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The Great Plains biome supports biodiverse plant and animal 

communities, provides a wide array of ecosystem services, and is depended 

upon by agricultural economies. Despite these advantages, however, Great 

Plains grasslands are becoming increasingly degraded by landcover changes 

due to agriculture and urbanization, fragmentation, loss of biodiversity and 

invasion by woody species.  Woody encroachment is a biome-wide threat to 

Great Plains plant and wildlife communities and is therefore managed, though 

with variable success. I investigated the efficacy of invasive tree management 

projects in restoring tallgrass prairies in southeast Nebraska and regenerating 

oak gallery forests along the Niobrara River. I measured plant community 

species composition and frequency at 9 sites in southeast Nebraska to quantify 

woody reinvasion of restored grasslands. Along the Niobrara River, I surveyed 

oak-planted plots and quantified oak survival and plant community abundance at 

7 sites to determine success of restorations. In each case, restorations had 

mixed, but mostly negative results. Management decisions following initial 

treatment of invasive trees compromised the long-term success of restorations. 

Management is therefore a process, not an action, and must extend beyond 

initial treatment if restorations are to sustain native plant communities. I also 



 
 

studied habitat use of the newly establishing mountain lion (Puma concolor) as 

they recolonize Nebraska. I used radio-collar locations of 2 mountain lions to 

evaluate habitat preferences in a use-availability design. These mountain lions 

selected riparian woodlands, which will provide dispersal corridors and habitat for 

breeding populations as mountain lions recolonize the Midwest and eastern 

North America.
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General Introduction 

 

The grasslands of the world are changing. A century and a half of global scale 

conversion to agriculture and urbanization, loss of biodiversity, fragmentation of 

habitat by roads, and woody encroachment have made grasslands the most 

endangered biome in the world. North American grasslands are no exception. 

The biome of concern in North America is the Great Plains, where agricultural 

and urban landcover types dominate the landscape, particularly in the Midwest of 

the United States. These pressures on grasslands are exacerbated by 

management that excludes fire from grasslands. Woody species are able to 

mature and propagate in areas where historically patterns of frequent surface 

fires restricted woody growth, thus providing another method of landcover 

conversion that works against grasslands. This conversion of grassland to 

woodland is known as woody encroachment, and it is the thread that ties 

together the three seemingly disparate chapters of my thesis. 

 

The loss of grasslands is a major natural resource problem in the Midwest. 

Livestock and agricultural economies are built on the foundation of ecosystem 

services provided by grasslands. Livestock and livestock feed production require 

intact grasslands to produce forage, especially as global demands for food 

production continue to increase. Pollinators that inhabit grasslands provide 

billions of dollars of pollination services to the agricultural industry. Game birds, 

many species of wildlife, and diverse communities of vegetation make their 
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homes in grasslands. Grasslands also provide the open area necessary to 

harness wind energy. In Nebraska, atop the Ogallala aquifer, grasslands 

contribute more groundwater recharge than neighboring forested areas. 

Grasslands are necessary and valuable for the continued functioning of these 

social and natural systems, and the capacity of grasslands to contribute these 

ecosystem services is reduced and/or jeopardized by woody encroachment. My 

first chapter evaluates management of woody encroachment in grasslands. 

 

Woody encroachment, however, is not limited to grasslands. In riparian 

woodlands, woody encroachment takes the form of infilling: the increase in 

density of woody plants beyond historical limits in a wooded area. Many of the 

outcomes are similar: native flora and fauna, including fish, are either displaced 

or destroyed, intensity of water use increases, and oak gallery forests are unable 

to regenerate. My second chapter evaluates the management of woody 

encroachment in riparian forests in relation to the survival of experimentally 

planted oaks. 

 

Finally, woody encroachment alters the physiognomy of the landscape. Woody 

structures are present where before open grasslands dominated. This shift in 

vegetative structure displaces grassland associated wildlife and provides more 

habitat for woodland associated species. Mountain lions prefer wooded areas to 

open habitat and select these habitat features. Mountain lion recolonization of the 

Midwest and eastern North America coincides with the expansion of woody 
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species in Nebraska. How mountain lions interact with Midwestern landscapes, 

which are more agricultural than western landscapes, is unknown. My third 

chapter evaluates habitat selection patterns of colonizing mountain lions in 

Nebraska. 

 

These are the chapters that compose my thesis. To my readers who have made 

it this far, I hope that my thesis can provide some value, however small, to you, 

whatever your interest is. 

 

Happy reading. 
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Chapter 1: Evaluating re-encroachment of restored grasslands in southeast 

Nebraska 

 

Introduction 

Grasslands, because of their high rate of conversion to other land uses and 

landcovers, and limited protection, are the most endangered biome in the world 

(Hoekstra et al. 2004). Grasslands make up the United States’ largest vegetation 

province, and occur mostly in the Great Plains (Knopf 1988). Grasslands are 

threatened by several, often intertwining pathways of decline, which include 

landcover change to agriculture or urban development, fragmentation, loss of 

biodiversity, and invasion by woody species (White et al. 2000). 

 

One pathway of decline involves invasion by woody species and eventual 

conversion to woodland (Van Auken 2009). This conversion occurs as the result 

of changes to fire dynamics and the introduction or invasion of woody species 

(McPherson et al., 1988). Among other factors, like precipitation, patterns of 

frequent, low intensity fires regulate woody growth in grassland systems and 

when these patterns undergo major change, as they do under common practices 

such as fire exclusion, woody species are able to mature and propagate in 

grasslands (McPherson et al. 1988, Fuhlendorf et al. 2008). This propagation 

and expansion of woody species in grasslands is known as woody encroachment 

(Romme et al. 2009). 

 

https://www.zotero.org/google-docs/?pPOmVO
https://www.zotero.org/google-docs/?SF5nbc
https://www.zotero.org/google-docs/?wII11A
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Woody encroachment changes nutrient flux and the structure of plant and animal 

communities in grassland systems. Soil nutrient distribution becomes more 

variable and patchy in encroached areas (Throop and Archer 2008). Grassland 

nitrogen and carbon pools shift from belowground to aboveground, where they 

are incorporated as biomass in woody plants (McKinley et al. 2008) and become 

more labile. The shift in nutrient allocation to aboveground woody biomass 

dramatically changes the structure of plant communities (Van Auken 2009). 

Encroaching woody plants can form dense monocultures that decrease diversity 

in plant and animal communities (Archer et al. 2017). Even when change to 

species richness is limited, woody encroachment strongly affects plant 

community structure by changing species evenness and relative abundance of 

plant functional groups (Archer et al. 2017). These changes extend into animal 

communities, where woody encroachment decreases abundance of grassland-

associated animals across several taxa (Blaum et al. 2007, Block and Morrison 

2010, Pike et al. 2011). As grassland-associated animals are displaced, animal 

community composition shifts to dominance by shrub/forest-associated species 

(Sirami and Monadjem 2012, Reddin and Krementz 2016).  

 

The Great Plains ecoregion has the highest rate of woody encroachment in North 

America; estimates of recent increase in woody cover range from 1.1 to 2.3% per 

year (Briggs et al. 2002, Barger et al. 2011). In this ecoregion, the most 

pervasive encroaching species is eastern redcedar, Juniperus virginiana (Barger 

et al. 2011). Woody encroachment alters plant and animal communities, and 
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hydrology. Plant communities lose herbaceous biomass to woody encroachment 

and reductions in herbaceous biomass beneath J. virginiana canopies may be as 

high as 80% (Smith and Stubbendieck 1990, Gehring and Bragg 1992). Woody 

encroachment also decreases species diversity in plant communities and is 

associated with increased cover of non-native plants (Pierce and Reich 2010, 

Ratajczak et al. 2012). Grassland birds have declined more than any other group 

of birds in North America (Sauer and Link 2011), due in part to the fragmentation 

and loss of grasslands to woody encroachment. Increased vegetative structure 

associated with woody encroachment displaces grassland obligate birds, some 

of which disappear in the beginning stages of encroachment (Fuhlendorf et al. 

2002, Chapman et al. 2004). In small mammal communities, species richness 

increases at early stages of encroachment (woody cover ≤ 17%), where forest 

species and grassland species cohabitate, and then decreases sharply as woody 

encroachment progresses (Matlack et al. 2008). In animal communities, woody 

encroachment displaces grassland-obligate species and provides habitat for 

forest-associated species (Chapman et al. 2004, Horncastle et al. 2005, Frost 

and Powell 2011, Reddin and Krementz 2016).  

 

Woody encroachment also alters grassland hydrology. Tree plantations reduce 

aquifer recharge by 86-94% compared to adjacent grasslands (Adane and Gates 

2015). J. virginiana uses more water than many other woody species (Adane and 

Gates 2015), and may deplete water resources in encroached grasslands. J. 

virginiana woodlands have low soil moisture compared to surrounding grasslands 
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and also decrease annual runoff due to increased water use (Qiao et al. 2017). 

Deep soil water uptake through root systems also increases following J. 

virginiana encroachment, as does transpiration (Acharya et al. 2017, Zou et al. 

2018). The suite of problems associated with woody encroachment makes it a 

management concern, particularly for livestock managers who depend on forage 

production. 

 

Management of woody encroachment is complicated; the extent of treatment is 

often limited to landowner parcels, which may be surrounded by encroached 

woodlands, and methods of control are often not financially feasible based on 

incentives to increase forage production and livestock performance (Tanaka et 

al. 2011). Applying prescribed fire prior to mechanical and/or herbicide 

treatments and at early stages of encroachment reduces costs (Ortmann et al. 

1998, Simonsen et al. 2015), however many land managers are reluctant to use 

fire due to liability concerns and inclinations toward fire-exclusion (Weir et al. 

2019).  

 

State and federal agencies have developed cost-share programs in which the 

agency pays some percentage (sometimes 75%) of treatment expenses to 

mitigate the costs of management for landowners. These programs allocate 

funds to woody plant removal, however evaluation of treatment success rarely 

occurs beyond immediately post-treatment, there is often no management 

requirement following treatment, and the programs are applied without 
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consideration that treatments may occur on small patches, or that patches 

surrounded by woodland are at high risk of reinvasion. These shortcomings cast 

doubts on the long-term effectiveness of some tree management.  

 

Nebraska, like other Great Plains states has utilized incentive programs to 

control woody invasive species. In Nebraska, one incentive program used to 

control woody encroachment was the Landowner Incentive Program (LIP). The 

LIP was a federal grant funding program that awarded funds to states to provide 

technical and financial assistance on private lands to benefit endangered, 

threatened, or other at-risk species (U.S. Fish and Wildlife Service 2015). The 

LIP was funded from 2002 to 2007, and in that time Nebraska allocated LIP 

funds toward habitat enhancements, management of prairie through prescribed 

fire and grazing, and invasive tree removal and thinning (Carr et al. 2019). More 

than 13,000 ha of land were managed with thinning and removal of invasive trees 

(Carr et al. 2019). A study that investigated the effect of woody cover and its 

removal on native bird communities was completed in 2007 (Forbus 2007). This 

study consisted of 11 sites at which trees were removed in 2005. The study 

found the grasslands were successfully restored and avian communities 

responded to reestablished grassland habitat following tree removal. However, 

whether these tree removal projects have led to sustained grasslands beyond the 

2-year study duration is unknown since evaluation of LIP projects did not extend 

beyond the study period. Given the uncertainty associated with invasive woody 

species management programs and the lack of requirements for continued 



9 
 

management of invasive woody species at sites treated under the LIP, I 

hypothesized that woody species would reestablish at LIP sites, which would be 

evident in the 1. Increased frequency of woody species relative to respective 

frequencies in the post-treatment vegetation survey and 2. Increased woody 

cover measured in remotely sensed imagery. 

  

Methods 

Study area and site selection 

I selected nine sites in Johnson, Pawnee, Jefferson, and Gage counties of 

southeastern Nebraska based on participation in the LIP, participation in woody 

plant removals in 2005, and landowner permission to access and survey land. 

Prior vegetation data were available before treatment in 2005 and in 2007 after 

treatment as part of a previous study (Forbus 2007). This area has an 

approximate elevation of 350 m, with an average of 76-114 cm of precipitation 

per year, an average maximum annual temperature of 18.3° C, and an average 

minimum annual temperature of 2.9° C. Sites ranged in size from 8 to 47 ha. The 

main species driving woody encroachment in this area are eastern redcedar, 

Juniperus virginiana, and honeylocust, Gleditsia triacanthos (Schneider et al. 

2011), though there are several other encroaching woody species. Information 

on site characteristics is summarized in Table 1. 
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Table 1. Characteristics of LIP tree removal sites. Species refers 

to invasive woody species on the site prior to tree removal in 

2005. 

Site Size (ha) Species 

1 47 JUVI, GLTR 

2 74 JUVI, GLTR, MAPO 

3 40 JUVI, GLTR 

5 41 GLTR, MAPO 

6 19 MAPO 

7 24 GLTR, MAPO 

8 8 GLTR, MAPO 

9 23 JUVI 

11 19 JUVI 

Key to species codes: JUVI = Juniperus virginiana, GLTR = 

Gleditsia triacanthos, MAPO = Maclura pomifera 

 

 

Vegetation surveys 

I revisited and surveyed LIP sites in the summer and fall of 2018. Sites 4 and 10 

were omitted since permission from the landowner to access and survey land 

was not granted. Plants were identified at the species level when able (otherwise, 

genus). Sampling quadrats were 1 m2. Species cover was estimated according to 

the Daubenmire method, by which each species was assigned a cover class 

value between 1 and 6 (Daubenmire 1959, Coulloudon et al. 1999). Overlapping 

https://www.zotero.org/google-docs/?2PRtfT
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vegetation of different species were recorded separately, allowing for more than 

100% cover of plots in some cases. Transect lines were placed in approximately 

the same locations as in the 2007 survey (Forbus 2007). Plots, however, were 

not placed in the same location. Forbus 2007 sampled 100 plots per site with a 

100 cm2 quadrat. Given that vegetation could be sufficiently sampled with fewer 

plots, and that the larger 1 m2 quadrat could sample a greater area per plot, I 

derived a sampling rate of .78 plots per ha from site 10 of Forbus 2007. Plots 

were equidistant from each other and the initial sample location was decided by a 

random number generator. When placing the sampling quadrat at the plot 

location, vegetation was removed as necessary to ensure the quadrat lay flat. 

Plants rooted within the frame were then recorded. Plant frequency was 

measured by dividing the number of quadrats in which a species occurred by the 

total number of quadrats and multiplying by one hundred to give a percentage. 

I compared frequencies of woody species from the 2018 survey with 

corresponding frequencies in the 2007 post treatment survey to determine woody 

species presence, if any. Pearson’s chi-square test was used to compare 

frequencies of woody species (R Core Team 2019). Although Yates continuity 

correction factor has been found to be too restrictive (Camilli and Hopkins 1978), 

it was applied to chi-square tests for sites with small sample sizes (n ≤ 20) to limit 

type I error (Camilli and Hopkins 1979). All chi-square tests on sites 6, 7, 8, 9 and 

11 include Yates continuity correction factor.  

  

https://www.zotero.org/google-docs/?ov4pZX
https://www.zotero.org/google-docs/?SUo2F9
https://www.zotero.org/google-docs/?a2ko4T
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Remotely sensed imagery 

Remotely sensed imagery from the National Agriculture Imagery Project was 

used as a visual supplement to the surveys at the 9 sites that were resurveyed in 

2018 (USDA-NAIP 2015). Imagery was taken for 2005, prior to woody plant 

removal, 2006, the first year following woody plant removal, and for 2018, the 

year in which sites were revisited and surveyed. All imagery had a 1 m 

resolution. I used the interactive supervised classification method in ArcGIS to 

specify and quantify pixels that corresponded to woody cover per site (ESRI 

2019). This method uses training classes, areas of user-specified landcover 

composition, to define the landcover composition of imagery according to the 

classification model. All sites were separated into two classes: woody and non-

woody. Due to variation of image quality and woody cover by year, I used 

different training classes to classify areas of woody and non-woody cover for 

imagery of different years. For the 2005 imagery, I used 123,121 woody cover 

pixels and 638,135 non-woody pixels to classify imagery consisting of 743,299 

pixels; for 2006 imagery, I used 39,141 woody cover pixels and 1,442,438 non-

woody pixels used to classify imagery consisting of 2,945,863 pixels; and for 

2018 imagery, I used 42,374 woody cover pixels and 1,208,296 non-woody 

pixels to classify imagery consisting of 8,437,128 pixels. I removed areas of 

surface water from the imagery to avoid incorrect classification of these areas as 

woody cover. I analyzed differences in frequency of woody pixels from 2006 to 

2018 using Pearson’s chi-square analysis (R Core Team 2019). 
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Results 

Vegetation surveys 

Frequency of woody species across all sites increased from 2007 to 2018 by 

11% (Table 2). Four of the 7 woody species recorded increased in frequency 

from 2007 to 2018 (Table 2). Of these species, J. virginiana showed the greatest 

change in frequency with an increase of 4.42%, followed by U. pumila, which 

increased by 3.89% (Table 2). R. glabra more than tripled its frequency from 

1.22% to 3.85% between 2007 and 2018, and C. drummondii also increased in 

frequency (Table 2). G. triacanthos, M. pomifera and Symphoricarpos spp. did 

not show significant changes in frequency across all sites between the 2007 and 

2018 vegetation surveys (Table 2). 
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Table 2. Pearson's Chi-square analysis of change in woody species frequency from vegetation 

surveys in 2007 and 2018 across all sites (excluding sites 4 and 10). Present represents the 

count of plots in which the species was recorded. An * denotes a significant result at α = 0.05 

level. 

Species Year Present Absent Frequency (%) Χ2 P 

Cornus drummondii* 2007 15 885 1.67 7.6 0.006 

 
2018 11 223 4.70 

  

Gleditsia triacanthos 2007 101 799 11.22 0.20 0.674 

 
2018 24 210 10.26 

  

Juniperus virginiana* 2007 14 886 1.56 15.1 < .001 

 
2018 14 220 5.98 

  

Maclura pomifera 2007 14 886 1.56 0.40 0.537 

 
2018 5 229 2.14 

  

Rhus glabra* 2007 11 889 1.22 7.4 0.007 

 
2018 9 225 3.85 

  

Symphoricarpos spp. 2007 144 756 16.00 0.80 0.382 

 
2018 32 202 13.68 

  

Ulmus pumila* 2007 15 885 1.67 11.7 < .001 

 
2018 13 221 5.56 

  

Total woody spp.* 2007 314 586 34.89 10.1 0.001 

 
2018 108 126 46.15 
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Woody species increased in frequency at 7 of the 9 sites surveyed (Table 3). 

Juniperus virginiana increased in frequency at 2 of the 5 sites where it was 

recorded (Table 3). At site 11, J. virginiana occurred in more than a quarter of 

quadrats (Table 3, p = 0.003). Gleditsia triacanthos was recorded in 6 of 9 sites; 

it tripled its frequency at site 7 (Table 2, p = 0.018) and greatly decreased its 

frequency at site 5 (Table 3, p = 0.039). Ulmus pumila greatly increased in 

frequency, becoming present in one fifth of the plots at site 6 (Table 3, p = 

0.012). U. pumila increased in frequency nearly sevenfold at site 2 (Table 3, p = 

0.041). There is also evidence to suggest an increase of U. pumila frequency at 

site 7 (Table 3, p = 0.051). Rhus glabra was recorded in 3 sites, including site 1 

which was not recorded in prior surveys (Table 3). At site 9, R. glabra greatly 

increased its frequency from 1% in 2007 to 20% in 2018 (Table 3, p = 0.001). 

There is also evidence to suggest that R. glabra frequency increased at site 1 

(Table 3, p = 0.090). Symphoricarpos spp. were the most widespread of woody 

species, occurring in all 9 of the surveyed sites (Table 3). Symphoricarpos spp. 

frequency was nearly halved at site 2 (Table 3, p= 0.041), and did not 

significantly change frequencies at other sites (Table 3). Cornus drummondii 

greatly increased its presence at site 9 where it occurred in a quarter of quadrats 

(Table 3, p = 0.023). There is also strong evidence to suggest that C. drummondii 

was more frequent at site 2 (Table 3, p = 0.051). Maclura pomifera frequency did 

not significantly change in any of the sites.  
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Table 3. Pearson's Chi-square analysis of change in frequency of woody species by site from 

vegetation surveys in 2007 and 2018. Present represents the count of plots in which the 

species was recorded. An * icon by the site number denotes significance at alpha = .05 level. 

Species Site Year Present Absent 
Frequency 

(%) 
Χ2 P 

Cornus 

drummondii 

2 2007 2 98 2.00 3.8 0.051 

  
2018 5 53 8.62 

  

 
8 2007 0 100 0 2.3 0.128 

 
 

2018 1 8 11.11 
  

 
9* 2007 6 94 6.00 5.1 0.024 

  
2018 5 15 25.00 

  

Gleditsia 

triacanthos 

2 2007 3 97 3.00 0 0.877 

  
2018 2 56 3.45 

  

 
3 2007 13 87 13.00 0 0.989 

  
2018 4 27 12.90 

  

 
5* 2007 31 69 31.00 4.3 0.039 

  
2018 4 28 12.50 

  

 
7* 2007 12 88 12.00 5.6 0.018 

  
2018 7 12 36.84 

  

 
8 2007 27 73 27.00 0.5 0.468 

  
2018 4 5 44.44 

  

 
9 2007 5 95 5.00 0 1 

  
2018 1 19 5.00 

  

Juniperus 

virginiana 

1 2007 7 93 7.00 0.1 0.793 
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2018 2 33 5.71 

  

 
2 2007 2 98 2.00 1.3 0.263 

  
2018 4 54 6.90 

  

 
3* 2007 0 100 0 6.6 0.01 

  
2018 2 29 6.45 

  

 
5 2007 1 99 1.00 0.7 0.392 

  
2018 1 31 3.12 

  

 
6 2007 1 99 1.00 0.3 0.613 

  
2018 1 14 6.67 

  

 
11* 2007 3 97 3.00 9.0 0.003 

  
2018 4 11 26.67 

  

Maclura pomifera 2 2007 2 98 2.00 1.2 0.272 

  
2018 3 55 5.17 

  

 
5 2007 2 98 2.00 0.6 0.42 

  
2018 0 32 0 

  

 
6 2007 2 98 2.00 0 1 

  
2018 0 15 0 

  

 
7 2007 6 94 6.00 0 0.824 

  
2018 2 17 10.53 

  

 
8 2007 2 98 2.00 0 1 

  
2018 0 9 0 

  

Rhus glabra 1 2007 0 100 0 2.9 0.09 

  
2018 1 34 2.86 

  

 
2 2007 6 94 6.00 0 0.823 
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2018 4 54 6.90 

  

 
9* 2007 1 99 1.00 10.7 0.001 

  
2018 4 16 20.00 

  

Symphoicarpos 

spp. 

1 2007 6 94 6.00 0.3 0.6 

  
2018 3 32 8.57 

  

 
2* 2007 32 68 32.00 4.1 0.043 

  
2018 10 48 17.24 

  

 
3 2007 21 79 21.00 0.4 0.552 

  
2018 5 26 16.13 

  

 
5 2007 9 91 9.00 1.2 0.274 

  
2018 1 31 3.12 

  

 
6 2007 31 69 31.00 0 1 

  
2018 5 10 33.33 

  

 
7 2007 9 81 10 1 0.327 

  
2018 0 19 0 

  

 
8 2007 15 85 15 0 0.926 

  
2018 2 7 22.22 

  

 
9 2007 20 80 20.00 0.5 0.488 

  
2018 6 14 30.00 

  

 
11 2007 1 99 1.00 0 1.00 

  
2018 0 15 0 

  

Ulmus pumila 2* 2007 1 99 1.00 4.2 0.041 

  
2018 4 54 6.90 

  

 
6* 2007 2 98 2.00 6.3 0.012 
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2018 3 12 20.00 

  

 
7 2007 5 95 5.00 3.8 0.051 

  
2018 4 15 21.05 

  

 
8 2007 2 98 2.00 0 1 

  
2018 0 9 0 

  

 
9 2007 2 98 2.00 0 1 

  
2018 1 19 5.00 

  

 
11 2007 2 98 2.00 0 1 

  
2018 0 15 0 

  

 

Remotely sensed imagery 

Overall, classification of remotely sensed imagery showed reoccurrence of pixels 

corresponding to woody plants on LIP sites treated for invasive woody plants, 

though the degree of woody cover varied by site. Across all LIP sites measured, 

woody cover increased by 5% from 2006 to 2018 (Table 4). Increases in woody 

cover ranged from less than 1% to 27% where woody cover was greater than it 

was prior to treatment (Table 4). The most common response was an increase of 

less than 3% woody cover (Table 4). Another response was of more moderate 

increases in woody cover ranging from 5 to 7%. There were also severe 

increases in woody cover: site 7 increased woody cover by 41% and site 8 

increased by 18% (Table 4). There was one case in which woody cover 

decreased by approximately 2% from 2006 to 2018, at site 2 (Table 4). Remotely 
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sensed images of LIP sites have been included in figures 1-9 to supplement 

these results. 

Table 4. Site number, year, number and type of pixels, and percent woody cover of LIP sites 
before invasive woody trees were removed in 2005, one year following invasive tree removal in 
2006, and during the year sites were revisited and surveyed in 2018. Pixel counts were 
generated from supervised classifications of National Agriculture Imagery Program images at a 
1 m resolution, and changes in the frequency of woody pixels from 2006 to 2018 were 
evaluated using Pearson’s Chi-Square analysis. 

Site Year Woody pixels 
Non-woody 

pixels 
Total pixels Woody cover (%) P 

1 2005 8884 107445 116329 7.64 
 

 
2006 12560 452614 465174 2.70 

 

 
2018 67197 1224875 1292072 5.20 < 0.001 

2 2005 84954 104383 189337 44.87 
 

 
2006 71690 688025 759715 9.44 

 

 
2018 153010 1950623 2103633 7.27 < 0.001 

3 2005 4191 92518 96709 4.33 
 

 
2006 6068 376388 382456 1.59 

 

 
2018 24559 1050147 1074706 2.29 < 0.001 

5 2005 15435 84426 99861 15.46 
 

 
2006 6753 379961 386714 1.75 

 

 
2018 26873 1082243 1109116 2.42 < 0.001 

6 2005 10099 34772 44871 22.51 
 

 
2006 2548 174975 177523 1.44 

 

 
2018 44576 454056 498632 8.94 < 0.001 

7 2005 22913 39685 62598 36.60 
 

 
2006 9774 240497 250271 3.91 

 

 
2018 312061 383491 695552 44.87 < 0.001 

8 2005 10581 17959 28540 37.07 
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2006 9293 104844 114137 8.14 

 

 
2018 84071 233148 317219 26.50 < 0.001 

9 2005 1236 57642 58878 2.10 
 

 
2006 626 234632 235258 0.27 

 

 
2018 46167 607192 653359 7.07 < 0.001 

11 2005 4318 41858 46176 9.35 
 

 
2006 2340 182275 184615 1.27 

 

 
2018 36448 476391 512839 7.11 < 0.001 

Total 2005 162611 580688 743299 21.88 
 

 
2006 121652 2824211 2945863 4.13 

 

 
2018 794962 7642166 8437128 9.42 < 0.001 

 

 

  

pretreatment post-treatment 2018 

Figure 1. National Agriculture Imagery Program aerial images of site 1 at 1 m resolution. From 
left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the survey was 
performed.  
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2018 post-treatment pretreatment 

Figure 2. National Agriculture Imagery Program aerial images of site 2 at 1 m resolution. 
From left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the survey 
was performed.  

pretreatment post-treatment 2018 

Figure 3. National Agriculture Imagery Program aerial images of site 3 at 1 m resolution. 
From left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the survey 
was performed.  
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pretreatment post-treatment 2018 

Figure 5. National Agriculture Imagery Program aerial images of site 6 at 1 m resolution. 
From left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the survey 
was performed.  

pretreatment post-treatment 2018 

Figure 4. National Agriculture Imagery Program aerial images of site 5 at 1 m resolution. 
From left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the survey 
was performed.  
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pretreatment post-treatment 2018 

Figure 6. National Agriculture Imagery Program aerial images of site 7 at 1 m resolution. 
From left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the survey 
was performed.  

Figure 7. National Agriculture Imagery Program aerial images of site 8 at 1 m resolution. 
From left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the 
survey was performed.  

pretreatment post-treatment 2018 
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Figure 8. National Agriculture Imagery Program aerial images of site 9 at 1 m resolution. From 
left to right: pretreatment in 2005, post-treatment in 2006, and in 2018 when the survey was 
performed.  

pretreatment post-treatment 2018 

pretreatment 

post-treatment 2018 

Figure 9. National Agriculture Imagery 
Program aerial images of site 11 at 1 m 
resolution. Top left: pretreatment in 2005. 
Bottom left: post-treatment in 2006. Bottom 
right: 2018, the same year the site was 
surveyed. 
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Discussion 

Vegetation surveys 

Despite implementation of woody plant removals, woody species reestablished 

on LIP sites thirteen years following treatment. Reinvasion of woody species 

varied by species and by site, and this variation, as well as the dominant trend of 

reinvasion, may be explained by woody species characteristics, management 

shortcomings, and/or program limitations. 

The characteristics of these woody plants that allowed their successful reinvasion 

of grasslands are the same that caused their initial success: mainly ability to 

rapidly recolonize and ability to resprout. The most prolific invader was Juniperus 

virginiana, whose regrowth was likely enabled by a seed bank that was 

established during its initial invasion, and by its characteristic rapid growth that 

can reach 20 cm per year (Briggs et al. 2002). The capacity of Ulmus pumila, 

Cornus drummondii, and Rhus glabra to sprout from remnant root systems after 

disturbance may account for their reinvasion of LIP sites (Ortmann et al. 1997, 

U.S. Forest Service 2014). Maclura pomifera and Gleditsia triacanthos are each 

capable of sprouting and did not increase in frequency across sites in the thirteen 

years following treatment. For Maclura pomifera, this result may be a sign of 

effective management, as its frequency did not change at any site. For Gleditsia 

triacanthos, however, the lack of change across sites is the result of opposing 

trends within sites. The increase of G. triacanthos at site 7, for example, 

balanced out the decrease at site 5. The high frequency of G. triacanthos in 2007 
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at site 5 was unexpected because trees had been removed in 2005, though it is 

likely the result of sprouting after treatment in 2005 leading to large counts of G. 

triacanthos seedlings that were effectively managed in following years.  

Management shortcomings 

Differences in woody species outcomes between sites resulted from the fact that, 

following woody plant removals, sites were managed differently, in part because 

different species required different management strategies, and because sites 

were managed by different landowners. Shortcomings in management arose 

because plants were not managed effectively or because follow up management 

was limited or absent. 

 In addition to its ability to grow rapidly, J. virginiana encroachment was also 

enabled by ineffective management. It is also possible that despite the technical 

assistance and introduction of prescribed fire, continued management following 

2007 at some sites did not include prescribed fires, which are a key component 

in successful management efforts of J. virginiana (Twidwell et al. 2013a, 2013b). 

In addition to sprouting, U. pumila success following woody plant removal likely 

occurred due to the application of only one treatment event when U. pumila 

generally requires repeated management to be treated (U.S. Forest Service 

2014). The high frequency of R. glabra and Symphoricarpos spp in the 2007 

survey indicate a lack of effective management of these species during woody 

plant removal in 2005. Management strategies likely did not target R. glabra 

because its frequency in the pre-treatment survey was so low that it was not 
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considered a problem (Forbus 2007), so that it was not effectively treated and 

sprouted as it does after mechanical removal and prescribed fire (Ortmann et al. 

1997, Hajny et al. 2011). Symphoricarpos spp were not targeted by management 

either, because they are small shrubs that have some browsing value (Hauser 

2007). Despite the capacity of Maclura pomifera for sprouting and its affinity for 

bare mineral soils that are abundant following woody plant removal (Locke 2011), 

Maclura pomifera did not increase in frequency from 2007 to 2018, which 

suggests adequate management of this species. 

Program limitations 

Finally, the reinvasion of restored grasslands by woody species may be the result 

limitations in the LIP. These limitations include management requirements that 

lacked enforcement following treatment, landowner and/or site selection and 

short-term evaluation of success. The LIP provided financial and technical 

assistance to landowners, which included advice on management (Nebraska 

Game and Parks Commission  2012). Without required management following 

woody plant removal, however, some landowners did not continue management 

following woody plant removal in 2005, which allowed the subsequent reinvasion 

of their properties by woody species. Contracts with strict management 

requirements following woody plant removal would, however, have deterred 

many landowners who view such requirements as overbearing, and so less area 

would be treated but would be managed more effectively. There is also the 

possibility that some landowners accepted contracts without the intention of 

continuing management following treatment, which is a potential shortcoming of 
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the landowner screening process. Some treatments were applied to sites that 

were especially small and surrounded by stands of trees that could act as seed 

sources for reinvasion. These sites, such as site 8 which was 8 ha and bordered 

a woodland, represent high risks of reinvasion that, without the guarantee of 

continued management, should not have been treated. These sites were all 

reported as successes in management and contribute to the more than 13,000 

ha of woody plant removal/invasive tree thinning reported for the LIP (Carr et al. 

2019). These sites were successfully treated initially, but without evaluation 

beyond the short term, there is no documentation that the problem of woody 

encroachment in these areas persists. These challenges are not specific to the 

LIP program but are entrenched in many programs that place emphasis on the 

acreage treated or other short-term metrics while failing to account for long-term 

effects. 

It is possible that, due to the sites surveyed all belonging to the same set of 

woody plant removals in 2005 (Forbus 2007), the outcomes observed were 

influenced by some confounding factor; for example, this subset of sites may not 

be representative of the whole program. Evaluating this possibility would require 

a broader study that considers a larger set of LIP removals around the same 

timeframe. The lack of significant results for site 8 despite seemingly large 

changes in woody plant frequency is a shortcoming of the decision to survey 

every site at the same sampling density, which left smaller sites with little 

statistical power to detect change. This problem is compounded by the 

application of Yates continuity correction factor, which is known to be overly 
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conservative in conferring statistical significance (Camilli and Hopkins 1978). 

Paired with the classification results, however, the measured changes in 

frequency at site 8 are validated. 

Woody encroachment has the potential to become a problem even after 

treatment under state and/or federal programs. Following the current trajectory, 

treatment of woody encroachment on private lands has a low likelihood of long-

term success. The current trend suggests that treated patches in encroached 

areas tend to revert to woodland a decade or so following treatment. This trend 

does not bode well for the management of grasslands worldwide, which are 

already heavily degraded. If grassland restoration and conservation programs 

are to succeed, management on private lands must change. The risk of failure is 

innate in working on private lands, where the success of grasslands depends on 

the continued management of individual landowners who are inherently variable 

in their application of treatment to the land, and in the value they place in 

grassland management. However, tree management programs can improve by 

evaluating long term success of woody plant removal, incorporating requirements 

for continued management after removal, spatially targeted rather than 

haphazard enrollment, and strategic selection of landowners and treatment areas 

to minimize the risk of reinvasion. This study is a reminder that woody 

encroachment is pernicious and not solved simply. 
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Chapter 2: Oak survival falls to zero after removal of herbivory exclosures 

 

Introduction 

The Lower Niobrara River of northeastern Nebraska is a Biologically Unique 

Landscape (BUL) (Schneider et al. 2011). Conservation areas of concern within 

the Lower Niobrara River BUL are bur oak (Quercus macrocarpa) woodlands, 

cattail marshes, and reed marshes (Schneider et al. 2011). These communities 

are threatened by woody encroachment and herbaceous plant invasion, leading 

to natural resource concerns about degradation of wildlife habitat, changes to 

hydrology, and loss of native biodiversity. 

Woody encroachment alters hydrology in riparian areas and wetlands by 

decreasing aquifer recharge (Adane and Gates 2015), increasing water use 

(Tabacchi et al. 2000), and interfering with nutrient runoff and streamflow 

(Tabacchi et al. 2000, Qiao et al. 2017). A single eastern redcedar (Juniperus 

virginiana), a common encroaching woody species in this area, can consume 62 

L of water per day (Landon et al. 2008), and thereby decrease water availability 

for more desirable woody species. Woody encroachment and herbaceous 

invasion endanger bur oak woodlands by stifling oak regeneration through 

shading and direct competition of resources (Davis et al. 1998, Wolfe 2001, 

Oliver et al. 2019).  

 

Bur oaks are important features of riparian woodlands in the Great Plains. Bur 

oaks are sources of habitat and food for native ungulates (Caners and Kenkel 

https://www.zotero.org/google-docs/?fTFLNd
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2003), small mammals (Rumble and Gobeille 2001), and game birds (Servello 

and Kirkpatrick 1989, Flake et al. 2006). Bur oaks also contribute to the 

ecosystem services provided by riparian forests, including filtration of dissolved 

pollutants, improvement of fish habitat, protection from flooding, stabilization from 

erosion, and shelter for livestock (Dosskey 1998). Bur oaks are also 

economically important; bur oak acorns feed livestock (Uresk and Paintner 1985) 

and can be harvested for lumber. Bur oak is among the 5 most important tree 

species for sawtimber production in the Great Plains, though its capacity for 

wood production is decreasing with the lack of oak regeneration (Meneguzzo et 

al. 2018). Due to the array of conservation and economic benefits associated 

with keeping bur oaks on a landscape, bur oak regeneration is a management 

objective for public agencies and private landowners. Removal of invasive trees 

is a common first step in bur oak management as the presence of invasive trees 

inhibits the availability of adequate light and soil nutrients necessary for oak 

seedling survival. 

Control efforts for woody encroachment consist of various methods, including 

mechanical (i.e., uprooting, clipping, or heavy machinery techniques) and 

chemical (i.e., herbicide application) methods, and prescribed fire. Although 

prescribed fire is often more cost-effective for managing woody invasives, 

particularly eastern redcedar (Ortmann et al., 1998, Simonsen et al., 2015), 

mechanical and chemical methods are more commonly used due to perceptions 

of risk (Weir et al. 2019a). Due to the cost of managing woody encroachment, 

many federal cost-share programs aid land managers who wish to implement 

https://www.zotero.org/google-docs/?nGRBUh
https://www.zotero.org/google-docs/?nGRBUh
https://www.zotero.org/google-docs/?nGRBUh
https://www.zotero.org/google-docs/?nGRBUh
https://www.zotero.org/google-docs/?nGRBUh
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tree removals on their land. Due to the cost of mechanical and chemical 

methods, federal cost-share programs such the Wetlands Reserve Program aid 

land managers who wish to protect or restore their wetlands. The Wetlands 

Reserve Program is a federal program that protects and restores native systems 

on eligible, private land by supplying technical and financial assistance to 

landowners who, in exchange, retire their land from agriculture (Nelson et al. 

2011). The goal of the Wetlands Reserve Program along the Niobrara is to 

restore native plant communities in natural systems, including wetlands and 

gallery oak forests. One of the ways that the Wetlands Reserve Program restores 

plant communities is by assisting with non-native and invasive tree removals. 

Long term restoration of riparian plant communities depends on the persistence 

of native vegetation and successful regeneration of native woody species 

following tree removal. It is unknown, however, whether increased light and bare 

ground, decreased competition, and disturbed soil caused by tree removal will 

restore plant community species composition or leave it susceptible to 

herbaceous plant invasion (McPherson and Weltzin 1998, Dulohery et al. 2000, 

Diamond et al. 2018). This concern is especially relevant because smooth brome 

(Bromus inermis), reed canary grass (Phalaris arundinacea), and other invasive 

herbaceous species threaten this BUL by forming dense, monotypic stands that 

exclude desired plant species and degrade habitat for desirable wildlife species 

(Schneider et al. 2011). 

This project addresses the efficacy of an oak regeneration project following tree 

removal and the response of vegetation to tree removal in riparian areas, which 
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are critical unknowns in restoring and preserving riparian plant communities. 

Given the uncertainty associated with the success of oak plantings following tree 

removals, and with vegetative response to tree removals in riparian forests, my 

goal was to 1) quantify oak survival 7 years following tree removal and 2) 

determine vegetation response of riparian wetlands following tree removal at 

experimental oak plantings. I hypothesized that 1) oak survival would be 

subsequently greater with more herbivory protection and 2) tree removal sites 

would have greater numbers of introduced species. 

Methods 

The Lower Niobrara River BUL consists of a 3.2 km buffer along the portion of 

the Niobrara River from central Brown County in northern Nebraska to the 

confluence with the Missouri River (Schneider et al. 2011). This area consists of 

the Niobrara River which is flanked with woody and herbaceous wetlands and 

riparian woodlands. Beyond the valley itself is a mixed landscape of agriculture 

and grasslands. This area has an average high temperature of 16.7 °C, an 

average low temperature of 3.2° C, and approximately 63.5 cm of precipitation 

annually.  

Sites were selected according to landowner willingness and Wetland Reserve 

Program enrollment, except for two sites which were not enrolled in the Wetland 

Reserve Program. All woody vegetation was removed between July 2012 and 

April 2013 at all but 2 sites (sites 6 and 7), which experienced a wildfire in 2012 

and therefore did not require tree removal. Sites consisted of woodlands in which 
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woody vegetation was removed or, in the case of control sites, left standing. Tree 

removal consisted of mechanical removal with heavy machinery followed by 

herbicide application to stumps. Within the greater tree removal area, oak 

exclosures (described below) were built and oaks planted following tree removal. 

At each site, one exclosure was built within the boundary of the tree removal and 

another was built nearby under woody cover to control for tree removal effect. 

Oak seedlings were planted in April of 2013, spaced 1 m apart in 5 m x 10 m 

plots, half of which consisted of an herbivore exclosure (Figure 1). Herbivore 

exclosures were divided into two parts: a partial exclosure (5 m x 2.5 m) that 

consisted of 1.5 m high fencing to exclude large herbivores, and a full exclosure 

(2.5 m x 5 m) built in the same way with an additional layer of poultry wire to 

exclude small mammals 

(unpublished, Fricke). Forty oaks 

were planted at each exclosure: 10 

in the partial herbivory exclosure, 

10 in the full herbivory exclosure, 

and twenty adjacent to the 

exclosure to gauge herbivory 

effect. Exclosures were removed 

when the initial project ended in 2014 from all but the burn sites. 

Vegetation surveys were conducted in 2012 to measure canopy and understory 

vegetation composition and cover at tree removal areas prior to tree removal. 

Understory vegetation was separated into native status. These surveys were 
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conducted using the line-intercepts (Hormay 1949), in which vegetation cover is 

measured by the length of area in which the plant overlaps with a transect. 

Vegetation censuses were conducted at each 50 m2 oak planting site in August, 

2019. Censuses consisted of plant identification at the species level when able 

(otherwise identified to genus) and counts of individuals belonging to that species 

to measure abundance. Plants were excluded if they were shorter than 30 cm 

tall. This height was selected to exclude tree seedlings and small herbaceous 

species that were not of interest. Bur oaks that were 30 cm in height or shorter 

were considered seedlings. I assigned native status to species according to the 

USDA plant database designations as either native, introduced, or both. Both 

refers to species that are native invasives and to entries at the genus level in 

which the genus contains both native and introduced species (USDA 2020). 

Vegetation community metrics  

Vegetation community metrics were assessed using species frequency and 

relative abundance. Frequency represents the percentage of plots in which a 

given species is present. Relative abundance was calculated by taking the 

proportion of individuals represented by a given species out of the total number 

of individuals at each site, treatment, and/or total project.  

Two-way ANOVA was used to determine whether treatment type and exclosure 

type influenced oak survival (O’Brien and Kaiser 1985, Fox 2016). Tukey’s 

honest significant differences test was used to detect differences in mean oak 

survival between different treatment types and between different exclosure types 
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(Yandell 1997). Significance of differences in species richness between 

treatment types was calculated using a one-way paired t-test in R studio (R Core 

Team 2019). 

Results 

Oak survival  

Oak sapling survival was 0 across all sites in 2019 except sites 6 and 7 (Table 1), 

where there were herbivory exclosures. Oak sapling survival was highest at site 

7 where 18% of oaks survived and matured into saplings (Table 1). A tenth of 

oaks planted matured into saplings at site 6 (Table 1). Oak seedlings survived to 

2019 at only slightly more than half the sites (Table 1). Oak seedlings were most 

abundant at sites that kept herbivory exclosures, especially site 7 (Table 1). Of 

the sites that removed herbivory exclosures in 2014, oak seedlings were only 

present in woodland (control) sites, and in each case only a tenth survived (Table 

1). 

  

https://www.zotero.org/google-docs/?Pbj0ty
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Table 1. Percent survival of oak seedlings and, for 2019, saplings. Forty oaks were planted for 
each treatment in April of 2013 and measured in July/August of 2013, 2014, and 2019. Survival 
of mature oak saplings is included for 2019. Saplings were defined as oaks that were greater 
than or equal to 30 cm in height. 

site treatment 2013 (%) 2014 (%) 2019 (%) 2019 (sapling) 

1 removal 92 92 0 0 

 
control 85 35 0 0 

2 removal 95 92 0 0 

 
control 80 52 0 0 

3 removal 100 90 0 0 

 
control 85 45 10 0 

4 removal 92 78 0 0 

 
control 82 62 0 0 

5 removal 100 70 0 0 

 
control 95 68 10 0 

6 burn 100 75 26 10 

 
control 50 10 0 0 

7 burn 92 78 50 18 

 

Of the two sites that had herbivory exclosures in 2019, oak survival was highest 

in the full exclosures and lowest in the open areas beside the exclosures, 

although oak survival between partial and full exclosures was equal at site 6 

(Table 2). In 2019, oak survival was highest in the full exclosure of site 7, where 

80% of oaks survived (Table 2). Site 6 had the only oak sapling to survive without 

an exclosure, and the only sapling to survive in the partial exclosure (Table 2). 

The full exclosure at site 7 was the only subplot that showed greater oak survival 

in 2019 than in 2014 (Table 2). 
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By 2014, treatment type (p < 0.001) and the interaction between treatment and 

exclosure (p = 0.007) were important determinants of oak survival, while there is 

moderate evidence to suggest that exclosure type was important as well (p = 

0.060) (Table 4). Removal of woody vegetation contributed to oak survival in 

2014, whether it came by mechanical removal (p < 0.001) or burn (p < 0.001) 

(Table 4). Oaks also survived better in exclosures that fully excluded herbivory 

compared to partial exclosures (p = 0.036) and open areas (p < 0.001) (Table 4). 

There is also moderately strong evidence to suggest that oak survival was 

greater in partial exclosures than in open areas (p = 0.056) (Table 4). 

Conversely, oaks did not survive as well in woodlands (controls) or outside of 

herbivory exclosures. These factors worked additively (Table 4), and oaks 

performed worst when outside an herbivory exclosure at a control plot, as 

evidenced by the 70% decrease of oaks from 2013 to 2014 at the site 2 control 

plot, and the complete failure of oaks to survive at the site 6 control plot (Table 

2). Overall oak survival by exclosure type is summarized in Table 3.  
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Table 2. Percent survival of oak seedlings in herbivory exclosures for 2013, 2014, and 2019 
organized by site number and type of treatment. Treatment refers to whether trees were 
removed in 2012. NAs indicate sites in which herbivory exclosures were removed after 2014. 
Oaks were planted in 2013 after tree removal and measured in the summers of 2013, 2014, 
and 2019. Due to their close proximity, sites 6 and 7 shared a control site. 

site treatment exclosure 2013 (%) 2014 (%) 2019 (%) 

1 removal full 100 100 NA 

  
no 95 95 NA 

  
partial 80 80 NA 

 
control full 90 80 NA 

  
no 80 10 NA 

  
partial 90 40 NA 

2 removal full 100 90 NA 

  
no 90 90 NA 

  
partial 100 100 NA 

 
control full 90 90 NA 

  
no 75 35 NA 

  
partial 80 50 NA 

3 removal full 100 90 NA 

  
no 100 90 NA 

  
partial 100 90 NA 

 
control full 100 100 NA 

  
no 80 20 NA 

  
partial 80 40 NA 

4 removal full 100 90 NA 

  
no 95 80 NA 

  
partial 80 60 NA 

 
control full 70 70 NA 

  
no 90 50 NA 

  
partial 80 80 NA 
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5 removal full 100 90 NA 

  
no 100 50 NA 

  
partial 100 90 NA 

 
control full 100 100 NA 

  
no 90 45 NA 

  
partial 100 80 NA 

6 burn full 100 70 50 

  
no 100 75 5 

  
partial 100 80 50 

 
control full 70 40 0 

  
no 40 0 0 

  
partial 50 0 0 

7 burn full 100 70 80 

  
no 90 80 30 

  
partial 90 80 60 

 

Table 3. Percent oak survival by exclosure status. Oaks were planted within herbivory 
exclosures in April of 2013. Tree removals occurred in 2012 and oak survival was measured in 
July of 2013 and 2014. 

exclosure 2013 (%) 2014 (%) 

full 94 83 

no 87 55 

partial 87 67 

 

  



49 
 

Table 4. Statistical analyses of factors that influenced oak survival in 2014. Oaks were planted 

in April of 2013 and measured in July of 2013 and 2014 after trees were removed in 2012. 

Analyses include a two-way ANOVA and two Tukey honest significant differences tests. No 

results for 2013 were significant at that early stage of the experiment. 

Two-way ANOVA of the effect of treatment type, exclosure type, and the interaction between 

treatment and exclosure type on oak survival in 2014.  

variables sum sq. df F value p 

(Intercept) 18.225 1 106.062 < 0.001 

treatment 9.867 2 28.711 < 0.001 

exclosure 0.612 1 3.564 0.060 

treatment:exclosure 1.707 2 4.966 0.007 

Residuals 102.585 597 NA NA 

Tukey honest significant differences between treatment types for oak survival in 2014.  

Interaction diff   p 

control-burn -0.314   < 0.001 

removal-burn 0.112   0.087 

removal-control 0.426   < 0.001 

Tukey honest significant differences between exclosure types for oak survival in 2014. 

Interaction                           diff                                               p 

no-full -0.258 < 0.001 

partial-full -0.143 0.036 

partial-no 0.115 0.057 
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2012 survey results 

Woody plants 

In the 2012 pretreatment survey, woody cover of sites ranged from 40-86% 

(Table 5). Juniperus virginiana had for the most cover of any species and 

accounted for nearly a quarter of all woody cover (Table 5). J. virginiana 

comprised more than half of the canopy at site 4 and was the most abundant 

species at 4 of the treatments surveyed (Table 5). Dogwood species and 

European Buckthorn (Rhamnus cathartica) were the next most prominent 

species and together over a third of canopy cover across all sites (Table 5). 

Mean woody cover was 66.5% across all sites prior to tree removal in 2012.  

Table 5. Percent cover of each site and species measured in the 2012 pretreatment survey. 
Cover was measured using the line intercept method. Sites 1 and 2 were part of the same tree 
removal and therefore have the same woody plant composition prior to tree removal. Sites 6 and 
7 were not added to the study until after a wildfire in July of 2012 and were not surveyed. 

Site Treatment 
Woody Cover 
(%) 

Species Canopy Cover (%) 

1 & 2 Removal 40 Cornus spp 15.1 

   
Juniperus virginiana 9.1 

   
Juglans nigra 6.8 

   
Ulmus americana 3.0 

   
Rhus glabra 2.6 

   
Ulmus spp 2.0 

   
Morus rubra 1.7 

 
Control 58 Juniperus virginiana 23.8 

   
Cornus spp 9.5 

   
Elaeagnus angustifolia 9.3 
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Juglans nigra 5.3 

   
Morus rubra 4.5 

   
Ulmus americana 3.0 

   
Rhus glabra 1.9 

   
Rosa acicularis 0.5 

3 Removal 86 Cornus spp 43.2 

   
Rhamnus cathartica 26.3 

   
Juniperus virginiana 7.0 

   
Zanthoxylum 
americanum 

3.8 

   
Fraxinus pennsylvanica 3.5 

   
Ulmus americana 1.9 

   
Ribes uva-crispa 0.3 

 
Control 71 Juniperus virginiana 25.4 

   
Cornus spp 20.0 

   
Rhamnus cathartica 17.1 

   
Fraxinus pennsylvanica 2.9 

   
Tilia americana 2.4 

   
Ulmus americana 2.0 

   
Morus rubra 0.8 

4 Removal 65 Juniperus virginiana 58.0 

   
Ulmus thomasii 3.0 

   
Ulmus americana 2.2 

   
Cornus spp 1.9 

 
Control 83 Juniperus virginiana 55.4 

   
Ulmus americana 19.3 

   
Morus rubra 5.8 

   
Cornus spp 2.8 
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5 Removal 79 Cornus spp 32.0 

   
Rhamnus cathartica 16.6 

   
Juniperus virginiana 11.4 

   
Zanthoxylum 
americanum 

4.8 

   
Morus rubra 3.9 

   
Fraxinus pennsylvanica 3.6 

   
Ulmus americana 3.6 

   
Celtis occidentalis 2.7 

 
Control 55 Cornus spp 27.5 

   
Rhamnus cathartica 10.0 

   
Zanthoxylum 
americanum 

9.8 

   
Ulmus pumila 4.1 

   
Juniperus virginiana 3.0 

   
Ulmus spp 0.2 

Percent cover of the 10 woody species with the most canopy cover across all sites. 

Species Canopy Cover (%) 

Juniperus virginiana 24 

Cornus spp 19 

Rhamnus cathartica 17 

Elaeagnus angustifolia 9 

Zanthoxylum americanum 6 

Juglans nigra 6 

Ulmus americana 5 

Ulmus pumila 4 

Fraxinus pennsylvanica 3 

Morus rubra 3 
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Understory survey 

The understory vegetation survey in 2012 showed the vegetation communities 

prior to treatment were composed mostly of native species, which account for 

over a half of vegetation at removal sites and over a third of species at control 

sites (Table 6). Introduced species made up the minority of plant communities in 

2012, accounting for less than 5% of cover. Of the problem species recorded, 

Canary reedgrass (Phalaris arundinacea) had the highest average percent cover 

with 0.89% cover throughout all sites (Table 7). Smooth brome (Bromus inermis) 

and cheatgrass (Bromus tectorum) together accounted for 1.23% of understory 

cover (Table 7). 

Table 6. Percent cover of understory vegetation by treatment before tree removal in 2012. 

Vegetation is separated into native status. Native status (NIS) was determined by referencing 

the U.S. Department of Agriculture plant database. Sites 6 and 7 were not added to the project 

until after the pretreatment survey, after a wildfire had occurred later in 2012. Cover was 

measured using the line intercept method. Values do not include bare ground and leaf litter do 

not sum to 100%. 

Treatment NIS Cover (%) 

Control Both 34.99 

 
Introduced 4.77 

 
Native 40.65 

Removal Both 22.31 

 
Introduced 4.43 

 
Native 52.22 
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Table 7. Mean cover estimates of three problem herbaceous species from the 2012 understory 
vegetation survey. Vegetation was measured using the line intercept method. 

Species Mean Cover (%) SD 

Bromus inermis 0.74 1.23 

Bromus tectorum 0.49 0.51 

Phalaris arundinacea 0.89 0.91 

 

2019 Vegetation census results 

Woody plant response 

10 species of woody plants (shrubs or trees) were detected in the 2019 

vegetation surveys of oak planting sites. Woody species accounted for 6% of all 

vegetation measured (Table 8). Of these species, western snowberry 

(Symphoricarpos occidentalis) was the most abundant, accounting for 3.5% all 

vegetation recorded in this project (Table 8), and was the 10th most abundant 

species overall. Juniperus virginiana and dogwood species were present in twice 

as many plots as were oaks (Table 8). Eastern redcedar and dogwood did not 

appear in control sites (Table 3). European buckthorn (Rhamnus cathartica), 

American elm (Ulmus americana), plums (Prunus spp.) and hackberry (Celtis 

occidentalis) each appeared in only 1 site. 
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Table 8. Woody plant species frequency and relative abundance. Woody plant species were 

counted in 2019 at each plot following tree removal in 2012. Frequency measures the 

percentage of all plots in which the species is present. Relative abundance is the number of 

individuals of that species relative to the total number of individuals observed for the entire 

2019 vegetation survey. 

Species Frequency (%) Relative abundance (%) 

Amorpha fruticosa 15 0.29 

Celtis occidentalis 8 0.10 

Cornus spp. 31 0.70 

Juniperus virginiana 31 0.57 

Prunus americana 8 0.06 

Prunus virginiana 8 0.10 

Quercus macrocarpa 15 0.35 

Rhamnus cathartica 8 0.03 

Symphoricarpos occidentalis 23 3.50 

Ulmus americana 8 0.06 

 

Herbaceous community response 

The herbaceous communities in burn sites had particularly high native species 

abundance (Table 9). Removal sites and control sites had roughly equal species 

composition (Table 9). Smooth brome (Bromus inermis) was the most abundant 

species at 9.9% relative abundance (Table 9), and occurred in dense, monotypic 

clusters. Smooth brome dominated the site 4 removal plot (rel. abundance = 

72.11%) and was abundant at the site 2 control plot (rel. abundance = 21.67%). 

Cheatgrass (Bromus tectorum) also formed dense clusters, but was infrequent; it 

was the 4th most abundant species overall (Table 10), despite being present in 
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only 1 plot where it was dominant (46.26% relative abundance, site 4 control). 

Canada thistle (Cirsium arvense) was the 2nd most abundant species (9.62%) 

and occurred in more than half of all plots (53.85%) (Table 10). Together, smooth 

brome, Canada thistle, and cheatgrass accounted for more than a quarter of all 

individuals recorded (rel. abundance = 26.02%) (Table 10). The three most 

common native species, black raspberry (Rubus occidentalis), common 

milkweed (Asclepias syriaca), and Canada wild rye (Elymus canadensis) 

accounted for nearly one fifth of all individuals recorded (18.41% relative 

abundance) (Table 10). Ragweeds (Ambrosia spp.), Canada thistle and Virginia 

pepperweed (Lepidium virginicum) were the most frequently occurring species 

(53.85%), followed closely by smooth brome and Canada wild rye which 

occurred in nearly half of the plots (46.15%) (Table 10).  

Table 9. Relative abundance and native or introduced status (NIS) of vegetative species by 
treatment type. Native status was determined by referencing the U.S. Department of 
Agriculture plant database. Vegetation surveys were conducted in 2019 following tree removal 
in 2012 at sites in which oaks were experimentally planted. 

Treatment NIS Relative Abundance (%) 

Burn Both 14 

 
Introduced 11 

 
Native 75 

Control Both 22 

 
Introduced 35 

 
Native 43 

Removal Both 17 

 
Introduced 33 

 
Native 49 
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Table 10. Relative abundance and frequency of the 10 most abundant plant species surveyed 

in 2019 following tree removal in 2012. Frequency measures the percent of all plots in which 

the species was present. Surveys were conducted in August of 2019. 

Species Relative abundance (%) Frequency (%) 

Bromus inermis 9.90 46.15 

Cirsium arvense 9.62 53.85 

Rubus occidentalis 7.68 30.77 

Bromus tectorum 6.50 7.69 

Asclepias syriaca 5.48 30.77 

Elymus canadensis 5.25 46.15 

Poa pratensis 4.01 30.77 

Ambrosia spp 3.95 53.85 

Bouteloua curtipendula 3.54 15.38 

Symphoricarpos occidentalis 3.50 23.08 

 

Discussion 

Oak survival is negligible following tree removal in riparian areas without 

protection from herbivory. Oak survival was 0 across all sites except sites 6 and 

7, where survival is attributable to the presence of herbivory exclosures, which 

have been shown to greatly increase survival with other oak and deciduous 

woodland species (Muick 1991, McCreary and Tecklin 1997, Clements et al. 

2011). The lone oak sapling that occurred outside of an exclosure (site 6) was 

covered by deep litter and a fallen tree that acted as a barrier to herbivory 

despite being outside of an actual exclosure. Low vegetation density may also 
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promote oak survival, as seen in the survival of oak seedlings at the control plots 

of sites 3 and 5, where vegetation counts were exceptionally low (site 3: control n 

= 25; site 5: control, n = 21). Oaks did not survive on other sites, likely due to the 

combined pressure of herbivory and competition with herbaceous vegetation for 

soil water and light, which is a consistent result with other studies (Davis et al. 

1998, 1999). The ability of oaks to persist in control sites despite oak survival 

dropping in these sites between 2013 and 2014 highlights the importance of 

competition with herbaceous vegetation in limiting oak regeneration. In addition, 

land management changed after 2014 to prioritize removal of encroaching 

eastern redcedar, which led to mulching woody species where oaks had been 

planting and could have compromised surviving oak saplings at some tree 

removal sites. 

My results suggest that tree removal leaves sites vulnerable to re-encroachment 

or reinvasion by invasive woody and herbaceous species. Eastern redcedar and 

dogwood were exclusively located at tree removal sites and burn sites. Burns do 

not seem to encourage re-encroachment, since woody species at burn sites were 

found only within herbivory exclosures that provided protection. Tree removal 

sites, however, were prone to re-encroachment by eastern redcedar and 

dogwood as was seen by the presence of these species in tree removal sites 

despite lacking the protection of an exclosure. Western snowberry may also 

readily encroach following tree removal, which would be consistent with the 

tendency of shrubs to increase in density following overstory removal (Brudvig 

and Asbjornsen 2007). It is less clear, however, since western snowberry also 
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appeared in a control site (site 4: control), and may be abundant in the area due 

to grazing interactions (Bailey et al. 1990). Unexpectedly, European buckthorn 

and Russian olive were nearly or completely absent from sites where other 

woody species were present, despite the abundance of these species in the 

pretreatment survey, and the ability of Russian olive to re-encroach following 

removal (Espeland et al. 2017). This result suggests that these species were 

either effectively managed, have a slower successional mechanism than that of 

eastern redcedar, and/or were not detectable in the smaller oak plantings 

surveyed in 2019.  

The application of tree removals did not have a clear effect on the overall 

herbaceous community and neither encouraged the re-establishment of native 

species nor facilitated invasion by introduced ones. Native species abundances 

in 2019 were lower in both control and removal sites than might have been 

expected considering as context that the majority of understory cover came from 

native species in the pretreatment survey. This seeming difference in native 

species composition is more likely attributable to the different survey methods 

and extents than to any actual change of species composition. The disturbance 

associated with tree removal may, however, have increased vulnerability to 

reestablishment of undesirable woody or herbaceous species at some sites more 

than others, however, as smooth brome and Canada thistle dominated some of 

the sites in which they were present. Site 6 was the only site that had no 

vegetation, only duff.  It was also the only site to occur within a full-canopied 

homogeneous eastern redcedar woodland, which may have been the cause of its 
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barrenness due to the severe shading and changes to soil hydraulic properties 

known to come with eastern redcedar (Smith and Stubbendieck 1990, Wine et al. 

2011). 

There are possible confounding variables in this study. Excluding vegetation 

under the height of 30 cm may have led to the undercounting of surviving bur 

oaks, which are known to invest in root growth before growing tall (Hodges and 

Gardiner 1993). Undercounting would likely not have occurred outside herbivory 

exclosures, however, since non-enclosed seedlings were immature due to 

persistent herbivory and lacked the leaf size and maturity of some of the 

enclosed seedlings. Flooding occurred at several sites in March 2019, which 

could have influenced oak, European buckthorn, and Russian olive presence. 

However, the presence of seedlings at flooded sites, the lack of standing dead 

oak saplings, the presence of western snowberry, which cannot withstand 

prolonged flooding (Hauser 2007), and the documented flood-resistance 

European buckthorn (Kurylo et al. 2015) make flooding an unlikely factor in 

determining woody species presence. 

In summary, this study demonstrates the dependence of oak survival on 

protection from herbivory and supports current knowledge that resource 

competition with herbaceous species limits oak survival. Single applications of 

management are insufficient to restore oaks to the canopy. The connection 

between tree removals and herbaceous community composition is unclear. This 

study has described the response of oak survival and vegetation communities to 

tree removals in riparian areas. This study enables land managers to better 
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anticipate and manage vegetation changes after woody plant removal and to 

encourage survival of desirable woody vegetation with herbivory exclosures for 

future restoration projects. 
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Chapter 3: Mountain lion movement and habitat use in a grassland dominated 

landscape at the edge of the species geographic range  

 

Introduction 

 

Mountain lions (Puma concolor) are recolonizing the Midwest, populating 

grassland-dominated landscapes that have not been inhabited by mountain lions 

for nearly a century (LaRue et al. 2012, Gigliotti et al. 2019). Mountain lions are 

native to the Midwest, but were extirpated due to management that prioritized 

mountain lion removal (Kellert et al. 1996). Management of mountain lions has 

since changed to regulate hunting and conserve mountain lions as game or 

conservation species, allowing mountain lion populations to grow and expand 

(Pierce and Bleich 2003, Schwartz et al. 2003). As a result, mountain lions are 

dispersing from western populations into unoccupied, suitable mountain lion 

habitat in Midwestern states (LaRue et al. 2012).  

 

The Midwest has large amounts of suitable habitat to offer mountain lions (LaRue 

and Nielsen 2011), however agricultural land uses dominate this landscape and 

human densities are higher than in much of the “west”. The Midwest has the 

easternmost breeding populations of mountain lions and represents the 

colonization front of mountain lions in North America. Understanding movement 

decisions and resource selection in habitat fragmented by agriculture will be 
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critical for predicting and understanding factors that facilitate and limit dispersal 

and colonization of Midwestern and eastern North America. 

 

One critical concern regarding the expanding mountain lion range is the potential 

for increased human-mountain lion conflicts, which could in turn threaten the 

likelihood for re-establishment of mountain lions in the Midwest. Human-

mountain lion conflict would likely take the form of damage to property, such as 

livestock, since mountain lions tend to be more of a hazard to livestock than to 

humans (Aune 1991). Some risk factors for livestock damage include the scarcity 

of alternative prey (e.g. mule deer, Odocoileus hemionus) and the age and sex 

characteristics of the mountain lion (young males more often attack livestock) 

(Aune 1991, Hiller et al. 2015). Dispersing mountain lions are particularly 

hazardous to livestock since the demographic of mountain lions that are more 

likely to disperse is the same as that which is more likely to attack livestock 

(Sweanor et al. 2000). Identifying landscape features that can act as corridors for 

mountain lions to reach suitable habitat, or to access livestock populations, will 

be critical in mitigating this conflict. 

 

Mountain lions are considered habitat generalists due to the variety of 

ecosystems they inhabit; however sufficient abundance of prey and the presence 

of rough topography and/or vegetation to use as cover for hunting and caching 

prey, raising cubs, and avoiding humans are considered preconditions for use 

(Logan and Irwin 1985, Dickson and Beier 2002, Dickson et al. 2005, Kertson et 
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al. 2011). An expert opinion survey identified presence of woody vegetation, long 

distance from paved roads, low human density, close proximity to water, and 

steep slopes as important characteristics for mountain lion habitat (LaRue and 

Nielsen 2008). These features also seem important for mountain lion movement, 

as they prefer to move through riparian vegetation and tend to avoid more urban 

and open areas (Dickson et al. 2005). This tendency may not apply to dispersing 

males, however, which will travel over large expanses of unsuitable habitat 

(Sweanor et al. 2000). Mountain lions generally avoid anthropogenic features 

(paved roads and buildings), but may tolerate some amount of these features in 

rural areas (Knopff et al. 2014). Mountain lions also avoid open areas since they 

lack the dense stalking cover that facilitates the mountain lion’s ambush hunting 

strategy (Dickson and Beier 2002). Despite the wealth of studies understanding 

mountain lion habitat use, empirical evidence of mountain lion habitat use in the 

Midwest is sparse and whether this novel landscape will elicit different behaviors 

from mountain lions is unknown. Nebraska is one of the few Midwestern states 

with a breeding population, and of these states, has the highest number of 

mountain lion confirmations outside of breeding populations (LaRue et al. 2012).  

 

The first confirmed sighting of a mountain lion in Nebraska following their 

extirpation in the 19th century occurred in 1991 in the Pine Ridge of northwestern 

Nebraska (Genoways and Freeman 1996). Mountain lions have since 

established breeding populations in Nebraska in the Pine Ridge, Wildcat Hills, 

and Niobrara River (Wilson et al. 2010, Nebraska Game and Parks Commission 
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2020). Mountain lion activity continues to increase and is concentrated along 

Nebraska’s river systems (Nebraska Game and Parks Commission 2020). 

Nebraska has a different landscape than other mountain lion-inhabited states; it 

has the most river miles of any state and is heavily agricultural with a generally 

flat and open topography. Despite the increased presence of mountain lions in 

Nebraska, their habitat preferences and movement through this landscape are 

undocumented. Nebraska has the easternmost breeding population of mountain 

lions that are recolonizing from western populations. Understanding mountain 

lion movement in Nebraska is essential for understanding recolonization of the 

Midwest and eastern North America. Furthermore, better understanding 

mountain lion movement will play a role in mitigating human-mountain lion 

conflict for livestock managers and communities in Nebraska.  

 

My goal in this study is to determine movement and resource selection of 

mountain lions in Nebraska. Because mountain lions select natural landscape 

features associated with dense vegetation and rugged topography, and avoid 

open natural and human-altered features, I hypothesize that mountain lions will 

1. select riparian areas and dense vegetation, 2. select steeper slopes, 3. avoid 

open grasslands, and 4. avoid human development and paved roads. 
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Methods 

Study area 

The study area was defined by GPS locations of the 2 mountain lions studied 

and occurred within Dawes, Sheridan, Cherry, Keya Paha, Brown and Rock 

counties of northern Nebraska, which includes the Pine Ridge ecoregion and 

much of the Niobrara River valley. The Pine Ridge is a rocky, pine-dominated 

escarpment that is raised several hundred meters from the surrounding prairie 

(Schneider et al. 2011). The Niobrara River is located east of the Pine Ridge, 

southeast of Rushville, Nebraska. The river is approximately 900 km long and 

runs eastward across northern Nebraska to its confluence with the Missouri 

River. Much of the area surrounding the Niobrara River is in cropland, though 

there are also wet meadows and marshes, mixed-grass prairie, and mixed 

woodlands (Schneider et al. 2011). This area has an average high temperature 

of 16.7 °C, an average low temperature of 3.2° C, and approximately 63.5 cm of 

precipitation annually.  

Data collection and demographics 

Data were collected on 2 mountain lions, m27 and m26, both of which were 

subadult males. M27 was a dispersing mountain lion, while m26 occupied a 

homerange. The mountain lions were collared by Nebraska Game and Parks 

Commission personnel. The first mountain lion, m27, wore a W300-GTX collar 

made by Advanced Telemetry Systems, Inc. Data recorded for m27 had a 12 h 

fix interval, taken at different times of the day. Data for m27 were recorded from 
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May of 2017 to December of 2018 and consisted of 456 locations. The second 

mountain lion, m26, wore a VERTEX Plus collar made by Vectronic Aerospace 

GmbH. This collar had a 12 h fix interval, recorded at 6:00 am and 6:00 pm. Data 

for m26 were recorded from February to September of 2019 and consisted of 

209 locations. The collars did not record fixes when the signal was too poor to 

connect to a satellite. As a result, there are gaps of greater than 12 h in the data 

where the fix was missed. The fix success rate was 98% for m27 and 89% for 

m26. 

Delineation of environmental covariates 

I considered land use, water, elevation, slope and road as environmental 

covariates in this analysis. I extracted land use types from the 2016 National 

Landcover Database raster dataset at 30 m resolution (U.S. Geological Survey 

2019) and aggregated them into groups that were relevant to mountain lions. 

These groups consisted of TREE – deciduous forest, evergreen forest, mixed 

forest, and shrub/scrub; OPEN – barren, herbaceous, pasture/hay, developed 

open space; WETLAND – woody wetlands, emergent herbaceous wetlands; 

DEVELOPED – low, medium, and high intensity development; and CROP – 

cultivated crops (Yang et al. 2018, U.S. Geological Survey 2019). I acquired 

shapefiles for water from the National Hydrography Dataset (U.S. Geological 

Survey 2018). I obtained 30 m digital elevation models at the county level from 

the U.S. Geological Survey National Elevation Dataset (U.S. Geological Survey 

2020). I calculated slope from elevation data using the percent rise method of the 

slope tool in ArcGIS Spatial Analyst Tools (LaRue and Nielsen 2008, ESRI 
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2019). I acquired road shapefiles from the U.S. Census Bureau and filtered the 

dataset to include only paved roads (2018). I projected all layers into NAD83 

UTM Zone 14 N to match the projected data. Layer information is summarized in 

Table 1. 

Table 1. Layer information for environmental covariates. All NLCD, slope, and elevation layers 
had a 30 m resolution, and all layers were projected to NAD83 UTM Zone 14N.  
Acronyms used: National Landcover Database (NLCD), United States Geological Survey National 
Hydrography Dataset (USGS NHD), United States Geological Survey National Elevation Dataset (USGS 
NED) 

layer Definition Source 

crop NLCD classification for cultivated crops NLCD 2016 

open binned NLCD classifications for barren, 
herbaceous, pasture/hay, and developed open 
space 

NLCD 2016 

tree binned NLCD classifications for deciduous forest, 
evergreen forest, mixed forest, and shrub/scrub 

NLCD 2016 

developed binned NLCD classifications for low, medium, and 
high intensity development 

NLCD 2016 

wetland binned NLCD classifications for emergent 
herbaceous wetlands and woody wetlands 

NLCD 2016 

water Shapefiles of water features including rivers, 
streams, and lakes 

USGS NHD 2018 

road Shapefiles of paved roads U.S. Census Bureau 
TIGER/LINE shapefiles 

slope gradient of incline (%) calculated in ArcGIS 

elevation distance above sea level (m) USGS NED 

 

Step selection functions 

 I evaluated mountain lion habitat selection using step selection functions 

since these allow one to quantify movement decisions with respect to resources 

as animals move through the landscape. Step selection functions are thus well 
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suited to understand resource selection of dispersing animals and animals in 

novel landscapes more generally. In a step selection function, availability for the 

animal is determined for each unit of movement, known as a step. Steps occur at 

regular time intervals, known as fixes. In this analysis, I sampled step lengths 

and turning angles from the empirical distribution of step lengths and turning 

angles to generate locations that were considered available to the animal (Fortin 

et al. 2005). These available points served as a null hypothesis of random 

movement that I compared to used steps (i.e., recorded animal locations) to 

determine whether the animal selected, avoided, or was indifferent to 

environmental covariates. I used distance-based variables rather than 

classification-based variables for landcover types to mitigate location error and 

take habitat edge into account (Conner et al. 2003). I determined the number of 

available steps generated per used step by testing different numbers of available 

steps until coefficients of use for environmental covariates stabilized. I used this 

method to avoid incorrectly estimating habitat use patterns since availability may 

not be accurately estimated when too few available locations are included 

(Benson 2013).  

 

M27 displayed two modes of behavior: one in which he moved along the 

Niobrara River, and another in which he ventured away from the Niobrara River. I 

subsetted the data to include only the animal locations that occurred along the 

Niobrara River since movement away from the river consisted of too few points to 

be usable for analysis. Because the vast majority of animal locations occurred 



76 
 

along the Niobrara River, I decided to assimilate the river turning angle into the 

estimation of availability. I calculated offset turning angles to account for animal 

movement relative to the river. For each location, the line that connects the 

previous location forms an angle with the line that connects the following 

location: this angle is the animal turning angle. For each location, I calculated the 

nearest point on the river using the near function in the proximity category of the 

analysis tools in ArcGIS (ESRI 2019), and calculated the turning angles for the 

river that corresponded to the animal turning angles. I calculated offset turning 

angles by subtracting the mountain lion turning angles from the angle of the river 

at the nearest point to the mountain lion.  

θoffset = θriver - θmountain lion 

By using the offset angle, the estimate of availability becomes constrained by the 

river: available locations occur closer to the river than they would if sampling from 

animal turning angles. In this way, the offset angle estimates availability for an 

animal that is moving with respect to the river, which seems to more accurately 

describe this mountain lion’s behavior. For the river analysis, forty available steps 

were generated for each used step because it was at this number of available 

steps that estimation of availability stabilized.  

 

I also used step selection functions to evaluate use of environmental covariates 

for m26. Since all locations for m26 occurred on one side of the river, and since 

m26 seemed to occupy a homerange, I sampled turning angles from the 

empirical distribution of animal turning angles, as is typical in step selection 
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functions (Fortin et al. 2005, Thurfjell et al. 2014). One hundred available steps 

were generated for each of the forty-two used steps because it was at this 

number of available steps that estimation of availability stabilized. 

 

For all step selection functions, I used conditional logistic regression to analyze 

differences in environmental covariates between used and available locations, 

which is typical of step selection functions (Thurfjell et al. 2014). I centered 

covariates and rescaled them by subtracting observed values from the mean, 

then dividing by 2 standard deviations (Gelman 2008). Pearson’s correlation 

coefficient was calculated for each pair of covariates. I considered covariates to 

be correlated at r > 0.50. In the case of correlated covariates, I discarded the 

covariate that seemed less relevant to mountain lion movement. I compared 

conditional logistic regression models using Quasi-likelihood under 

Independence Criterion (QIC) (Pan 2001). QIC is well suited to ranking case-

control longitudinal models, and is therefore suited to evaluate step selection 

functions (Craiu et al. 2008). 

Resource selection functions 

In addition to the step selection functions, I used resource selection functions to 

analyze habitat use for m26. Resource selection functions are appropriate since 

m26 occupies a homerange. I estimated homerange by calculating the adaptive 

localized convex hulls using the LoCoH.a function in the adehabitatHR package 

in R (Calenge 2006, Getz et al. 2007). I determined availability using the 

systematic approach (Benson 2013), in which distances to each environmental 
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covariate were calculated from the center of every 30 m pixel within the 

homerange. As with the step selection functions, covariates were centered and 

rescaled. I analyzed selection/avoidance of environmental covariates using 

conditional logistic regression models. I then compared these models using 

corrected Akaike’s Information Criterion (AICc) to evaluate best of fit to the data 

and simplicity.   

 

For each analysis, I used a model selection criterion of ΔQIC/ΔAICc < 2 to select 

models to average (Burnham and Anderson 2004). I averaged models with the 

model.avg function in the MuMIn package of R to produce a final model that 

contained β values that were averaged from all models within the model selection 

criterion (Lukacs et al. 2010, Barton 2020). Negative β values indicate selection 

of landscape features measured by distance, in this case the landcover classes 

(open, water, tree, etc.), and avoidance of classification-measured landscape 

features (slope and elevation). Conversely, positive β values indicate avoidance 

of landscape features measured with distance and selection of classification-

based landscape features. I calculated 95% confidence intervals for β values by 

adding and subtracting 2 standard errors from the β values (Venables and Ripley 

1997). 

 

Results 

Step selection functions 
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The models that offer the most empirical support for the movement of m27 

identify cropland, woody vegetation, slope, and open areas as the most important 

factors influencing movement (Table 2). Wetland, developed, and road landcover 

classes were not considered for this analysis due to correlation between tree and 

wetland (r = 0.65), elevation and developed (r = 0.62), and water and road (r = 

0.60). Tree, elevation and water were selected as model parameters because 

they are more plausibly driving mountain lion habitat use. M27 avoided cropland 

(β = 2.312), selected woody vegetation (β = -6.624), and selected steeper slopes 

(β = 1.241) (Table 3). Open areas were retained in a plausible competing model; 

however, the averaged β value showed a trend of no selection (β = -0.044, SE = 

0.194). 

Table 2. Number of parameters (K), qausi-likelihood under independence criterion value 
(QIC), ΔQIC, and model weight for all models within 2 QIC of the top model in the river-
constrained step selection function of m27. Models were calculated with conditional logistic 
regression. Wetland, developed, and road parameters were not considered in this criterion 
due to correlation with other parameters.  

Model  K QIC ΔQIC Model wt (%) 

1 Crop + tree + slope 3 372.96 0.00 43 

2 Crop + tree + slope + open 4 374.22 1.26 23 

 

Table 3. Variables important to mountain lion habitat use, β estimates of variables, standard 
errors, 95% confidence intervals, mean used distances, and behavior for the m27 step 
selection function of mountain lion habitat use along the Niobrara River of Nebraska. β values 
are the result of model averaging for conditional logistic regression within 2 QIC of the top 
model. A “+” in the behavior column indicates selection, a “-” indicates avoidance, and an “=” 
indicates proportional use. All models that were weighted within the 95% confidence set were 
averaged. Models were ranked with quasi-likelihood under independence criterion. 

Variables β value SE 95% CI 
Mean 
distance (m) 

Behavior 

Crop 2.312 0.659 (3.631, 0.994) 1860 - 

Tree -6.624 2.591 (-1.441, -11.806) 119 + 
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Slope 1.241 0.164 (1.569, 0.913) NA + 

Open -0.044 0.194 (0.343, -0.432) 18 = 

 

The step selection function of m26 retained all parameters tested in plausible 

models except slope (Table 4). The parameter for developed areas was not 

included due to correlation with roads (r = 0.60). M26 strongly selected woody 

vegetation (β = -42.611) and also selected areas with close proximity to water (β 

= -1.382) (Table 5). The models showed a large effect size for m26 (β = 0.568), 

however this result was highly variable (SE = 0.507) and its biological relevance 

is therefore difficult to ascertain (Table 5). While the parameters for road, open, 

elevation, and crop appeared in the averaged model because they were retained 

in some plausible models, it is difficult to ascertain how they were associated with 

m26’s movement due to the high standard errors of these landscape features, 

and the averaged β values show a trend of no selection (Table 5).  

Table 4. Number of parameters (K), qausi-likelihood under independence criterion value 

(QIC), ΔQIC, and model weight for all models within 2 QIC for the step selection function of 

m26. The parameter for developed areas was not considered due to collinearity. Models were 

calculated with conditional logistic regression. 

Model  K QIC ΔQIC Model weight (%) 

1 Tree + wetland + water 3 313.86 0.00 28 

2 Tree + water 2 314.52 0.66 20 

3 Tree + wetland + water + road 4 315.00 1.14 16 

4 Tree + wetland + water + open 4 315.35 1.49 13 

5 Tree + wetland + water + 

elevation 

4 315.45 1.59 12 
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Table 5. Variables important to mountain lion habitat use, β estimates of variables, standard 

errors, 95% confidence intervals, mean used distances, and behavior for the m26 step selection 

function of mountain lion habitat use north of the Niobrara River of Nebraska. β values are the 

result of model averaging for conditional logistic regression within 2 QIC of the top model. A “+” 

in the behavior column indicates selection, a “-” indicates avoidance, and an “=” indicates 

proportional use. All models that were weighted within the 95% confidence set were averaged. 

Models were ranked with quasi-likelihood under independence criterion. 

Variables β value SE 95% CI 
Mean distance 
(m) 

Behavior 

Tree -42.611 9.725 (-23.161, -62.061) 5 + 

Wetland 0.568 0.507 (1.583, -0.446) 1042 = 

Water -1.382 0.519 (-0.344, -2.421) 1191 + 

Road 0.020 0.132 (0.283, -0.244) 1086 = 

Open 0.032 0.150 (0.331, -0.267) 88 = 

Elevation 0.004 0.185 (0.374, -0.367) NA = 

Crop -0.006 0.172 (0.339, -0.351) 949 = 

Resource selection functions 

M26 responded to five of the recorded landscape features in the resource 

selection function (Table 7). The averaged model showed that m26’s habitat use 

could be predicted by avoidance open areas (β = 0.286) (Table 7). M26 selected 

areas with woody vegetation (β = -5.334), close proximity to water (β = -0.59), 

relatively steep inclines (β = 0.339) and low-lying areas (β = -0.682) (Table 7). 

Road, wetland, developed areas and cropland were retained in plausible models, 

however the averaged β values of these landscape features show a trend of no 

selection. 
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Table 6. Number of parameters (K), corrected Akaike’s information criterion values (AICc), 

ΔAICc, and model weight for all models within 2 AICc of the top model in the resource selection 

function for m26. The resource selection function was used to analyze habitat selection of the 

mountain lion m26 within a homerange that was estimated with adaptive localized convex hulls. 

Models were calculated using generalized linear mixed models. 

Model  K AICc ΔAICc 
Model 

wt (%) 

1 Open + tree + developed + water + road + 

slope + elevation 

7 2988.15 0.00 24 

2 Crop + open + tree + developed + water + 

road + slope + elevation 

8 2988.37 0.22 21 

3 Crop + open + tree + developed + water + 

slope + elevation 

7 2989.28 1.13 14 

4 Open + tree + developed + water + slope + 

elevation 

6 2989.35 1.20 13 

5 Open + tree + water + elevation + slope 5 2989.98 1.83 10 

6 Crop + open + tree + water + elevation + 

slope 

6 2990.01 1.86 9 

7 Wetland + developed + road + open + tree + 

water + elevation + slope 

8 2990.12 1.97 9 
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Table 7. Variables important to mountain lion habitat use, β estimates of variables, standard 
errors, 95% confidence intervals, mean used distances, and behavior for the m26 resource 
selection function of mountain lion habitat use north of the Niobrara River of Nebraska. Models 
were ranked with corrected Aikaike's information criterion. β values are the result of model 
averaging for conditional logistic regression within 2 AICc of the top model. A “+” in the 
behavior column indicates selection, a “-” indicates avoidance, and an “=” indicates 
proportional use. 

Variables β value SE 95% CI 
Mean 
distance (m) 

Behavior 

Open 0.286 0.121 (0.529, 0.043) 72 - 

Tree -5.334 1.073 (-3.188, -7.479) 38 + 

Developed 0.295 0.222 (0.739, -0.149) 1106 = 

Water -0.590 0.184 (-0.222, -0.958) 1375 + 

Road -0.191 0.232 (0.272, -0.655) 1266 = 

Slope 0.339 0.148 (0.634, 0.044) NA + 

Elevation -0.682 0.165 (-0.351, -1.013) NA - 

Crop -0.114 0.179 (0.244, -0.472) 1014 = 

Wetland 0.002 0.052 (0.106, -0.101) 1003 = 

 

Discussion 

 

My results support the conclusions of prior studies that mountain lions select 

areas with abundant cover (woody vegetation, steep topography) and close 

proximity to water (Logan and Irwin 1985, Kertson et al. 2011). The step 

selection function of m27 did not detect selection for water, not because water 

was unimportant to m27, but because of the method by which availability was 

estimated, which was predicated on the selection of the Niobrara River. It is 

difficult to determine the role of cropland in mountain lion dispersal. While the 

results of the step selection function for m27 indicated avoidance, this mountain 
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lion also recorded many locations within or bordering cropland (Figure 1). I 

excluded many of the cropland locations because they did not fall within the 

subset of points near the river, and the data of points away from the river were 

too sparse to be analyzed. These cropland locations might, however, reflect a 

functional response toward cropland that changes from avoidance to selection as 

alternative forms of cover are less available in the landscape (Mysterud and Ims 

1998), similar to mountain lion tolerance of urban development recorded in rural 

Canada (Knopff et al. 2014). Mountain lion selection of cropland may change 

seasonally and with crop type since availability of cover varies with these 

variables, and cover is likely what draws m27 to cropland when it is away from 

riparian areas. This hypothesis would be testable with additional data; however, 

the current dataset was sparse and of limited temporal extent so that it was not 

sufficient to test seasonality. It is difficult to discern whether this behavior is the 

result of individual variability or the relative availability of cover, however, since 

m26 did not also show this behavior.  

 

The resource selection function of m26 differed slightly from the results of the 

step selection function, which can be seen in the responses toward open areas 

and elevation. Differences in the outcomes of resource selection functions and 

step selection functions are common, however, and are due to the difference 

between the singular estimation of availability in resource selection functions and 

the sequential estimation of availability in step selection functions, as well as 

differences in scale (Avgar et al. 2016).  
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These tendencies in mountain lion habitat selection indicate that future mountain 

lion establishment in Nebraska will be strongly tied to riparian areas, particularly 

those with abundant woody vegetation, as these have the requisite combination 

of cover and proximity to water, which has also been documented in Montana 

(Gigliotti et al. 2019). Mountain lion movement becomes less predictable, 

however, when dispersing individuals move out of contiguous expanses of 

suitable habitat and change habitat selection priorities. Figure 1 shows how m27 

used patches of woody cover or cropland to move through otherwise open or 

developed habitat.  
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Windbreaks and, more surprisingly, cropland seem to serve a role as islands of 

cover in an otherwise open habitat and may act as mediating points between 

areas of suitable habitat, though this statement is speculation and was not tested 

in this study. Great Plains grasslands are not as open as they once were, 

however, and are steadily being encroached by woody species, particularly 

eastern redcedar (Juniperus virginiana) (Archer et al. 2017). As my results have 

shown, woody cover is strongly associated with mountain lion habitat use, and 

Figure 1. Locations of the mountain lion m27 when moving away from the Niobrara River. 
Blue circles indicate m27 locations. Top left: M27 appears to have taken refuge in the 
windbreak near a house when moving through an urban area. Bottom left: A windbreak 
that m27 stayed in for 4 days. This windbreak was located 11 km away from the Niobrara 
River. Top right: Row crop field where m27 stayed from late August to early October of 
2018. Bottom right: A windbreak surrounded by grassland where m27 was recorded. It 
was located 6 km away from the Niobrara River and 5 km away from the nearest mountain 
lion location. 
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even in open areas mountain lions will select more complex vegetative structures 

for cover (Elbroch and Wittmer 2012). Over time, woody encroachment will 

provide greater areas of woody cover that may provide cover, as well as access 

to areas and wildlife or livestock prey populations of the Great Plains that, without 

woody encroachment, would be inaccessible. 

 

Potential for human-mountain lion conflict will increase as populations become 

more established due to an increased mountain lion population and a larger 

number of dispersing males. Human-mountain lion conflict may more frequently 

occur in rural areas, and may be exacerbated by human use of mountain lion 

habitat, especially in evenings (Burdett et al. 2010, Morrison et al. 2014). Due to 

the sparse dataset and coarse time intervals, our glimpse into mountain lion 

habitat use in Nebraska is at a coarse resolution, and inference is limited, but 

offers insight into how subadult male mountain lions select resources in this 

habitat. The role of small patches of cover (e.g. cropland and windbreaks) in 

facilitating mountain lion dispersal merits further investigation. This study 

addresses the habitat use of two subadult male mountain lions in northern 

Nebraska, which is a foothold for mountain lion recolonization of the Midwest and 

eastern North America. 
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Management implications 

 

Woody encroachment in Nebraska is far from solved. For the restoration of 

grasslands, invasive tree removals are an appropriate start, and are a 

management success in the short term. Tree removals are too costly, however, 

for subsequent removals on sites reinvaded by trees to be a tenable solution. 

Long term success of grasslands, therefore, depends on successive 

management of woody encroachment following tree removal with applications of 

herbicide and/or prescribed fire as is most appropriate for the encroaching 

species. Successive management was lacking in the grassland sites that I 

evaluated. In part, the lack of management following tree removal was due to 

landowners. Tree management programs, however, would benefit from 

evaluating long term success of woody plant removal, incorporating requirements 

for continued management after removal, spatially targeted rather than 

haphazard enrollment, and judicious selection of treatment areas (e.g., not 

treating small patches, or patches surrounded by woodland) to minimize the risk 

of reinvasion. 

 

My study of oak regeneration in the Niobrara River of Nebraska suggests that 

oak regeneration requires protection from shading and herbivory. Treating sites 

with fire and/or mechanical removals to decrease shading from canopy cover will 

also encourage oak survival. If herbivory exclosures are used, they should 

include poultry wire or a similar barrier to restrict access of small mammals to 
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oak saplings. Land managers trying to preserve understory vegetation along the 

Niobrara River should be aware that it is difficult to predict invasive herbaceous 

species response to tree removals, and that species in the Bromus family can 

invade and dominate sites treated with tree removals. 

 

Mountain lion movement across Nebraska is concentrated around riparian areas. 

Colonization of the Midwest will likely start with breeding populations in wooded 

riparian habitat, like the Niobrara River of Nebraska. Mountain lions seem to 

avoid cropland and open areas, though one of the mountain lions in my study 

used cropland and windbreaks to traverse areas of unsuitable habitat before 

reaching wooded riparian areas. Livestock managers along these riparian 

corridors should be aware that risk of predation of livestock will increase, 

particularly from young male dispersers, as mountain lions further establish 

breeding populations in the state. As for woody encroachment, the relationship 

between mountain lions and encroached woodlands is unclear for the time being 

but standing vegetation may facilitate mountain lion use of historic grasslands 

and increase access to otherwise inaccessible grassland prey populations. 

Future research could investigate the relationship between mountain lion habitat 

use and windbreaks, encroached woodlands, and seasonal use of croplands.   

 

Nebraska’s natural resources are tremendously valuable: numerous economies, 

including food production, are important for the socio-economic well-being of 

Midwestern America, and for meeting the food and energy demands of a growing 
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world; water resources are filtered by riparian vegetation, the highly demanded 

Ogallala aquifer relies on grasslands for adequate aquifer recharge to meet 

agricultural and residential water demands; pollinators and wildlife of many taxa 

require intact habitat to provide hunting, fishing, pollination, and viewing services; 

and the mountain lion, Nebraska’s newly returned large carnivore, is recolonizing 

a landscape that has greatly transformed since its extirpation a century ago. 

Management in response to woody encroachment must change, as I have 

addressed in the previous chapters, to allow the sustainable use of these natural 

resources and the ecosystem services they provide. 
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