000). Thus, integrating statistical methods such as cluster analysis may make for more 

robust and applicable classifications that are also based on spatial association. 

The high degree of linear connectivity of drainage networks limits the 

effectiveness of landscape- and stream order-based conservation (Nel et al. 2011; Melles 

et al. 2012;  Hermoso et al. 2015). Freshwater habitat is often incidentally included in 

protected terrestrially derived reserves, which may fail to properly address aquatic habitat 

heterogeneity (Saunders et al. 2002; Linke et al. 2011; Melles et al. 2012; Hermoso et al. 

2015). Traditional conservation planning focused on classifying highly biodiverse 

terrestrial ecosystems and setting them aside as protected reserves (Sokal 1974; Van 

Sickle 1997; Fausch et al. 2002; Nel et al. 2011; Melles et al. 2012). Reserves containing 

protected ecosystems rarely overlap well with hydrological units to capture the entirety of 

catchments or sub-catchments, so that some segments of aquatic systems go unprotected 

or are downstream of unprotected waters (Nel et al. 2011; Melles at al. 2012; Hermoso et 

al. 2015). Thus, protected aquatic ecosystems are susceptible to changes from upstream, 

downstream, and surrounding landscapes, which may not fully protect entire aquatic 

ecosystems and promote biodiversity (Nel et al. 2011; Hermoso et al. 2015). 

Stream classifications based on ecoregions and watersheds have been the 

predominant approaches used globally (Stoddard et al. 2008; Melles et al. 2012; 

Heatherly et al. 2014). This may be attributable to the claims of Hynes (1975), wherein 

stream ecosystems and their characteristics are determined by the valley (i.e., the 

landscape) through which they flow. This approach shifted emphasis from site-level 

stream characteristics to large-scale ecological processes (Nel et al. 2011; Melles et al. 
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2012). While some later approaches emphasized the importance of habitat heterogeneity, 

stochasticity, disturbance regimes, and hierarchical scaling of streams, many stream 

classification efforts continued to prioritize generalizations based on the influence of 

large-scale landscape features (Frissell et al. 1986; Townsend and Hildrew 1994; Melles 

et al. 2012). While ecoregions and watersheds are useful for classifying streams with 

regards vertebrate assemblages, landscape-based approaches may not be as effective as 

similarity-based approaches (Van Sickle 1997; Van Sickle and Hughes 2000).  

Stream classification efforts within Nebraska, USA have been based on landscape 

features and fish communities (Heatherly et al. 2014). However, a more holistic approach 

to stream classification including larger biological communities may advance statewide 

aquatic conservation efforts. In 2005, the Nebraska Game and Parks Commission 

implemented such an approach with the Nebraska Natural Legacy Project to identify 

Biologically Unique Landscapes (henceforth BUL) that encompass a majority of 

Nebraska’s biodiversity (Schneider et al. 2011). The Nebraska Natural Legacy Project 

addresses aquatic conservation by inclusion of freshwater species as components of BUL 

delineation. Each BUL is delineated using ecoregions and known occurrences of at-risk 

species and biological communities with the end goal of biodiversity preservation (Figure 

2; Schneider et al. 2011). While the Nebraska Natural Legacy Project provides a strong 

framework for joint landscape- and species-based conservation, a greater understanding 

of the effectiveness of the BUL framework as a means to group heterogeneity in 

Nebraska’s stream systems may aid the development of a standard statewide 

classification system. Further, the State Wildlife Action Plan states the development of a 

statewide classification system for freshwater habitats as a priority conservation 
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challenge (Schneider et al. 2011). An assessment of the BULs ability to classify site-level 

variation in aquatic habitat will determine their effectiveness as a form of stream 

classification. The objectives of this study were to 1) compare in-stream habitat 

conditions within the BULs to those outside and statewide, 2) assess habitat 

heterogeneity among BULs, and 3) compare classification strength of traditional 

classification systems to a similarity-based approach. I predict that a similarity-based 

approach to stream classification will better represent site-level habitat heterogeneity of 

stream environments across the state. 

Methods 

Data Collection 

Site-level stream data collected by the Nebraska Department of Environment and 

Energy (NDEE) from 1995 to2021 were used to assess stream habitat heterogeneity 

among BULs (NDEE 2019). There were 564 useable sites collected as part of both the 

Stream Biological Monitoring Program (SBMP) and National Rivers and Streams 

Assessment (NRSA; Figure 1; Paulsen et al. 2008; NDEE 2019). SBMP sampling 

follows a roving survey design, wherein 33-40 randomly selected sites are sampled in 1-3 

river basins annually (NDEE 2019). During a six-year cycle, all 13 major river drainage 

basins in Nebraska are sampled (NDEE 2019). For instance, 61 sites were sampled in the 

summers of 2018 and 2019 and covered each major drainage basin in Nebraska (NDEE 

2019). Physical and chemical characteristics were measured across 11 sampling transects 

subdividing 200-meter sites using United States Environmental Protection Agency (US 

EPA) standardized methods for either wadeable or navigable streams (NDEE 2020). For 



76 
 

 

the purposes of this study, NDEE sites were assigned to the BULs in which they occur in 

ArcGIS Pro (ESRI Inc. 2022).  

Data Analysis 

Variable reduction improves statistical analyses by mitigating irrelevant or 

redundant data (Tang et al. 2014; Borboudakis and Tsamardinos 2019). The original 216 

environmental variables present in the NDEE data were reduced via correlation analysis 

and the remaining variables were used to represent the physical conditions of sampled 

rivers and streams in a multivariate cluster analysis of Nebraska’s BULs (Table 1; Figure 

2; Tang et al. 2014). For pairs of variables with Pearson correlation of r ≥ 0.7, the 

variable with lower correlation to other variables in the dataset was selected. 

Furthermore, environmental variables that may not have been highly correlated but 

provide similar information were selected based on prevalence or descriptiveness. For 

example, despite a Pearson correlation of only r = 0.56 between incision height and 

incision width/depth ratio, only incision width/depth ratio was retained as it is more 

descriptive (Tang et al. 2014; Borboudakis and Tsamardinos 2019). Furthermore, an 

exception was made for the sinuosity index and habitat quality variables because their 

high correlation is due to biases in data where any site missing one value is missing the 

other. Selected environmental variables aim to represent thermal variability, hydrologic 

regimes, geomorphology, and water quality as these variable types may be key drivers of 

aquatic ecosystem structure at multiple spatial scales (Frissell et al. 1986; Durance et al. 

2006). Prior to analyses, sites missing large amounts of data or with unexpectedly 

extreme values of variables were dropped. For example, sites on the mainstem Platte 

River are expected outliers in some metrics, having naturally larger width-to-depth ratios 
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and discharges, while a low-order tributary with a comparable value was dropped as 

recorded metrics may be erroneous. 

Three additional metrics were calculated to supplement the features collected by 

NDEE and introduce multiscale variables for analyses. Groundwater depth for wells 

across Nebraska was acquired from the University of Nebraska-Lincoln School of 

Natural Resource’s Conservation and Survey Division (CSD) interactive data map (CSD 

2023). As measurements ranged from the early 20th century to present day, groundwater 

depth was averaged across years to generate a mean annual depth to groundwater 

(MADTW) variable. Two land-use metrics including dominant landcover class and 

Shannon’s diversity index were generated within 12-digit hydrological units (HUC12) 

using landcover data retrieved from the National Land Cover Database (Dewitz et al. 

2021). Pixel counts of landcover classes within HUC12s were generated using the 

summarize raster tool in ArcGIS Pro (ESRI Inc. 2022). The class of highest proportional 

cover (i.e., most pixels) was noted as a categorical variable of dominant, or matrix, 

landcover class (Meshesha et al. 2016). For example, in a HUC12 with majority 

agricultural land use any stream would have cropland assigned as dominant landcover. 

Shannon’s diversity index was calculated for landcover classes within HUC12s using 

vegan package in Program R (R Core Team 2021; Okansen et al. 2022). 

Multivariate Cluster Analysis 

Numerical data were standardized to zero mean and unit variance using: 

𝑧𝑖𝑓 = 
𝑥𝑖𝑓−𝑚𝑓

𝑠𝑓
 , 
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where zif  is the standardized value for observation i of variable f, xif  is the observed 

value, mf  is the mean of variable f, and sf  is the standard deviation of variable f (Long et 

al. 2010). The environmental data were then broken into three subsets to determine if 

stream habitat within the BULs carries similar trends in variation to those observed 

outside the BULs and statewide. The subsets included 230 sites within BULs, 334 sites 

outside BULs, and all 564 sampled sites. Using variation as a proxy for heterogeneity, the 

BUL construct would encompass adequate heterogeneity if variation between the three 

subsets is similar, allowing for stream habitat within the BULs to represent stream habitat 

statewide. When comparing sites in BULs to sites outside BULs, similar variation 

indicates that heterogeneity outside of BULs is not different from that within. 

Furthermore, when comparing sites in BULs to sites statewide, similar variation indicates 

statewide trends in heterogeneity are captured in the BUL construct. Another necessity 

for cluster analysis is the calculation of a measure of separation, in this case Euclidean 

distance as all selected environmental data are on a ratio or interval scale (Kaufman and 

Rosseeuw 1987; Long et al. 2010). Euclidean distance, given by: 

𝑑(𝑝, 𝑞) =  √∑ (𝑞𝑖 − 𝑝𝑖)2
𝑛
𝑖=1  , 

measures the distance between two points in multiple dimensions (i.e., variables; 

Kaufman and Rosseeuw 1987). A Euclidean distance matrix was generated between all 

objects (i.e., sampling sites) within each subset using the factoextra package in Program 

R (Kassambara and Mundt 2020; R Core Team 2021).  

Data were hierarchically clustered using Ward’s minimum variance method in the 

factoextra package in Program R (Ward 1963; Kaufman and Rosseeuw 1987; 

Kassambara and Mundt 2020; R Core Team 2021). Ward’s minimum variance method is 
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commonly used in cluster analysis because it is computationally efficient for larger 

datasets, functions particularly well in multivariate space, and produces more 

homogenous clusters than other methods (Ward 1963; Kaufman and Rosseeuw 1987; 

Murtagh 2014). Ward’s method begins by placing each datum object in its own cluster; 

clusters are then merged stepwise in a manner minimizing the within-cluster variance of 

the resulting cluster (Ward 1963; Kaufman and Rosseeuw 1987; Murtagh 2014). An 

output cluster dendrogram visualizing the hierarchical distance between objects is then 

cut to the appropriate height to produce the selected number of clusters, in this case two 

clusters for each subset. For the statewide sites subset the dendrogram was cut to a height 

of 500, whereas the inside and outside BULs subsets were cut to heights of 300 (Figure 4, 

Figure 5, Figure 6). Descriptive statistics were then generated for the resulting clusters by 

their contained sampling sites. Cluster means and standard deviations were calculated to 

observe variation in physical conditions of streams across Nebraska, as well as cluster-

defining differences. 

An optimal number of clusters for each subset was determined from the distance 

matrix using a silhouette method in the cluster and factoextra packages in Program R 

(Kassambara and Mundt 2020; R Core Team 2021; Maechler et al. 2022). A silhouette 

value illustrates how similar an object is to its own cluster when compared to other 

clusters on a -1 to +1 scale, with high values denoting more similarity to the objects 

resident cluster (Kaufman and Rosseeuw 1987; Rosseeuw 1987). A silhouette value was 

calculated for each object i by: 

𝑠(𝑖) =  
𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),𝑏(𝑖)}
 , 
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where a(i) is a measure of within cluster dissimilarity, b(i) is a measure of between 

cluster similarity, and max{a(i),b(i)} is the observed maximum dissimilarity for object i 

either within or between clusters (Rosseeuw 1987). An average silhouette value was 

calculated for theoretical clustering in up to 10 groups to determine an optimal clustering 

scheme (i.e., that with an average silhouette value closest to 1). 2-group clustering was 

selected for each subset, as further generated clusters of exceedingly low membership 

and greatly reduced the average silhouette width (Figure 3). Silhouette values were 

calculated for every site using similarity-based clusters, level 3 ecoregions, HUC12 

watersheds, stream order, matrix (i.e., dominant) landcover, and BULs as classification 

systems. This allowed for direct comparison of the classification power of the BUL 

construct to commonly used classifiers to address objective 3 (Wang et al. 2017). 

Similarity Analysis  

Similarity analyses were conducted among site groupings (i.e., inside BULs, 

outside BULs, and statewide) to determine if stream habitat conditions within the BULs 

accurately represent those found across Nebraska. A Kruskal-Wallis test is a non-

parametric test for similarity between multiple groups. Kruskal-Wallis tests work well 

when data does not fit a normal distribution. Kruskal-Wallis tests begin by ranking all 

data, ignoring group membership. The test statistic is given by: 

𝐻 = (𝑁 − 1)
∑ 𝑛𝑖(𝑟̄ 𝑖.−𝑟̄ )

2𝑔
𝑖=1

∑ ∑ (𝑟̄𝑖𝑗−𝑟̄ )
2𝑛𝑖

𝑗=1
𝑔
𝑖=1

 , 

where N is the total number of observations, g is the number of groups, ni is the number 

of observations in group i, rij is the rank of observation j in group i, 𝑟̄ 𝑖. is the average rank 

of observations in group i, and 𝑟̄  is the average of all rij (Kruskal and Wallis 1952; Dinno 
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2015). A null hypothesis of no difference between groups is then rejected or accepted 

based on the test statistic H. Kruskal-Wallis tests were run between subsets and clusters 

of different subsets, where rejection of the null hypothesis is warranted at H ≥ 4.605; df = 

2. To address objective 1, subsets were tested for similarity by their means and standard 

deviations to determine if habitat characteristics were different within BULs, outside 

BULs, and statewide. To address objective 2, a Kruskal-Wallis test was used to determine 

if there were differences among mean environmental features of BULs. 

Kruskal-Wallis tests only denote whether there is difference between any groups 

in a dataset and further tests must be applied to determine pairwise group differences. 

Dunn’s test was run among the 31 analyzed BULs to determine if aquatic habitat among 

them is unique. Like the Kruskal-Wallis test, Dunn's test is a non-parametric pairwise 

multiple comparisons procedure based on rank sums (Dunn 1964; Dinno 2015). The test 

statistic of Dunn’s test is calculated with: 

𝑍𝑖 = 
𝑊𝑖 − 𝑊𝑗

√((
𝑁(𝑁+1)

12
)−(∑𝑇𝑠

3−𝑇𝑠/(12(𝑁−1))/((1−𝑛𝑖)+(1−𝑛𝑗))

 , 

where Wi and Wj are the average sum of ranks for groups i and j respectively, N is the 

total number of observations, Ts is the number of ties (data points in both groups),  and ni 

and nj are the numbers of objects in groups i and j respectively (Dunn 1964; Dinno 2015). 

Positive Z-values indicate the first group i has higher mean values than the second group 

j, while negative Z-values indicate the opposite. Further, the |Z|-value relative to all 

comparisons indicates the overall strength of the difference. To account for the greater 

chance of type-1 errors in multiple comparisons, p-values for pairwise comparisons were 

adjusted using the Benjamini-Hochberg method (Dinno 2015). For both the Kruskal-



82 
 

 

Wallis and Dunn’s tests, a null hypothesis of no statistical differences between groups 

was tested at p ≤ 0.10.  

Levene’s tests for homogeneity of variance were conducted post-clustering to 

determine which environmental variables vary differently within BULs, outside BULs, 

statewide, and among BULs. Levene’s test follows the Kruskal-Wallis and Dunn’s tests 

to further examine differences by determining features of heterogeneous variation. 

Levene’s test was chosen over the alternative Bartlett test because our numerical data 

does not fit a normal distribution (Levene 1960; Brown and Forsythe 1974). In this case, 

Levene’s test was conducted using the median of each variable because doing so retains 

statistical power while performing better than the mean for non-normal data (Brown and 

Forsythe 1974; Gastwirth et al. 2009). Levene’s test assesses the homogeneity of variance 

between groups of data, in this case subsets, clusters, and BULs in separate tests. Testing 

a null hypothesis of equal variance against an alternative hypothesis of unequal variance, 

significant difference between clustering schemes is achieved at p ≤ 0.10. The test 

statistic of Levene’s test is defined as: 

𝑊 = 
(𝑁−𝑘)

(𝑘−1)
∙

∑ 𝑁𝑖(𝑍𝑖−𝑍..)
2𝑘

𝑖=1

∑ ∑  
𝑁𝑖
𝑗=1

𝑁𝑖(𝑍𝑖𝑗−𝑍𝑖)
2𝑘

𝑖=1

 , 

where k is the number of groups, Ni is the number of observations in group i, N is the 

total number of observations, Zij is the absolute deviation of observation j in group i, Zi is 

the mean absolute deviation for group i, and Z.. is the mean of all absolute deviations (Zij; 

Levene 1960; Brown and Forsythe 1974; Gastwirth et al. 2009). The end result produces 

a value for both p and W denoting the homogeneity of variance by variable among tested 

groups (Levene 1960; Brown and Forsythe 1974; Gastwirth et al. 2009). In Levene’s tests 
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between clusters of subsets, significant findings denote which variables are useful in 

grouping sites. In Levene’s tests between subsets, these values provide insight into 

environmental heterogeneity differences of streams within BULs, outside of BULs, and 

statewide.  

Results 

Summary of Similarity-based Clusters 

The sites inside BULs clustered into two groups. Cluster 1 of the BUL sites subset 

has variable means close to the overall mean (Figure 4). Cluster 2 of the BUL sites has 

discharge, woody riparian coverage, conductivity, and wetted width to thalweg depth 

ratio greater than the overall means; while bank angle, turbidity, incision width to depth 

ratio, riparian zone width, and depth to groundwater are below the overall means (Figure 

4). A Levene’s test between clusters of the BUL sites subset quantifies the differences 

wherein discharge, wetted width to thalweg depth ratio, conductivity, substrate diameter, 

and depth to groundwater have heterogenous variance between clusters at p ≤ 0.10 and W 

≥ 2.72. All other environmental variables have homogenous variance between clusters. 

Conductivity, discharge, and wetted width to thalweg depth ratio differentiate streams 

within the BULs as these variables have the highest degree of heterogenous variance.  

The sites outside BULs clustered best into two groups. Cluster 1 was 

characterized by environmental variable means generally close to the overall means 

(Figure 5). Cluster 2 is differentiated by woody riparian coverage, no riparian coverage, 

pH, turbidity, incision width to depth ratio, and depth to groundwater above the overall 

means and bank angle, percent fish cover, and HUC12 landcover diversity below the 
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overall means (Figure 5). A Levene’s test between clusters of the outside BULs subset 

quantifies these differences where percent fish cover, percent organic substrate, depth to 

groundwater, no riparian coverage, dissolved oxygen, turbidity, incision width to depth 

ratio, woody riparian coverage, slope, discharge, riparian zone width, substrate diameter, 

temperature, pH, and sinuosity have heterogenous variance between clusters at p ≤ 0.10 

and W ≥ 2.72. All other environmental variables have homogenous variance between 

clusters. Especially of note, percent fish refugia, percent organic substrate, depth to 

groundwater, no riparian coverage, dissolved oxygen, turbidity, incision width to depth 

ratio, woody riparian coverage, slope, and discharge differentiate streams outside of 

BULs as these variables had the highest degree of heterogenous variance.  

The statewide sites clustered into two groups. Cluster 1 of the statewide subset 

has variable values close to the overall means (Figure 6). In contrast, Cluster 2 has 

discharge, woody riparian coverage, no riparian coverage, conductivity, turbidity, and 

wetted width to thalweg depth ratio higher than the overall means, whereas annual mean 

flood frequency and depth to groundwater are lower than the overall means (Figure 6). In 

particular, mean discharge and wetted width to thalweg depth ratio are much higher in 

cluster 2 than cluster 1. A Levene’s test between clusters of the statewide subset 

quantifies differences where discharge, wetted width to thalweg depth ratio, conductivity, 

no riparian coverage, turbidity, HUC12 landcover diversity, riparian zone width, and 

depth to groundwater have heterogenous variance between clusters at p ≤ 0.10 and W ≥ 

2.71. All other environmental variables have homogenous variance between clusters. 

Especially of note, discharge, conductivity, and wetted width to thalweg depth ratio 

differentiate streams statewide as these variables have the highest degree of heterogenous 
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variance. As such, sites statewide appear to be classifying by discharge, conductivity, and 

wetted width to thalweg depth ratio. Thus, statewide sites appear to vary by the same 

metrics as sites within BULs, suggesting that statewide stream habitat heterogeneity 

trends are present within the BUL construct. 

Comparing BULs to Statewide Variation 

Kruskal-Wallis tests were used to further quantify difference among subsets, 

addressing the first objective. The Kruskal-Wallis test between the BUL and outside BUL 

subsets did not achieve significance at p = 0.81, meaning there is no overall significant 

difference between environmental features within and outside the BULs. As such, a post-

hoc Dunn test among clusters of both subsets was not performed. A Levene’s test was 

used to determine if there are differences in the variation of specific environmental 

features that were eclipsed in the overall comparison of the Kruskal-Wallis test. In the 

Levene’s test comparing the BUL sites subset and the sites outside BULs subset, 

significant difference (p ≤ 0.10, W ≥ 2.71) in variance was achieved for conductivity (p = 

0.05), dissolved oxygen (p < 0.01), discharge (p < 0.01), groundwater depth (p = 0.01), 

percent organic matter in substrate (p = 0.07), incision width to depth ratio (p = 0.03), 

mean substrate diameter (p < 0.01), mean bank angle (p = 0.05), and wetted width to 

thalweg depth ratio (p < 0.01; Table 4). Thus, the variances of these metrics are 

heterogenous between sites within BULs and sites outside BULs, indicating that there is 

heterogeneity not captured by the BUL construct for those aforementioned environmental 

variables. Overall, the Kruskal-Wallis test and Levene’s test suggest that stream habitat 

characteristics within BULs are not different from those outside the BULs.  
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The comparison between statewide sites and BUL sites is meant to determine if 

BULs adequately contain statewide heterogeneity. The Kruskal-Wallis test between the 

BUL and statewide subsets did not achieve significance at p = 0.62, meaning there is no 

overall significant difference between environmental features inside the BULs and 

statewide. This was followed with a Levene’s test to determine if there are differences in 

the variation of specific environmental features. The Levene’s test between the BUL sites 

subset and the statewide sites subset showed significant differences (p ≤ 0.10, W ≥ 2.71) 

in the variance of dissolved oxygen (p = 0.04), discharge (p = 0.02), groundwater depth 

(p = 0.09), mean substrate diameter (p = 0.04), and wetted width to thalweg depth ratio (p 

= 0.05; Table 5). Thus, the variances of these metrics are heterogenous between sites 

within BULs and sites statewide, indicating that there is statewide heterogeneity not 

captured by the BUL construct. A significant difference was not achieved for all other 

environmental variables, thus variance is homogeneous between BUL sites and statewide 

sites and heterogeneity is encompassed.  

Variation among BULs 

The Kruskal-Wallis test suggested differences among the aquatic habitat of all 

BULs (p = 0.01). In the post-hoc Dunn test for pairwise differences between BULs, the 

only significant comparisons at p ≤ 0.10 are the Lower Loup River (LLR) and Verdigris-

Brazile (VBZ; Z = -3.39, p = 0.08) and LLR and the Middle Niobrara (MNI; Z = -3.23, p 

= 0.09; Figure 7, Figure 8). Negative Z-values indicate that LLR has generally lower 

means than both VBZ and MNI, while the magnitude of both as |Z|-values are among the 

highest of all comparisons (Figure 8). While no other comparisons reached significance, 

many approached p = 0.10 such as the Central Platte River (CPR) and Elkhorn River 
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Headwaters (ERH; Z = 2.72, p = 0.11; Figure 7, Figure 8). However, a positive Z-value 

indicates that CPR has higher variable means than ERH, while the magnitude of its |Z|-

value put it relatively high in comparison strength. Comparisons with a high p-value and 

nearing Z = 0 may also indicate BULs with similar conditions. For example, ERH and the 

Kimball Grasslands (KGL Z = 0.003, p = 0.50; Figure 7, Figure 8) may have largely 

similar environmental conditions. The Levene’s test comparing all BULs suggested 

difference (p ≤ 0.10, W ≥ 1.38) in variance for conductivity (p < 0.01), dissolved oxygen 

(p < 0.01), discharge (p < 0.01), groundwater depth (p = 0.05), percent organic matter in 

substrate (p < 0.01), incision width to depth ratio (p < 0.01), mean substrate diameter (p < 

0.01), percent fish cover (p < 0.01), and wetted width to thalweg depth ratio (p < 0.01; 

Table 6).  

Comparing Stream Classification Systems 

 Addressing objective 3, similarity-based clusters were the strongest classification 

system with the average silhouette value closest to 1 of �̅�(𝑖) = 0.33 (Table 7, Figure 9). 

The only other classification system with a positive average silhouette value is matrix 

landcover with  𝑠̅(𝑖) = 0.013586 (Table 7, Figure 9). Ecoregion is the strongest 

classification system, of those with negative average silhouette values at �̅�(𝑖) = −0.01 

(Table 7, Figure 9). Strahler’s stream order underperformed ecoregions at �̅�(𝑖) = −0.03 

(Table 7, Figure 9). The second worst performing classification system was HUC12 

watersheds at �̅�(𝑖) = −0.16 (Table 7, Figure 9). Finally, BULs underperformed all other 

classifiers of aquatic habitat conditions at �̅�(𝑖) = −0.22 (Table 7, Figure 9).  
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Discussion 

 Heterogenous variance was noted for dissolved oxygen, discharge, mean 

substrate diameter, and wetted width to thalweg depth ratio among the inside BUL, 

outside BUL, and statewide subsets. As such, these features may be useful in grouping 

sites statewide or indicating differences in impactful environmental processes. For 

example, mean substrate diameter and wetted width to thalweg depth ratio can be seen as 

representing geomorphological processes, while discharge may represent hydrological 

processes. The use of these features would account for the impact of these processes on 

site-level environmental variation, approaching stream classification in a manner 

addressing fine-scale heterogeneity. Such an approach may be reminiscent of Rosgen’s 

stream classification system in classifying streams by breaks in the gradient of these 

highly variable features (Rosgen 1994; Melles et al. 2012). Taking a discharge-based 

approach as an example, a split point could be determined of either high or low discharge 

and sites may then be grouped by their discharge (Rosgen 1994). Rosgen’s stream 

classification approach has been criticized for neglecting to consider the surrounding 

catchment and stochasticity of feature variation across space and time (Juracek and 

Fitzpatrick 2003; Gordon et al. 2004). However, it could also be thought that certain 

features represent processes operating at higher scales, such as catchments, and address 

such criticisms (Van Sickle and Hughes 2000; Hawkins et al. 2000; Paulsen et al. 2008). 

Defining references for stream quality statewide may benefit from assessment of 

environmental features exhibiting limited variation. Extreme values for less variable 

features could be indicative of good or poor stream health (Stoddard et al. 2008; Melles et 

al. 2012; Heatherly et al. 2014). For example, in the Levene’s tests sinuosity index 
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typically exhibited low heterogeneity in each subset shown in high p values that indicate 

greater homogeneity. Thus, comparing the sinuosity of sites or incorporating sinuosity in 

habitat quality metrics may serve to establish reference sites (i.e., those with a relatively 

high sinuosity index) and imperiled sites in need of recuperative management (i.e., those 

with a relatively low sinuosity index; Stoddard et al. 2008; Heatherly et al. 2014). This 

framework could be applied to any low heterogeneity variable, given it is recorded at 

enough sites to characterize statewide variation. However, the scale and intensity of data 

collection limits the applicability of such a comparative framework. For instance, 

turbidity was missing measurements at 65 of 564 sites. Robust sampling and 

classification with respect to underlying processes can properly account for challenges of 

representing freshwater ecosystems in conservation planning. Stream classification 

systems for temperature regimes and geomorphological features are uncommon, even 

more so are classification systems combining multiple habitat features (McManamay et 

al. 2018). This is likely due to the rarity of data on physical habitat features or systematic 

standardized collection of them (McManamay et al. 2018). Sampling protocols occurring 

frequently over time may account for temporal heterogeneity in stream conditions 

(Mažeika et al. 2004). Spatially balanced and high-resolution standardized sampling 

provides the most representative data inputs for analyzing riverscape heterogeneity at 

large spatial scales (Mažeika et al. 2004; McManamay et al. 2018). Such sampling efforts 

are essential to account for fine scale heterogeneity of streams within classification 

systems (Mažeika et al. 2004; McManamay et al. 2018). The classificatory strength of 

sampled environmental features could be expanded upon in exploratory modeling, where 
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features could be tested as predictors of a measure of habitat quality (Nijboer and 

Verndonschot 2004; Jorgenson et al. 2009). 

Site-scale aquatic habitat conditions within BULs vary similarly with those 

outside BULs and statewide, suggesting that the BUL construct contains adequate 

statewide heterogeneity in the assessed metrics. This bodes well for the role of BULs in 

conservation and management decisions, where their contained landscapes and biological 

communities can serve as a basis for decision making without concern for missing unique 

aquatic habitat statewide (Van Sickle and Hughes 2000). Ultimately, conditions within 

BULs are not unique from conditions outside BULs and carry the same variation trends 

as statewide from an aquatic habitat perspective. However, the similarity of conditions 

within and outside BULs calls into question the uniqueness of aquatic habitat conditions 

among BULs. While similarity-based groups generated through cluster analysis are 

assumed to be unique from one another due to the clustering process, this may not 

necessarily be the case. In Dunn test comparisons of clusters, the two clusters of any 

subset approached but did not achieve significant difference. This may indicate a 

statewide lack of heterogeneity in assessed metrics, likely as a result of environmental 

homogenization from land use conversion (Cardinale et al. 2002). 

Site-scale aquatic habitat was not unique among BULs, indicating that aquatic 

habitat conditions may be similar among BULs. In an ideal classification system, 

between-group similarity is minimized so that desirable management and conservation 

actions are applied to the correct areas (Hawkins et al. 2000; Melles et al. 2012). It could 

be thought that the unique biological communities from which BULs are delineated 

reflect unique terrestrial environments (Schneider et al. 2011). As river and stream 
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conditions are known to be influenced by the terrestrial environments surrounding them, 

it logically follows that aquatic environment conditions within BULs are unique as well 

(Hynes 1975; Frissell 1986; Fausch et al. 2002). However, few unique aquatic 

environments existed among BULs (Figure 7, Figure 8). Thus, as it pertains to site-level 

environmental features in Nebraska, there is a disconnect or disruption within the 

representation of environmental processes in their classification. However, the BULs 

contain unique proportions of stream orders, thus further study relating stream order to 

in-stream habitat conditions may reveal unique habitat structure among the BULs (Figure 

10). The high degree of anthropogenic land use alterations within the BULs may 

homogenize aquatic habitats that would have been unique under natural conditions 

(Hawkins et al. 2000; Schneider et al. 2011). This hypothesis is supported by the 

relatively high average silhouette value of the matrix landcover classification, though a 

specific study would better reveal such dynamics (Figure 9). Furthermore, as some BULs 

overlap or are in close spatial proximity to one another, the BULs may install boundaries 

for aquatic systems where there are none or poorly overlap with those that do exist 

(Figure 1). This is a consistent challenge to landscape-based classification systems that 

may be overcome in similarity-based or hierarchical classification systems (Nel et al. 

2011; Melles et al. 2012;  Hermoso et al. 2015). 

The current BUL classification system underperforms all other schemes (i.e., 

ecoregion, HUC12 watershed, stream order, and dominant landcover) when comparing 

average silhouette values. As such, BULs may not improve stream classification in the 

face of the better performing traditional methods. However, all traditional classification 

systems underperformed given the generally negative average silhouette values (Table 6). 
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This may be expected as many traditional classification systems are landscape-based and 

the applicability of such classification systems has been called into question before 

(Hawkins 2000; Hawkins and Vinson 2000; Van Sickle and Hughes 2000). For 

classification systems with more groups, such as the BULs and HUC12 watersheds, data 

resolution becomes a concern with some groups having few or no sampled sites (Table 2; 

Van Sickle 1997; Hawkins and Vinson 2000). Low membership leads to poor 

characterization of conditions within these groups, while potentially inflating the 

weakness of their classification (Van Sickle 1997; Hawkins and Vinson 2000). 

Otherwise, the underperformance of landscape-based classification systems may indicate 

that while heterogeneity of aquatic habitat conditions is spatially contained, it is not well 

grouped by the BUL construct and other landscape-based classification systems.  

Fine-scale watersheds, such as HUC12, have been found to outperform both 

ecoregions and stream order as a stream classification system in many past assessments 

of physiographic classifiers (Hawkins et al. 2000; Van Sickle and Hughes 2000). 

However, HUC12 watersheds had a lower average silhouette depth than both ecoregions 

and stream order in this study (Table 7). This may also be a result of limited data 

resolution, wherein the average silhouette value of the HUC12 classification system is 

limited by a silhouette value of s(i) = 0 for any HUC12 with only 1 sampled site (Van 

Sickle 1997; Hawkins and Vinson 2000). Nonetheless, as the majority of sites have 

negative silhouette values in their watershed, site-level environmental conditions are 

poorly classified by HUC12 watersheds (Figure 9). Thus, the most heterogenous 

environmental features, dissolved oxygen, discharge, mean substrate diameter, and 

wetted width to thalweg depth ratio, may vary on larger scales than HUC12 watersheds.   
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This study provides an assessment of the classificatory power of traditional and 

novel stream classification systems. This sets groundwork for the establishment of a 

standard for stream classification statewide while opening discussion for how stream 

classification is thought about. Statistically generated clusters outperform all other 

classification systems with the highest average silhouette value. As such, cluster analysis 

of reach-scale data offers a similarity-based alternative to the landscape- and biological 

community-based classifications currently used in Nebraska. Ecoregions and HUC12s are 

geographically constrained, so similarity occurring within and between their groups is 

spatially linked (Hughes et al. 1994; Hawkins et al. 2000; Hawkins and Vinson 2000). 

However, statistical similarity groups sites regardless of spatial similarity (Van Sickle 

1997; Van Sickle and Hughes 2000). While spatially similar sites may still be similar in a 

statistical framework, this may not always be the case. Consider a pair of streams in the 

same HUC12 watershed, one highly altered and one unaltered. Under a landscape-based 

classification they would be grouped together, while a statistical similarity-based 

classification would separate them based on reach-scale differences. Such a scenario is 

likely in the agriculturally dominated landscapes of Nebraska, thus integrating similarity-

based classification with traditional classification systems may bolster stream 

classification statewide. While applying traditional classification methods like 

ecoregions, HUC12 watersheds, and stream order is still encouraged, their application 

should consider supplementation with statistical similarity to better address site-level 

heterogeneity (Hawkins et al. 2000; Van Sickle and Hughes 2000; Nel et al. 2011). 

Furthermore, multiple traditional and novel classification systems may be combined to 

generate a more robust hierarchical classification (Nel et al. 2011; Melles et al. 2012). 
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Tables 

Table 3.1. Reduced variables from NDEE sampling sites from 1995-2021 and their 

definitions. These variables were used in multivariate cluster analysis of sites across 

Nebraska.  

Variable Definition Unit 

Dischrg Discharge m3/sec 

Temp Water temperature °C 

XCMGW Riparian woody vegetation canopy+mid+ground mean cover % 

xgb Mean riparian barren ground % 

xbka Mean bank angle  

Cndctvt Conductivity μs/cm 

pH pH  

DO Dissolved oxygen ppm 

Turb Turbidity NTU 

Habscore5 Habitat quality index, derived from multiple hydrological and 

geomorphological measurements 

 

inciswd Incision width/depth ratio  

xslope Mean stream slope m/m 

xwd_rat Mean wetted width/thalweg depth ratio m 

X_HALL Mean riparian zone width, all vegetation types m 

pfc_all % any type fish coverage present % 

lsb_dmm log10 transformed mean substrate diameter mm 

sinu Sinuosity index  

SHDI Shannon’s diversity index for landcover classes in HUC12  

OM Organic matter in substrate % 

AFLDFREQ Annual flood frequency (1 = frequent (>50% chance), 2 = 

occasional (5-50% chance), 3 = rare (<5% chance)) 

 

MADTW Annual mean depth to groundwater m 
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Table 3.2. NDEE sampling site count by BUL. BULs with 0 sites were excluded from 

analyses. Abbreviations for the BUL names used in later figures appear in parentheses 

after the full names. 

BUL  N 

Central Loess Hills (CLS) 6 

Central Platte River (CPR) 5 

Cherry County Wetlands (CCW) 12 

Elkhorn Confluence (EHC) 1 

Elkhorn River Headwaters (ERH) 6 

Indian Cave Bluffs (ICB) 1 

Keya Paha (KPA) 4 

Kimball Grasslands (KGL) 2 

Loess Canyons (LOC) 1 

Lower Loup Rivers (LLR) 5 

Lower Niobrara River (LNR) 3 

Lower Platte River (LPR) 6 

Middle Niobrara (MNI) 9 

Missouri River (MOR) 2 

North Platte River (NPR) 11 

Oglala Grasslands (OGL) 5 

Panhandle Prairies (PHP) 1 

Pine Ridge (PIR) 12 

Platte Confluence (PLC) 7 

Ponca Bluffs (PCB) 4 

Rainwater Basin (RWB) 26 

Saline Wetlands (SWL) 17 

Sandhills Alkaline Lakes (SAL) 1 

Sandsage Prairie (SGP) 7 

Sandstone Prairies (STP) 12 

Snake River (SNR) 1 

Southeast Prairies (SEP) 17 

Thurston-Dakota Bluffs (TDB) 1 

Upper Loup Rivers (ULR) 22 

Upper Niobrara River (UNR) 8 

Verdigris-Bazile (VBZ) 15 

Willow Creek Prairies 0 

Rulo Bluffs 0 

Dismal River Headwaters 0 

Wildcat Hills 0 
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Table 3.3. Dunn test results for pairwise differences between similarity-based clusters. B 

denotes clusters generated from the BUL sites, N denotes clusters generated from the 

sites outside BULs, and A denotes clusters generated from the statewide subset. An 

asterisk denotes significance achieved at p ≤ 0.10. 

Comparison p 

A1 - A2 0.11 

A1 - B1 0.24 

A2 - B1 0.07* 

A1 - B2 0.21 

A2 - B2 0.46 

B1 - B2 0.16 

A1 - N1 0.43 

A2 - N1 0.12 

B1 - N1 0.23 

B2 - N1 0.23 

A1 - N2 0.11 

A2 - N2 0.30 

B1 - N2 0.06* 

B2 - N2 0.39 

N1 - N2 0.15 
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Table 3.4. Levene’s test results for homogeneity of variance among sites within BULs 

and sites outside BULs. An asterisk denotes significance achieved at p ≤ 0.10 and W ≥ 

2.72. See Table 3.1 for variable definitions. 

Variable W   p 

AFLDFREQ 0.36   0.55 

Cndctvt 3.89   0.05* 

DO 9.75 <0.01* 

Dischrg 16.34 <0.01* 

Habscore5 1.18   0.28 

MADTW 6.11   0.01* 

OM 3.39   0.07* 

SHDI 0.05   0.82 

Temp 2.11   0.15 

Turb 1.44   0.23 

XCMGW 0.39   0.53 

X_HALL 1.64   0.20 

Xslope 1.07   0.30 

inciswd 4.54   0.03* 

lsb_dmm 9.93 <0.01* 

pH 0.28   0.59 

pfc_all 2.62   0.11 

sinu 0.09   0.76 

xbka 3.97   0.05* 

xgb 0.01   0.91 

xwd_rat 12.52 <0.01* 
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Table 3.5. Levene’s test results for homogeneity of variance among sites within BULs 

and sites statewide. An asterisk denotes significance achieved at p ≤ 0.10 and W ≥ 2.71. 

See Table 3.1 for variable definitions. 

Variable   W p 

AFLDFREQ   0.84 0.36 

Cndctvt   0.91 0.34 

DO   4.46 0.04* 

Dischrg   5.32 0.02* 

Habscore5   0.48 0.49 

MADTW   2.89 0.09* 

OM   1.55 0.21 

SHDI <0.01 0.95 

Temp   0.84 0.36 

Turb   0.70 0.40 

XCMGW   0.17 0.68 

X_HALL   0.72 0.40 

Xslope   0.44 0.51 

inciswd   2.46 0.12 

lsb_dmm   4.46 0.03* 

pH   0.12 0.73 

pfc_all   1.08 0.30 

sinu   0.04 0.84 

xbka   1.59 0.21 

xgb <0.01 0.94 

xwd_rat   3.92 0.05* 
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Table 3.6. Levene’s test results for homogeneity of variance among all BULs. An asterisk 

denotes significance achieved at p ≤ 0.10 and W ≥ 1.38. See Table 3.1 for variable 

definitions. 

Variable W   p 

AFLDFREQ 1.04   0.42 

Cndctvt 2.10 <0.10* 

DO 2.74 <0.10* 

Dischrg 4.88 <0.10* 

Habscore5 0.77   0.80 

MADTW 1.53   0.05* 

OM 5.70 <0.10* 

SHDI 1.28   0.16 

Temp 0.96   0.54 

Turb 1.04    0.41 

XCMGW 1.05   0.40 

X_HALL 0.90   0.62 

Xslope 1.20   0.23 

inciswd 3.66 <0.10* 

lsb_dmm 2.56 <0.10* 

pH 1.30   0.15 

pfc_all 2.54 <0.10* 

sinu 0.91   0.61 

xbka 1.16   0.27 

xgb 1.26   0.18 

xwd_rat 3.06 <0.10* 
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Table 3.7. Average silhouette value of sites by classification system in descending order. 

Stream Order only has 8 groups because no sampled sites were in stream order 9. 

Classifier Number of Groups Average Silhouette Value 

Cluster 2 0.33 

Matrix Landcover 3 0.01 

Ecoregion 4 -0.01 

Stream Order 8 -0.03 

HUC12 429 -0.16 

BUL 32 -0.22 
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Figures 

 

Figure 3.1. NDEE environmental sampling sites across Nebraska are represented by red 

points. The green polygons are the Biologically Unique Landscapes (BULs). 
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Figure 3.2. Correlation plot of selected environmental variables. Darker shading 

illustrates a higher Pearson’s correlation coefficient. See Table 3.1 for variable 

definitions. 
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Figure 3.3. The average silhouette value produced by clustering schemes of up to 10 

groups to determine the optimal number of clusters for sites inside BULs (A), outside 

BULs (B), and statewide (C). The dotted line denotes the optimal number of clusters, 

where the silhouette value is maximized. 

 

 



104 
 

 

 

Figure 3.4. On the right side is a dendrogram depicting the overall dissimilarity of the 

sites inside BULs. Height on the y-axis denotes dissimilarity, with splits in the tree 

showing greater dissimilarity at greater height. The dotted line at y = 300 shows the 

height at which the dendrogram was cut to produce 2 clusters. The larger black box 

groups sites into cluster 1, while the smaller red box groups sites into cluster 2. On the 

left side, a radar plot shows means generated from normalized variables. The black line 

illustrates cluster 1, while the red line illustrates cluster 2. 
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Figure 3.5. On the right side is a dendrogram depicting the overall dissimilarity of the 

sites outside BULs. Height on the y-axis denotes dissimilarity, with splits in the tree 

showing greater dissimilarity at greater height. The dotted line at y = 300 shows the 

height at which the dendrogram was cut to produce 2 clusters. The larger black box 

groups sites into cluster 1, while the smaller red box groups sites into cluster 2. On the 

left side, a radar plot shows means generated from normalized variables. The black line 

illustrates cluster 1, while the red line illustrates cluster 2. 
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Figure 3.6. On the right side is a dendrogram depicting the overall dissimilarity of the 

sites statewide. Height on the y-axis denotes dissimilarity, with splits in the tree showing 

greater dissimilarity at greater height. The dotted line at y = 500 shows the height at 

which the dendrogram was cut to produce 2 clusters. The larger black box groups sites 

into cluster 1, while the smaller red box groups sites into cluster 2. On the left side, a 

radar plot shows means generated from normalized variables. The black line illustrates 

cluster 1, while the red line illustrates cluster 2. 
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Figure 3.7. The left plot shows Dunn test results as pairwise comparisons of BULs as 

cells colored by adjusted p-value. Darker cells are those closer to significance at p < 0.10. 

The right plot illustrates Dunn test significance between BULs as a binary of significance 

1 and non-significance 0. See Table 3.2 for full BUL names. 
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Figure 3.8. The left plot shows Dunn test results as pairwise comparisons of BULs as 

cells colored by Z-value. Darker cells are closer to the minimum Z = -3.5, while redder 

cells are closer to the maximum Z = 3.5. The right plot illustrates Dunn test significance 

between BULs as a binary of significance 1 and non-significance 0. See Table 3.2 for full 

BUL names. 
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Figure 3.9. Silhouette value ranging from 1 to -1 on the y-axis by site on the x-axis for all 

classification systems. The plots show silhouette values by similarity-based clusters (A), 

dominant landcover (B), ecoregion (C), stream order (D), HUC12 watersheds (E), and 

BULs (F). Positive silhouette values indicate a better fit to assigned groups, while 

negative silhouette values indicate a better fit to other groups. Bars per site are colored by 

group membership. 
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Figure 3.10. Bar charts showing the proportion of NHD flowline by stream order within 

each BUL, labeled by BUL abbreviation. See Table 3.2 for full names of BULs. 
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CHAPTER 4 

MANAGEMENT RECOMMENDATIONS AND FUTURE RESEARCH QUESTIONS 

Management Recommendations 

 I established species-habitat relations for Flathead Chub, Plains Minnow, and 

Northern Redbelly Dace as representatives of at-risk minnow species (Chapter 2). 

Variables representing hydrological conditions, stream size and position in the drainage 

network, and groundwater connectivity had relatively high influence on presence for each 

species. As such, these environmental processes may be the most influential on at-risk 

species distributions and should take priority in aquatic sampling and conservation 

efforts. For example, flow velocity of approximately 0.4 m/s was the most positively 

influential on Northern Redbelly Dace presence. If habitat restoration is conducted on a 

stream site with resident Northern Redbelly Dace, achieving a flow velocity of 0.4 m/s 

may serve as a goal for the project. However, models presented in chapter 2 were 

constructed on limited historical datasets and would benefit from validation on field-

sampled data. Overall, I recommend an expansion of modeling approaches used in this 

study to include more species and more spatially and temporally robust environmental 

data. Ecologically relevant sampling of environmental data may consider a focus of 

hydrological characteristics of streams as these were the most influential characteristics 

for all three study species. Further, expansion into community modeling may provide 

more insight into the structure and function of aquatic environments, including linkages 

with habitat, and further inform conservation decisions. 
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 Species-habitat relations described in chapter 2 were used to map habitat 

suitability for Flathead Chub, Plains Minnow, and Northern Redbelly Dace across 

Nebraska. Stream reaches with high predicted presence for any species should be 

validated with field sampling. Such an approach would serve to inform future sampling in 

what environmental metrics to collect and where, as well as to adaptively refine the 

models with this sampling to improve the characterization of species-habitat relations. 

Further, if target species are discovered in reaches of high predicted presence, these 

reaches may then serve for targeted study of these species life histories. For instance, 

there are gaps in knowledge of Flathead Chub, Plains Minnow, and Northern Redbelly 

Dace life history post-spawning. As such, targeted study of  populations during and after 

spawning may further inform preferential habitat use by different life stages and a more 

robust understanding of their ecology. Targeted study will also allow for collection of 

fine-scale habitat conditions at the time of species presence, further informing 

ecologically relevant habitat conditions for at-risk species.  

 In chapter 3, I discovered the BUL construct captured statewide trends in stream 

habitat heterogeneity. Furthermore, stream habitat within the BULs was similar to stream 

habitat outside the BULs. Thus, the BULs would likely have a positive role in conserving 

the habitat heterogeneity of aquatic systems in Nebraska. However, stream habitat was 

not unique among BULs by selected metrics. The lack of unique in-stream conditions 

among BULs limits their applicability as a form of stream classification. As such, while 

the BULs encompass statewide stream habitat heterogeneity, I would not recommend 

their use as stream classification units. Furthermore, it may be advisable to update the 

current BUL construct to reflect unique in-stream habitats and the aquatic biological 
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communities they drive. This may be done in a hierarchical fashion through the revision 

of BUL boundaries on  similarity-based clusters and stream order, both of which may 

capture fine-scale habitat heterogeneity.  

 In chapter 3, it was determined that similarity-based stream classification 

outperformed traditional geographical classifications (i.e., ecoregions, subwatersheds, 

stream order, dominant landcover) in categorizing site-scale habitat conditions. 

Similarity-based methods may be considered in the establishment of a standard statewide 

stream classification system in Nebraska. However, hierarchical classification systems 

may better represent the hierarchy of environmental processes driving site-scale habitat 

conditions. I recommend pursuing the development of a hierarchical stream classification 

system incorporating both similarity- and landscape-based groupings, such as similarity-

based clusters, ecoregions, and stream order (as the two strongest performing landscape-

based classifiers). Furthermore, expansion to include assessment of classification systems 

based on biological community structure may serve to inform stream classifications in 

Nebraska. Developing a strong stream classification system using aforementioned 

approaches would serve to adaptively refine the representation of stream habitat 

heterogeneity in environmental models and conservation frameworks. 

Future Research Questions 

• How does habitat use differ between individuals of different life stages for 

Flathead Chub, Plains Minnow, and Northern Redbelly Dace? 

• How do anthropogenic alterations shift habitat structure of stream ecosystems 

in temporal contexts? Which alterations most impact community structure and 

diversity?  
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• Which environmental processes most influence distribution of large-bodied at-

risk fish species? Which environmental processes most influence local in-

stream biological community structure? 

• How does the classification strength of hierarchical stream classification 

approaches compare to that of similarity- and landscape-based approaches? 

Which classification hierarchies have the strongest performance (e.g., 

ecoregions + subwatersheds or ecoregions + stream order)? 

• How does the classification strength of biological community-based 

classification systems compare to that of similarity- and landscape-based 

approaches? 

• How does drainage network connectivity influence landscape-based 

classification strength? Do landscape-based classification approaches partition 

drainage networks in a manner not representative of connected systems? 

• How can Nebraska’s Biologically Unique Landscapes represent aquatic 

biological communities? Are site-scale species assemblages or in-stream 

habitat conditions more representative of unique stream environments? 

 


