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Forecasting undesirable change is, arguably, the holy grail of ecology. Paired with

an understanding of system interactions, a forecast is ideal if it provides reliable pre-

dictions in sufficient time to prevent or mitigate unwanted systemic change. Early

warning systems (or early warning signals, early warning indicators) have been de-

veloped and tested for some ecological systems data, but have been mostly applied

to marine fisheries time series and nutrient loadings in shallow lakes. Despite the nu-

merous quantitative methods proposed for identifying or forecasting regime shifts in

ecological data, few are used in practice. This dissertation contributes to our under-

standing of the utility and limitations of early warning systems for ecological regime

shift detection, referred to here as ’regime detection measures’. Using both theoretical

and empirical data, I evaluate the efficacy of multivariate regime detection measures

in identifying abrupt shifts in ecological communities over time and across space. I

also introduce a method which I refer to as ’velocity’ (of a system’s trajectory in

phase space) as a potential regime detection measure. Using resampling techniques,

I find the velocity method is more robust to data loss and data quality than are the

Fisher Information and Variance Index methods which have been previously applied

to empirical systems data. This dissertation demonstrates that, while potentially

useful, regime detection metrics are inconsistent, not generalizable, and are currently

not validated using probabilities or other statistical measurements of certainty.
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Table of Definitions

Research surrounding regime shifts, threshold identification, change-point detection,

bifurcation theory, etc. is muddled with jargon. Here, I provide a table of definitions

(Table 01) for terms and concepts that may either be unfamiliar to the practical

ecologist, or may have multiple meanings among and within ecological researchers and

practitioners. With this table, I aim to both improve the clarity of this dissertation

and highlight one potential issue associated with regime detection methods in ecology:

semantics.
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Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature.

Term Definition Synonyms

Abrupt A relative value of the speed and/or intensity of the change; the time period

over which the regime shift occurs relative to the time observed (or expected to

have been) in a particular state.

big, fast, quick,

large

Alternative Stable

State

Controversially can be distilled as one of either: the number of

unique stable configurations that a system can adopt (see Lewontin

1969), or the impacts that processes or pressures can have on a

system’s state (see May 1977).

Attractor The set of values towards which a system tends regardless of its initial

(starting) values.

Basin-Boundary

Collision

The parameter values for a system that causes the system to shift

between alternate attractors.

non-local

bifurcation

Catastrophe Theory The study of abrupt changes within a dynamical system.

Catastrophic

Bifurcation

A relatively abrupt jump to an alternate attractor due to initial

attractor.

Change-Point See also ’Regime Shift’. A term often used in computer science, climatology,

data science; represents the point at which a state changes its configuration.
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Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature. (continued)

Term Definition Synonyms

Change-Point

Detection

A change point method which does not require supervision; identifies

potential change points without a priori potential change points.

Change-Point Estimation A change point method which DOES require supervision; identifies potential

change points when given a set of potential change points; well-developed in

computer science, statistics, data mining, etc.; although well-developed, still

lacks with giving statistical significance of change-points.

Chaos A system with extreme sensitivity to initial conditions.

Critical Slowing Down

(CSD)

When the recovery rate (time to return) of a system decreases (approaches

zero) as a system approaches a critical point (possibly a threshold or tipping

point). A characteristic observed in some empirical systems data (e.g. nutrient

loading in shallow lakes).

Degrees of Freedom The number of system parameters or components which vary

independently.
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Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature. (continued)

Term Definition Synonyms

Domain of Attraction The range of values around which a system fluctuates. zone of

fluctuation, basin

of attraction,

stable point,

attractor

Driver A widespread anthropogenic source of change which leads to one or

more pressures (e.g., land-use change).

Driver-Threshold Regime

Shift

When a rapid change in external driver induces a rapid change in ecosystem

state.

Dynamical System A time-dependent system which can be described in state-space.

Dynamical Systems Theory The study of complex systems theory; the study of time-dependent systems.

Equilibrium The set of values around which a system revolves and does not

change.

Exogeneous Process

(Forcing, Driver)

An external process influencing the state of the dynamical system.
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Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature. (continued)

Term Definition Synonyms

First-Order

Stationarity

When the mean is constant over the observations.

Fold Bifurcation This occurs when a stable point collides with an unstable point; when crossing

a tipping point induces hysteresis.

Fractal Properties A measurement of geometrical self-similarity; when a system has

similar structure regardless of the scale of observation.

ergodic

Hysteresis A system which is state-dependent (e.g. magnets); when a tipping point or

threshold is crossed such that the previous state cannot be achieved by

reversing the conditions.

Leading Indicators When the statistical properties of the fluctuations (of the data)

approach a critical transition.

Lyapunov Exponent (and

Stability

A value that conveys the average rate of trajectory divergence that is caused by

an endogenous force; how quickly (if at all) a system will tend away from a

stable point if it starts near the stable point.

Measure Theory The study of measures and measurement (e.g. volume, mass, time).
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Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature. (continued)

Term Definition Synonyms

Moving (Sliding) Window

Analysis

When a subsample of the data $$X t$$ is used in lieu of a single observation,

$$x t$$.

Noise Processes manifested in data which are unaccounted for; sometimes

referred to as meaningless; random variability.

Non-Stationarity of the

Mean Value

Infers that a trend or a periodicity is present in the time series.

Online Real-time updating of model parameters, predictions, etc. (c.f.

offline).

Persistent A relative value of the longevity of the observed change in values. long-lasting

Phase Space A graphical representation of two or more trajectories where one axis

is not time. In this representation an equilibrium is defined as a

single point in the state space.

Prediction A temporal forecast. Is intrinsic when a model and parameters are used to make

forecast, is realized when the prediction becomes the actual state of the system.

Pressure A perturbation which negatively influences a system, and can be

defined as pulse, press, or monotonic.
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Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature. (continued)

Term Definition Synonyms

Red Noise Noise having zero mean, constant variance, and serial autocorrelation;

autocorrelated random variability.

Regime A set of system values that define a particular system state. Not

necessarily stable, but some state variables or outputs of the system

remain relatively constant over a defined period of time.

Regime Shift ”abrupt” and ”persistent” change in a system’s structure or functioning.

Second-Order

Stationarity

The mean is constant and the covariance is a function of a time lag,

but not of time.

Self-Similarity A system satisfied by power-law scaling.

Stable Equilibrium An equilibrium is stable when small perturbations do not induce

change.

State Space The set of all possible configurations of a system.

State-Threshold

Regime Shift

When a gradual change in external driver induces a rapid change in

ecosystem state (e.g.,. System crosses a threshold).

Stationarity When the probability density function of a system does not change with time.
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Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature. (continued)

Term Definition Synonyms

Statistical Stationarity A system with statistical properties unchanging over time. This

concept extends to periodic stationarity for systems exhibiting

periodic behavior.

Strange Attractor An attractor which has fractal structure (an observable fractal dimension).

Supervised Machine

Learning

When classifiers are used to train the data a priori.

System State The observed (current) instance of the system within a state space.

Threshold A point where the system reacts to changing conditions.

Tipping Point A point in a system’s trajectory where a small change in an endogenous force

induces a large change in system state or values; the point where a system can

flip into an alternative state.

Trajectory The path of an object or system through space-time. orbit, path

Transient A behavior or phenomenon which is responsive to initial (starting) conditions,

or its effect declines over time.

Trend Smoothing Local averaging of values such that the non-systematic components

of the system are washed out.



9

Table 01: A table of definitions for terms, theories, and
phrases often appearing in ecological regime shift lit-
erature. (continued)

Term Definition Synonyms

Unstable Equilibrium An equilibrium is unstable when small perturbations induce change.

Unsupervised Machine

Learning

When no prior training is required (i.e. no classifications necessary a

priori) to classify it.

White Noise Noise having zero mean, constant variance, and is not autocorrelated;

uncorrelated random variability.



10

Chapter 1

Introduction

Anthropogenic activity in the last few decades will continue to influence the intera-

tions within and among ecological systems worldwide. The complexity and drivers

of changes in coupled human-natural systems is consequently altered, further lim-

iting our ability to detect and predict change and impacts of change (Liu et al.,

2007; Scheffer, 2009). Early warning systems are developed to detect, and in some

cases predict, abrupt changes in disparate systems (e.g. cyber security Kaufmann et

al., 2015; banking and stock markets Davis & Karim, 2008). The need to develop

and improve early warning systems for natural and coupled human-natural systems

is exacerbated by the consequences of climate change and globalization, especially

when the human-related stakes are high. The ecological literature is inundated with

quantitative methods and models with the promise of predicting abrupt change in

high-dimensional ecological systems in time for intervention. The paucity of applica-

tion of many of these methods by practitioners and decision makers suggests much

work is to be done in advancing both our understanding of abrupt ecological change

and of the methods used for detecting it.

Forecasting undesirable change is, arguably, the holy grail of ecology. Paired with

an understanding of system interactions, a forecast is ideal if it provides reliable pre-

dictions in sufficient time to prevent or mitigate unwanted systemic change. Early
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warning systems (or early warning signals, early warning indicators) have been de-

veloped and tested for some ecological systems data, but have been mostly applied

to marine fisheries time series and nutrient loadings in shallow lakes. Despite the

numerous quantitative methods [see Chapter 2] proposed as early warning signals for

ecological data, many are currently of limited practical utility. This paradox may be

a consequence of existing early warning systems having one or more of the following

characteristics:

1. Not generalizable across systems or system types (especially when it requires a

model or a determinsitic function to describe the system)

2. Requires a large number of observations

3. Difficult to implement

4. Difficult or to interpret

5. Requires an understanding of the drivers of change

6. Performs poorly under uncertainty and in presence of noise

7. Gives no uncertaintiy around estimates (tying into interpretation issues)

8. Ignores or does not sufficiently account for observation error

9. Currently no baseline with which to compare results

10. Currently no application/testing on empirical systems data

11. Systems are subjectively bounded (i.e., components are chosen)

12. Being overshadowed by semantics

13. Are based on before-and-after information

14. Cannot link the shift to potential drivers (i.e. the method reduces the dimen-

sionality such that it is unitless and/or loses all relevant information)

15. Cannot handle irregular sampling

16. Cannot handle non-smooth or non-linear data
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Research focusing on the above areas as they relate to regime detection measures

may improve the quality of these early warning systems, further shedding light on

the potential of these methods for application to place-based observations.

1.1 Dissertation Aims

This dissertation contributes to our understanding of the utility and limitations of

early warning systems for ecological regime shift detection, referred to here as ‘regime

detection measures’. Regime detection measures exist for handling both univariate

and multi-variable data, however, it is the latter of these methods within which

this dissertation focuses. Although the univariate regime detection measures are

currently more widely applied and conceptually tractable than many multivariate

regime detection measures, the utility of the univariate measures may be limited

when change(s) in the system dynamics manifest in entire community dynamics,

rather than in select indicator species, for example. Multivariable regime detection

measures may also be more advantageous than analysing individual variables when

the drivers of the observed systemic change are unknown. Further, ecological systems

are noisy, and ecological systems data are messy, conditions which complicate the use

of univariate regime detection measures.

1.2 Dissertation Structure and Contents

This dissertation comprises a glossary (preface to Chapter 1), eight distinct Chapters

(Chapters 1-8), and a compendium of open-source statistical software authored during

the production of this dissertation in the form of two appendices (Appendices .4 and

.2). Finally, the dissertation is synthesized in Chapter 8. The terminology associated

with this line of research is highly variable both within and outside the field of ecology.
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For example, although many core concepts informing ecological regime shift theory

stem from dynamical systems theory, the terminologies do not align (Andersen et al.,

2009; Hastings & Wysham, 2010). Therefore to ensure clarity of discussion throughout

this work, I provide a glossary of phrases and concepts related to this dissertation in

a front-matter.

Chapter 2. There exists a staggering number of quantitative methods for iden-

tifying abrupt changes and regime shifts in ecological systems data. Despite the high

number of methods proposed in the literature, few have been scrutinized against em-

pirical data, and even fewer applied to multiple types of systems (e.g., terrestrial

mammals vs. marine fisheries). Although numerous reviews of these methods are

published, few are comprehensive in their presentation of the proposed methods and

metrics. In this Chapter 2 I provide a comprehensive list of the regime detection mea-

sures proposed in the relevant literature. I further conduct a bibliographic analysis

of the ecological regime shift relevant literature.

Chapter 3. Fisher Information is proposed as a method for identifying regime

shifts in multivariable ecological time series and spatially-explicit data and has been

applied to a variety of systems across at least 20 publications. Two forms of this

measure exist, one of which (the ‘derivaitves-based’ method) requires fewer steps and a

priori defined parameters to calculate than the other (the ‘binning method’). Chapter

3 contributes to the understanding of the ‘derivatives-based’ Fisher Information as

a regime detection measure in two ways. First, I present a step-by-step overview of

both the logistics and concepts required for calculating this measure. Next, I suggest

that the current calculation of Fisher Information can be split into two distinct parts:

a dimensionality reduction and the actual calculation of the Fisher Information. The

results of this study have implications for how the method can be used in the future,

and whether it will suffice as an indicator of abrupt change under certain conditions.
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Chapter 4. The Fisher Information method has been applied both temporal

(Cabezas et al., 2010) and spatial empirical data (Sundstrom et al., 2017; Eason et

al., 2019). To demonstrate the utility of Fisher Information in identifying abrupt

change in ecological communities at large spatial scales, I present an application of

Fisher Information to spatially-explicit avian community data in North America.

Chapter 6. Building off of the method described in Chapter 3 I suggest a method

which I refer to as the ‘velocity’ method for identifying ecological regime shifts. Previ-

ous use of the velocity metric has been embedded within larger calculations of Fisher

Information, specifically in the ‘derivatives-based’ method (see Chapter 3). The ve-

locity method is an overlooked, simple calculation that may be useful in identifying

abrupt changes in high dimensional temporal or spatial series. Here, I thoroughly de-

scribe the calculations behind the velocity metric, and demonstrate its utility through

application to both simulated and empirical systems data.

Chapter 5. Of the numerous regime detection measures published (see Chapter

2), few have been applied to empirical multivariate ecological data, and even fewer

scrutinized as indicators of abrupt change. In this Chapter I compare the ability of

select regime detection measures to identify published abrupt changes in a paleodi-

atom community. Further, I examine the results of these measures under various

conditions of data quality and quantity (e.g., missing species, infrequent sampling)

using resampling methods. This Chapter also provides a critical starting point for

determining the utility of the velocity method (proposed in Chapter 6) versus other

techniques.

Chapter 7. This chapter presents an application of body mass discontinuity

analysis to avian community time series before and after a landscape-scale regime

shift (Roberts et al., 2019). In this chapter, I test the hypothesis that species which

are sensitive to grassland habitat loss and degradation should be located near the
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edges of body mass aggregations. Although I find evidence suggesting declining and

sensitive (grassland obligate) species operate near the edges of body mass disributions

as opposed to other species, I was unable to identfiy clear patterns in the avian

community body mass distributions using a before-and-after design with respect to

the proposed spatial regme (Roberts et al., 2019). Appendix 7 contains an annotated

version of the code for the functions used to identify discontinuities in avian body

mass distributions (originally published in Barichievy et al., 2018).

1.3 Appendices and Software

Appendices include brief descriptions and vignettes for three self-authored R pakck-

ages, and are used throughout this dissertation. Each are available for download

at www.github.com/trashbirdecology. A final Appendix contains the code used to

conduct the discontinuity analysis used in Chapter 7

R package: bbsAssistant. Appendix 8.4 is contains a vignette for the self-

authored R package, written to facilitate retrieval and munging of information and

data from the North American Breeding Bird Survey (U.S. Geological Survey) FTP

server and website.

R package: regimeDetectionMeaures. Appendix .4 contains code for calcu-

lating a suite of regime detection measures, including the traditional early-warning

indicators, Fisher Information, and the velocity metric.

R package: bbsRDM. Appendix .2 contains functions for conducting spatial and

temporal anlaysis of the regime detection measures contained in package regimeDe-

tectionMeasures (Appendix .4), and is closely aligned with the analyses in Chapters

4 and 5. Further, this package provides a wrapper for downloading and munging data

from the U.S. Geological Survey’s Breeding Bird Survey, munging said data, and cre-



16

ating spatial sampling grids across North America. Minor additional functionality

includes an option to download and identify U.S. military bases across the globe.



17

Chapter 2

Methods for Detecting Ecological Regime Shifts

2.1 Introduction

Ecological regime shifts, or persistent changes in the underlying structure or func-

tioning of natural systems due to exogenous forcings, are increasingly relevant in

ecological research and management in an era of rapid and novel change due to to

anthropogenic activity. Identifying and predicting these types of changes is espe-

cially important when they impact ecosystem services or society in any other way.

Numerous quantitative methods are proposed for identifying ecological regime shifts

yet there exists a disparity among the number of methods proposed and the num-

ber of studies evaluating these changes using empirical data (Hawkins et al., 2015).

Despite the prevalence of review papers of ecological regime shift detection methods

(Ducré-Robitaille et al., 2003; Mantua, 2004; Rodionov, 2005a; deYoung et al., 2008;

Andersen et al., 2009; Boettiger et al., 2013; Kefi et al., 2014; Mac Nally et al., 2014;

Dakos et al., 2015; Scheffer et al., 2015; Filatova et al., 2016; Litzow & Hunsicker,

2016; Yin et al., 2017; Clements & Ozgul, 2018; Roberts et al., 2018), there does not

currently exist a comprehensive and modern source for these quantitative methods.

Existing reviews of the ecological regime shift methods vary in both the number

and detail of the methods presented (Ducré-Robitaille et al., 2003; Mantua, 2004;
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Rodionov, 2005a; deYoung et al., 2008; Andersen et al., 2009; Boettiger et al., 2013;

Kefi et al., 2014; Mac Nally et al., 2014; Dakos et al., 2015; Scheffer et al., 2015;

Filatova et al., 2016; Litzow & Hunsicker, 2016; Yin et al., 2017; Clements & Ozgul,

2018; Roberts et al., 2018). For example, some reviews critique the current state of the

regime shift literature (e.g., Andersen et al., 2009), while others present overviews of a

large number of methods with reference to a particular system type, or methodology

type (e.g., Roberts et al., 2018). These and other reviews provide useful syntheses

of the methods, however, do not emphasize the sheer number and breadth of the

methods proposed for and applied to empirical systems data. The rapid growth

of this literature and the methods proposed for identifying ecological regime shifts is

contributing to the lack of comprehensiveness among existing methods review papers.

Building a comprehensive database of the proposed ecological regime shift detec-

tion methods based on a formal literature review is difficult for a few reasons. First,

the terminology associated with regime shift theory and detection is highly variable

within and among fields (Andersen et al., 2009). For example, the terms, regime

shifts, regime changes and tipping points are variably used in studies of ecological

systems, whereas inhomogeneities is common in meteorology and climatology, and

structural change is largely confined to the study of economics. Although semantics

vary both within and across disciplines some methods are shared or are concurrently

applicable across fields. Second, papers introducing a new method or approach to

identifying regime shifts are not often proposed in publication outlets with aims of

disseminating new quantitative methods (e.g., Ecological Modelling, Methods in Ecol-

ogy and Evolution). Rather, many new methods are published in journals with refined

(e.g., Entropy, Progress in Oceanography), as opposed to publications with broader

scopes (e.g., Ecology and Nature).

The primary aim of this Chapter is to provide a single and comprehensive source
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of the quantitative methods proposed for identifying ecological regime shifts, akin

to the most comprehensive method review by Rodionov (2005a). I also conduct a

bibliographic analysis of the ecological regime shift literature to identify trends in the

development and current state of ecological regime shift theory. Finally, I compile a

comprehensive list of the proposed regime detection measures present in the ecological

regime shift literature.

2.2 Methods

This Chapter comprises two components. First, I compile a comprehensive list of the

regime shift detection methods and metrics used in the ecological literature based on

expert knowledge and prior reviews. Second, I conduct a bibliographic analysis of the

results of a formal review of the ecological regime shift literature to identify potential

themes and gaps in this area.

2.2.1 Quantitative methods for identifying ecological regime shifts

I used expert knowledge and previously published review papers to compile a compre-

hensive list of the quantitative methods proposed as ecological regime shift detection

methods. A pilot study which used a systematic literature review failed to identify

many of the methods of which I was previously aware, hence the reliance on expert

knowledge and previously published reviews. Here, I identify the first instances of

each method in the ecological or relevant literature.

The comprehensive list of methods makes exclusions for the following reasons.

First, I do not include methods which largely recycle, or make only slight adaptations

to, existing methods (Zhou & Shumway, 2008; Salehpour et al., 2011; Byrski & Byrski,

2016). However Nicholls et al. (2011) for an addition of variable optimization to the
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method in Nicholls (2011) that was not included in my comprehensive list. Next, the

list excludes papers which propose a combination of existing methods (e.g., Kong et

al., 2017; Seddon et al., 2014; Vasilakopoulos et al., 2017).

2.2.2 Bibliographic analysis of the ecological regime shift literature

The still-vague definition of ecological regime shifts has led to a breadth of articles

exploring this phenomenon. I conducted a formal literature review using the Web

of Science database to identify patterns in the development and persistence of the

ecological regime shift literature. I conduct a systematic literature review using ISI

Web of Science, and use these results to conduct exploratory bibliographic analyses.

The search was designed in an attempt to capture the development and breadth of

the field of ecological regime shifts. I used the below-mentioned search boolean to

identify articles related to regime shift and abrupt changes in ecological systems, re-

stricting the search to the Web of Science ‘categories’ (‘WC’) Ecology and Biodiversity

Conservation:

TS=(“regime shift” OR “regime shifts” OR “regime change” OR “regime

changes” OR “catastrophic change” OR “catastrophic shift” OR “catas-

trophic changes” OR “catastrophic shifts” OR “sudden change” OR “sud-

den changes” OR “abrupt shift” OR “abrupt shifts” OR “abrupt change”

OR “abrupt changes”) AND WC=(“Ecology” OR “Biodiversity Conser-

vation”)

I identified patterns and trends in the articles resulting from the above mentioned

search using a bibliographic analysis (using R Package bibliometrix; Aria & Cuccu-

rullo, 2017). This package contains function wrappers for conducting and visualizing

network analyses based on keyword, authorship, and citation data. In an attempt
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Figure 21: Number of articles containing phrases related to
ecological ’regime shifts’ published per publication out-
let.

to understand the evolution of regime shift theory and relate this evolution to the

quantitative methods in the ecological literature, I focus analyses on using keyword

and concept themes rather than citation counts and author dominance.
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Table 21: List of the regime detection methods identified us-
ing expert knowledge and previously published reviews
of methods.

Method Metric type Source

Average standard deviates metric Ebbesmeyer (1991)

BDS test metric Carpenter and Brock (2011)

Conditional heteroskedasticity metric Seekell et al. (2011)

Conditional probability analysis metric Zurlini et al. (2014)

Cumulative deviation test (CUSUM) metric Buishand (1982)

Degenerate Fingerprinting metric Kleinen et al. (2003)

Discontinuity analysis metric Peterson et al. (1998)

Downton-Katz test metric Karl et al. (1987)

First-order multivariate autoregressive

models (MAR1)

metric Ives et al. (2003)

Fisher Information metric Fath et al. (2003)

Intervention Analysis metric Francis (1994)

Inverse of AR(1) coefficient, variance, etc. metric Carpenter et al. (2008)
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Table 21: List of the regime detection methods identified us-
ing expert knowledge and previously published reviews
of methods. (continued)

Method Metric type Source

Kurtosis metric Biggs et al. (2009)

Lanzante method metric Lanzante et al. (1996)

LePage test metric Yonetani (1993)

Mann-Kendall test metric Goossens et al. (1987)

Mann-whitney U-test metric Mauget et al. (2003)

method-fuzzy synthetic evaluation (FSE) metric Wang et al. (2011)

Moving detrended fluctuation analysis

(MDFA)

metric He et al. (2008)

Nearest-neighbor statistics metric Pawlowski et al. (2008)

Oerleman’s method metric Oerlemans (1978)

Pettitt test metric Pettit (1979)

Probability density function entropy method metric Pawlowski et al. (2008)
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Table 21: List of the regime detection methods identified us-
ing expert knowledge and previously published reviews
of methods. (continued)

Method Metric type Source

Quickest detection method (Shiryaev-Roberts

statistic)

metric Moustakides et al. (2009)

Rodionov method metric Rodionov (2005)

Sequential t-tests metric Rodionov (2004)

Skewness metric Guttal et al. (2008)

Spectral density ratio indicator metric Biggs et al. (2009)

Stability Index of the Ecological Units metric Parparov et al. (2017)

Standard deviation (rising variance) metric Carepenter et al. (2006)

Standard normal homoegeneity metric Alexandersson et al. (1986)

STARS metric Buishand (1982)

T-test metric Ducre (2003)

Threshold Indicator Taxa ANalysis (TITAN) metric Baker et al. (2010)

Variance Index metric Brock et al. et al. (2006)
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Table 21: List of the regime detection methods identified us-
ing expert knowledge and previously published reviews
of methods. (continued)

Method Metric type Source

Vector-autoregressive method metric Mantua (2004)

Wilcoxon rank-sum metric Karl et al. (1987)

Zonal thresholding metric Yin et al. (2017)

two-phase regression metric of a model Easterling (1995)

Bayesian approaches model Jo et al. (2016)

Convex model model Qi et al. (2016)

Free-knot splines & piecewise linear modelling model Gal et al. (2010)

Generalized model model Lade (2012)

Multivariable autoregressive models (MAR1) model Ives et al. (2012)

Nonparametric drift-diffusion-jump model model Carpenter and Brock (2011)

Pettitt test and the Sen test model Vicent et al. (1998)

Potential analysis model Ives et al. (2012)
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Table 21: List of the regime detection methods identified us-
ing expert knowledge and previously published reviews
of methods. (continued)

Method Metric type Source

Regression-based models model Solow and Beet (1987)

Self-exciting threshold autoregressive

state-space model SETARSS(p)

model Tong (1990)

shiftogram model Groger et al. (2011)

Smooth transition autoregressive model model Gal et al. (2010)

Online dynamic linear modelling +

time varying autoregressive state space

models (TVARSS)

models Parparov et al. (2017)

Fourier Analysis other Carpenter et al. (2010)

Vector-autoregressive method other Solow and Beet et al. (2005)

Wavelet analysis (decomposition) other Cazellas et al. (2008)
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2.3 Results

2.3.1 Quantitative methods for identifying ecological regime shifts

I identified 63 unique methods proposed for identifying ecological regime shifts (Table

21) based on expert knowledge and previously published review articles.

Figure 23: A thematic map of the clusters (themes) identified
among the (a) author-supplied and (b) ISI-supplied
keywords for each article using a clustering algorithm.
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2.3.2 Bibliographic analysis of ecological regime shift literature

A search of Web of Science for articles in Ecology and Biodiversity Conservation con-

taining phrases related to ‘regime shifts’ yielded 1, 636 original articles. These articles

were not filtered in any fashion and as such all were considered in the bibliographic

analysis. I used the clustering algorithms of the R package bibliometrics to pro-

duce thematic maps, which use clustering algorithms to identify clusters (or themes)

based on bibliography features (e.g., keywords, authors ; Cobo et al., 2011).

2.3.2.1 Thematic mapping using keywords

Two types of keywords exist in the ISI Web of Science bibliography metadata: those

provided to the publication by the authors (author-supplied), and those defined by

the ISI Web of Science (ISI-supplied). A keyword thematic map suggests these key-

words are used very differently within this literature (Figure 23)1. The clustering

algorithm identified fewer clusters (themes) in the ISI-keywords (Figure 23a) than

were identified among the author-supplied keywords (Figure 23bˆ; see footnote 2).

This pattern is not surprising given the ISI-supplied keywords are restricted to a pre-

set number of keywords, whereas authors can and do provide synonyms, or words not

used at all by ISI. The themes identified in the ISI-supplied keyword analysis were

relatively consistent as the number of keywords analysed increased, but the themes

varied drastically among the author-supplied keywords. For this reason I make infer-

ence on only the ISI-supplied keyword cluster analysis. Four major themes were
1Axes represent (x, Callon’s centrality) the degree of interaction, or the contribution of the theme

to the research field and (y, Callon’s density) the strength of the network arcs, or the importance of
a theme to the field. Clusters appearing in the quadrants (from top-right moving counter-clockwise)
represent the following themes: I) motor-themes (important to the field and well-developed); II)
basic-themes (well-developed but marginally important to the field); III) emerging and disappear-
ing themes (under-developed and marginal); and IV) specialized themes (important but under-
developed). These themes were identified using a clustering algorithm discussed further in Cobo et
al. (2011)
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Figure 24: The themes identified in the literatue based on
author-supplied keywords vary as the number of words
included in the analysis increased.

identified in the ISI keyword analysis and, interestingly, fell mostly within the quad-

rants representing the most extreme values: the first and the third quadrants (Figure

25). The themes identified by the ISI-supplied keywords were much larger in scope

(e.g, dynamics, ecosystems, climate; Figure 23a) than those identified in the analy-

sis of author-supplied keywords (e.g., eutrophication, trophic cascade; Figure 23b).

That is, the themes of ‘regime shifts’ and ‘ecosystem dynamics’ are highly central to

and dense within the regime shift literature (Figure 23b-d). This suggests these two
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Figure 25: The themes identified in the literatue based on the
ISI-supplied keywords vary as the number of words in-
cluded in the analysis increased.

themes are important to the development of the field and are still strongly influencing

the evolution of this field. Although the theme ‘dynamics’ appears a central theme in

the development and persistence in ecological regime shift theory based on the bib-

liographic analysis, it is not necessarily reflected in the many case studies of regime

shifts in application (Litzow & Hunsicker, 2016). In fact, Litzow & Hunsicker (2016)

found that ∼ 50 of case studies actually tested or accounted for non-linear dynamics

when applying early warning indicators and other regime shift measures to ecological
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Figure 26: Chronological direct citation newtwork suggests the
intellectual structure can be mapped to a few papers.
This historiograph identifies important works explic-
itly in chronological, as opposed to absolute, order.

time series.

2.3.2.2 Historiograph, citation, and reviews

A few patterns appear in analyses of the intellectual and chronological structure of

the ecological regime shift literature (Figure 26). First, although the concept of

stability, thresholds, and multiple stable states in ecological systems first appeared

(and was well-received) in the literature in the 1970s (e.g., Holling, 1973; May, 1977),

the most highly cited papers in this field appeared primarily in the early and mid

2000s (Scheffer & Carpenter, 2003; Folke et al., 2004; Walker et al., 2004; Nes &

Scheffer, 2005; Carpenter & Brock, 2006). The most recent major contributions to
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Figure 27: Total number of articles published and correspond-
ing number of citations (for papers published that
year). The most highly cited papers to-date are those
published in the late 2000s.

the field were conceptual works emphasizing planetary boundaries and tipping points

and the impacts of not recognizing these shifts (Hughes et al., 2013). Finally, the

“rise” of resilience theory (Folke et al., 2004; Walker et al., 2004), the first efforts of

a search for early warning indicators of ecological regime shifts (Carpenter & Brock,

2006) and the critiques soon following these efforts (Andersen et al., 2009; Contamin

& Ellison, 2009) are highlighted in the historiograph.

The most influential papers in the field, based solely on number of citations, are
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Figure 28: Total number of articles published per year by cate-
gory as categorized by ISI. Book chapters, proceedings,
editorials, and letters are excluded.

those published in the late 2000s (Figure27), and include the articles which are broad

in-scope and are still used today to frame studies in the context of global change,

planetary boundaries, and large-scale tipping points (Bennett et al., 2009; Rockström

et al., 2009; Smith & Schindler, 2009). Around this time (∼ 2007) is when the number

of regime detection measures doubled (Figure 22). Papers equally influential to the

development of this field include those corresponding to the observed rapid increase

in the number of total publications in ecological regime shift theory (in the early
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2000s), Folke et al. (2004) and Scheffer & Carpenter (2003) (Figure27).

Numerous reviews of the regime shift literature exist, ranging from conceptual re-

views of the state of regime shift theory in ecology and application (e.g., Bestelmeyer

et al., 2011; Andersen et al., 2009; Mac Nally et al., 2014), to studies of robustness

of early warning indicators under various theoretical and practical conditions [e.g.,

Dutta et al. (2018); Perretti & Munch (2012); Lindegren et al. (2012); Hastings &

Wysham (2010); Figure 28]. Further, comprehensive reviews of the ecological regime

shift detection literature are increasingly out-dated. A permanent and open-source

database containing information critical to the testing, comparison, and implemen-

tation of RDMs may prove useful to the reader who is interested in applying RDMs

but is lacking the statistical or mathematical background to do so.

2.4 A synthesis of the methods available for the practical

ecologist

Many of the methods identified in this review have yet to be tested on empirical

data from more than a single system type (see Table 21). I categorize the regime

detection methods as one of either model-free or model-dependent. Model-free and

model-dependent methods are those which do and do not require a mechanistic model

to describe the system, respectively. Because many of the model-dependent methods

are based on auto-regressive modelling approaches, this is highlighted in the model-

dependent section.

The early warning indicators that are often referred to as, “traditional early warn-

ing indicators” (variance, skewness, autocorrelation at lag-1) are fairly well-reviewed,

and have been applied to a variety of conditions (Ditlevsen & Johnsen, 2010; Boet-

tiger & Hastings, 2012; Dakos et al., 2012a; Lindegren et al., 2012; Perretti & Munch,
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2012; Litzow & Hunsicker, 2016; Sommer et al., 2017; Dutta et al., 2018). However,

many of these works apply the traditional (and other) early warning indicators to

simulated data, with only some (Contamin & Ellison, 2009; Perretti & Munch, 2012;

Guttal et al., 2013; Dutta et al., 2018) testing under varying conditions of noise and

expected shift types. The utility and robustness of the traditional early warning in-

dicators is not consistent across and within systems, making them of limited utility

in situations where the system cannot be reliably mathematically modelled, or where

we have limited data [Burthe et al. (2016); Hastings & Wysham (2010); Perretti &

Munch (2012); see also Chapter 5]. Critical reviews and comparative studies of early

warning indicators suggest that no early warning indicator is reliable alone, suggest-

ing the user apply a suite, rather than a single method, and that there remain gaps in

our understanding of the conditions under which an early warning indicators might

fail (deYoung et al., 2008; Kefi et al., 2014; Filatova et al., 2016; Clements & Ozgul,

2018).

Regime detection measures can be classified into one of two major groups which

will largely dictate the applicability of an approach to an analyst or type of infor-

mation. Some RDMs require the use of mechanistic models whereas others fall into

the category of model-independent (or model-free). In most situations, the practical

ecologist will have insufficient data or a limited understanding of the system with

which to parameterize even the simplest mechanistic models. Further, developing

an informative defining data-generating model (i.e. system of equations, differential

equations) for more than a few variables (i.e. much greater than 2) is often intractable.

Following the convention of Dakos et al. (2012a), I classify the 66 regime detection

measure identified as a result of this review for detecting as one of model-based or

model(metric)-free and generally synthesize the utility of these types of measures to

the practical ecologist.



37

2.4.1 Model-dependent

Model-dependent require a mechanistic (mathematical) representation of the system,

models which often carry strict assumptions that are easily violated by empirical sys-

tems (Abadi et al., 2010). Model-dependent methods are usefully categorized under

two contexts: differentiable systems of equations or auto-regressive. The methods

relying on mechanistic models include model descriptions of systems with many, dy-

namic and interacting components. For example, models are used to reconstruct

trophic food webs where prey or predator collapse induces trophic regime shifts in

freshwater lake systems (Carpenter et al., 2011).

2.4.2 Model-free

Model-free (or metric-based per Dakos et al., 2012a) methods are those which do not

require a mathematical representation of the system. In fact, many require much

less knowledge about the system component dynamics and their interactions to cal-

culate a results. The utility of these methods vary with respect to the number of

state variables encompassed in the method, and are therefore further categorized as

either univariate (using a single dimension) or multivariate (using but not necessarily

requiring multiple dimensions). The most widely used model-free univariate RDMs

include descriptive statistics of individual system components (i.e. univariate), such

as variance, skewness, and mean value (Mantua, 2004; Rodionov & Overland, 2005;

Andersen et al., 2009). These univariate methods, often referred to as ‘traditional

early-warning indicators’ require only very simple calculations of individual variables,

however, their efficacy in empirical systems analysis is controversial. For example,

variance (Carpenter & Brock, 2006) and skewness (of a single variable), oft referred

to generally as ‘leading indicators’ or ‘early-warning indicators’ in the literature, have
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been applied to both theoretical and empirical systems data with varying results.

2.5 Discussion

In this chapter I present a comprehensive list of the regime detection measures pro-

posed for analyzing ecological data. Although multiple reviews of regime detection

measures exist, they are either not comprehensive in their survey of the possible meth-

ods or are increasingly out of date with respect to the number of methods proposed in

the literature (Rodionov, 2005a). Most reviews since the comprehensive list presented

in Rodionov (2005a) are not comprehensive, instead focusing on a single aspect of

measures that may be useful to a particular audience. For example, Roberts et al.

(2018) summarizes methods capable of handling multiple variables, and Dakos et al.

(2015) review only methods designed to detect the phenomenon of critical slowing

down. The list presented here does not discriminate, and provides an update to the

seminal methods paper by Rodionov (2005a). It is important to note that contribu-

tions of previous reviews to the understand and scrutiny of regime detection measures

in ecology: Mac Nally et al. (2014); Scheffer et al. (2015); Rodionov (2005a); Roberts

et al. (2018); Dakos et al. (2015); Mantua (2004); Litzow & Hunsicker (2016); Kefi

et al. (2014); Andersen et al. (2009); Boettiger et al. (2013); Dakos et al. (2015);

Clements & Ozgul (2018); Filatova et al. (2016); deYoung et al. (2008).

Leading indicators/regime detection measures which analyze only single variables

(e.g., variance, autocorrelation at lag-1) are well-tested on both theoretical and em-

pirical data (e.g. Burthe et al., 2016). Among the most widely used RDMs indicators

applied to time-series data include an index of variance, moments around the grand

mean (skewness and kurtosis), and critical slowing down (Carpenter & Brock, 2006,

2011). Although univariate indicators may provide insight into relatively simple sys-
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tems, their reliability as indicators for complex systems is less certain (Bestelmeyer

et al., 2011; Perretti & Munch, 2012; Burthe et al., 2016; Sommer et al., 2017; Dutta

et al., 2018). Leading indicators can be a reliable warning of impending shift (Car-

penter & Brock, 2011). Some methods have been applied to early-warning indicators

in whole systems (Carpenter et al., 2011), however, it is uncommon to have enough

information to build reliable networks or food webs. Consequently, reliably measuring

the ecological system at hand is often realistically (and financially) not possible. To

be useful to practitioners it may be necessary to move beyond heuristic methods, to

methods which supply statistical significance or probabilities. And although critiques

of some RDMs exist, the rate at which they are rigorously tested does not exceed

the proliferation of new methods in the literature. For any method to gain credible

traction as a pragmatic tool in ecology, studies should address the concerns of these

critiques.

Only a handful of methods have been introduced to the mainstream method-

ological journals in ecology (e.g., Ecological Modelling, Methods in Ecology and Evo-

lution). Although many mainstream publications (e.g., Science, Ecology Letters) in-

clude applications of some of the methods identified in this chapter (Table 21), I argue

that celebrity and ‘new and shiny’ (Steel et al., 2013) methods may influence which

methodological articles are printed in these popular journals. A critical survey of

potential and realized applications of these methods would be useful for highlighting

the needs of future research and methodological improvements. Many of the meth-

ods presented in Table 21 have either not been applied to empirical data at all, or

were tested only once, often but not always in the article introducing or adapting the

methodology (Hawkins et al., 2015). Some methods, especially those dubbed ‘early

warning indicators’ (variance, auto-regressive model coefficients) have become rela-

tively mainstream in their application to empirical data, despite having been shown
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to be less robust in noisy and nonlinear systems (Burthe et al., 2016), in systems

exhibiting lag-effects (Guttal et al., 2013), and in systems not exhibiting catastrophic

shifts (Dutta et al., 2018). Unlike these early warning indicators, fewer efforts have

been made to test robustness under these and more simple conditions (Dutta et al.,

2018; c.f. Brock & Carpenter, 2010; Benedetti-Cecchi et al., 2015). In addition to

the paucity of studies attempting to understand the limitations of these methods,

this review suggests that simply identifying the suite of methods used in ecological

regime shift detection may be difficult using traditional review methods. Many of the

methods mentioned in this review were not easily identifiable in a pilot, systematic

search process in Web of Science and Google Scholar–rather, many methods were

those of which I was either previously aware and/or those previously highlighted in

the existing reviews (Mantua, 2004; Rodionov, 2005a; deYoung et al., 2008; Andersen

et al., 2009; Boettiger et al., 2013; Kefi et al., 2014; Dakos et al., 2015; Scheffer et

al., 2015; Filatova et al., 2016; Litzow & Hunsicker, 2016; Clements & Ozgul, 2018;

Roberts et al., 2018). To facilitate this process, an online, comprehensive database

may prove useful to the practical ecologist.

Hastings & Wysham (2010) aptly point out an important feature of using any

methods for identifying regime shifts in empirical system data: first, only have a sin-

gle history exists for ecological system trajectories and second, most early warning

indicators which signal critical slowing down require the system to have a small poten-

tial. Although both points are equally important, the latter infers that no ecological

system that is complex, or which cannot be accurately modelled using a system of

continuous equations, will be predictable via current, early warning signals. This,

paired with the failure of early warning signals in some systems gives little hope for

relying upon most regime detection measures and early warning signals as indicators

of ecological regime shifts. Disregarding stochasticity in ecological models will often
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make the model non-differentiable at the point of an abrupt shift (Graham & Tél,

1984; Hastings & Wysham, 2010).

The warnings by Hastings & Wysham (2010) have not yet been heeded—regime

detection measures are still being introduced into the literature, often assuming that

the system will exhibit critical slowing down prior to the shift, or having been tested

on only a single trajectory of an ecological system. Given the increase in introduction

and application of regime detection measures, I recommend the following practices be

used in this field will aid the accessibility and transparency of the methods: consistent

use of fewer methods which require fewer assumptions; persistent collection and main-

tenance of baseline data (reference data); an open-sourced database of methods and

applications; an updated and critical review of the current state of methods in ecology

(see Chapter 5) which includes a brief discussion of the methodological advancements

and demonstrated failures; rigorous empirical applications of these methods (espe-

cially of those only tested on toy and experimental data); and the relationship of the

RDMs used in ecology to other fields (computer science, data science, climatology

and oceanography). I identify a suite of questions (Table 22) that would be useful in

a much-needed modern and critical review of this field.

Table 22: Potential questions for a comprehensive review of the
ecological regime detection metrics literature.

Type Questions

Methodological Does the method assume smooth potential?

Does the regime shift need to be identified *a priori*?

What are the major assumptions about the distribution of the

original data?
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Does the method explicitly assume the system/variable is

stationary?

Does the performance of the method change with non-stationarity?

Can the method handle unstructured data?

Can the method handle multiple regime shifts?

What types of regime shifts can the method detect (e.g., stochastic

resonance, slow-fast cycles, noise-induced transition)?

Is it a model- or metric-based method?

Does it have forecasting potential?

Can the method handle uneven sampling?

What are the minimum data requirements (resolution, extent,

number of observations)?

How does the method handle missing data (e.g., new invasions)?

Does the method assume Eulerian or Lagrangian processes?

Does the system *have* smooth potential?

Has the method been tested on empirical data? If so, to what rigor?

What is the impact of losing state variables on long-term predictions

(e.g., species extinction)?

Can the method identify drivers?

What assumptions does the method make about the system?

What types of regime shifts are possible in the system?

Are regime shift(s) suspected *a priori*?

What lag(s) exist in the data (system)?

Would a positive forecast change management action?
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Do predictions translate to other systems?

Can we interpolate data if necessary? If so, what does this mean for

inference?

In which discipline(s) beyond ecology has the method been tested?
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Chapter 3

Deconstructing the steps for calculating Fisher Information

as a measure of abrupt change in ecological systems

This chapter is currently under review at Ecological Modelling with coauthors N.B.

Price, A.J. Tyre, D.G. Angeler, T. Eason, D. Twidwell, and C.R. Allen.

3.1 Abstract

Ecological regime shifts are increasingly prevalent in the Anthropocene. The number

of methods proposed to detect these shifts are on the rise, yet few are capable de-

tecting regime shifts without a priori knowledge of the shift, and fewer are capable of

handling high-dimensional, multivariate and noisy data. A variation of Fisher Infor-

mation has been proposed as a method for detecting changes in the “orderliness” of

ecological systems data. Although this method is described and applied in numerous

published studies, its calculation and the concepts behind its calculation are not clear.

Here, I succinctly describe this calculation using a two-species predator-prey model.

Importantly, I demonstrate that the actual equation for calculating Fisher Informa-

tion metric comprises fewer steps than was previously described, by decoupling the

dimensionality-reduction component from the actual Fisher Information calculation

component. I hope this work will serve as a reference for those seeking to understand
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Fisher Information in the context of ecological systems and regime shifts, and will

stimulate further research of the efficacy of these composite regime shift detection

metrics..

3.2 Introduction

Changes in the feedback(s) governing ecosystem processes can trigger unexpected and

sometimes undesirable responses in environmental conditions (Scheffer et al., 2001;

Walther et al., 2002). Ecologists often refer to such changes as regime shifts, but

this term is used interchangeably in the literature with state change, state transition,

or alternative state (Andersen et al., 2009). Climate change and globalization are

triggering novel and unexpected changes in ecosystems (Hughes, 1994; Scheffer et

al., 2001; Walther et al., 2002; Parmesan, 2006), and the rapidity with which these

changes occur make predictive modeling difficult. Although detecting regime shifts

is increasingly difficult as we increase the extent and complexity of the system in

question (Jorgensen & Svirezhev, 2004), advances in the collection and analysis of

ecological data (La Sorte et al. 2018) may improve our ability to detect impending

regime shifts in time for intervention (Jorgensen & Svirezhev, 2004; Groffman et

al., 2006; deYoung et al., 2008; Carpenter et al., 2011; Sagarin & Pauchard, 2012;

Wolkovich et al., 2014).

Numerous quantitative approaches have been proposed as regime shift detection

methods (Mantua, 2004; Rodionov & Overland, 2005; Andersen et al., 2009; Clements

& Ozgul, 2016), but few are consistently applied to terrestrial ecological data (deY-

oung et al., 2008). I broadly classify these methods as either model-based or model-

free (Hastings & Wysham, 2010; Boettiger & Hastings, 2012; Dakos et al., 2012a).

Model-based methods use mathematical (mechanistic) representations of the system
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(Hefley et al., 2013), which often carrying strict assumptions that are easily violated

by dynamic systems such as ecosystems (Abadi et al., 2010). Further, model mis-

specification may yield spurious results (Perretti et al., 2013). Model-free (or metric-

based, per Dakos et al., 2012a) regime detection methods require fewer assumptions

to implement than do model-based methods, and typically require much less knowl-

edge (if any) about system component interactions. The most widely used model-free

methods include both descriptive statistics of individual system components, such

as variance, skewness, and mean value (Mantua, 2004; Rodionov & Overland, 2005;

Andersen et al., 2009) and composite measures of multiple variables, notably prin-

cipal components analysis (Petersen et al., 2008; Möllmann et al., 2015), clustering

algorithms (Beaugrand, 2004), and the ‘variance index’ (Brock & Carpenter, 2006).

3.2.1 Fisher Information as a Regime Detection Method

A method that has been more recently applied in the analysis of ecological and social-

ecological systems is Fisher Information (Cabezas & Fath, 2002; Karunanithi et al.,

2008). As a multivariate, model-free method, Fisher Information integrates the infor-

mation present in the entire data of a system and distills this complexity into a single

metric. This allows Fisher Information to capture ecosystem dynamics with higher ac-

curacy than uni-variate-based metrics, which frequently fail to detect regime changes

(Burthe et al., 2016). However, despite the potential of this method its mathematical

underpinnings – specifically its calculation and the concepts behind its calculation–

may not be obvious to those without extensive training in mathematics. In this pa-

per, I address this knowledge gap. I first provide an overview of the method and

highlight the need to account for scaling properties, an inherent feature in complex

systems. I then succinctly describe the decoupling of the dimensionality-reduction

component from the actual Fisher Information calculation component using a two-
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species predator-prey model. I finally discuss the results from a theoretical viewpoint

and its practical utility for predicting regime shifts, an increasing concern motivated

by current rates of fast ecological change.

3.2.2 The Sustainable Regimes ypothesis

Fisher Information (hereafter, FI; Fisher, 1922) is a model-free, composite measure

of any number of variables, and is proposed as an early warning signal for ecological

regime shift detection and as a measure of system sustainability (Mayer et al., 2007;

Karunanithi et al., 2008; Eason & Cabezas, 2012; Eason et al., 2014). Three defini-

tions of FI in this context exist: (i) a measure of the ability of the data to estimate

a parameter, (ii) the amount of information extracted from a set of measurements

(Frieden, 1990; Roy Frieden, 1998), and (iii) a measure representing the dynamic

order/organization of a system (Cabezas & Fath, 2002). Although definitions (i) and

(ii) are widely applied in the statistical and physical sciences, I focus on definition

(iii) as it is gaining traction as a tool used in the context of ecological system re-

sponse to fast environmental change. The application of FI to complex ecological

systems was posed as part of the “Sustainable Regimes Hypothesis,” stating a system

is sustainable, or is in a stable dynamic state, if over some period of time the average

value of FI does not drastically change (Cabezas & Fath, 2002). This concept can be

described using an ecological example. Consider the simple diffusion of a population

released from a point source at t = 0. This process can be described by a bi-variate

normal distribution, p(x, y|t). As the time since release, t, increases, the spread of

the distribution, p(x, y|t), disperses because the animals have moved further from the

release location. As the animal moves away from the release location, the potential

area within which it currently occupies will increase with time. In this example,

FI will decrease in value as t increases because p(x, y|t) contains less information
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(higher uncertainty) about where the animals will be located. If we assume constant

dispersal, as t → ∞ the animals will be relatively uniformly distributed across the

environment and p(x, y|t) will carry no information about the location of the animals.

Consequently, as t → ∞ FI approaches zero (no information). Per the Sustainable

Regimes Hypothesis (Cabezas & Fath, 2002), this example system is not in a stable

dynamic state over the range of t, since FI decreases with time.

Conversely, if a population following a simple logistic growth model, dN
dt

= rN(1−
N
K

), varies around some carrying capacity, K, and the average system parameters (r,

K, and their variances σr, σk) are stationary, then the logarithm of the population

size should follow a normal distribution, N normal(µ, σ). In this situation, the FI

measured over any selected window of time will be relatively constant and, per the

Sustainable Regimes Hypothesis, indicates the system is in a stable dynamic state.

Further, this Hypothesis posits that a perturbation to N will also not affect FI so

long as the perturbation occurs with a stationary probability distribution and if the

perturbation does not change the distributions of r and K.

3.2.3 Fisher Information requires dimension reduction prior to calcula-

tion

An important feature of the FI method is that it requires a complete reduction in

dimensionality (i.e., from > 1 to 1 system component). For example, a recent ap-

plication of Fisher Information to empirical data condensed a species pool from 109

species time series into a 1-dimensional time series (Spanbauer et al., 2014). A reduc-

tion in dimensionality, i.e. condensing multivariate data into a single metric, of over

two orders of magnitude likely involves a large loss of relevant information, raising the

questions of what information is preserved during the dimensionality reduction step

in calculating FI, what is lost, and whether this is important. Other dimension reduc-
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tion techniques, e.g., principal component analysis (PCA) and redundancy analysis

(RDA), attempt to preserve the variance of the data, and the number of components

scales with the dimensionality of the data (i.e. they are scale explicit). In contrast,

by reducing entirely the dimensionality of the data, the FI method does not identify

which features of the data are preserved, and the dimensionality does not scale with

the dimensionality of the original data.

3.2.4 Aims

The key contribution of this study is that I decouple the dimensionality reduction step

of the FI method (Step 1) from the statistical analysis step (Step 2). By isolating the

dimensionality reduction step, we can evaluate it based on its own merits and relate it

to more well-known and established methods of dimensionality reduction. By isolating

the statistical analysis step, one can better understand how Fisher Information is

calculated on the single-dimensional data. I believe that this decoupled approach

will eliminate some confusion regarding the calculation of FI, allowing interested

researchers to readily evaluate the merits of this method. To facilitate our explanation

of the method, I reproduce the predator-prey analysis used in (Fath et al., 2003;

Mayer et al., 2007), then induce a “regime shift” into the model. I hope this work

will serve as a useful explanation of the FI metric for those seeking to understand it

in the ecological regime shift context and will stimulate research using this and other

multivariate, model-free, and composite measures to understand ecological regime

shifts.
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3.3 Methods

3.3.1 Predator-prey model system

Our model system is a two-species predator-prey model (Equation (3.1); Fath et al.,

2003; Mayer et al., 2007; Frieden & Gatenby, 2010), hereafter referred to as the

“model system”:
dx1 = g1x1(1− x1

k
)− l12x1x2

1+βx1

dx2 = g21x1x2
1+βx1

−m2x2)
(3.1)

The specified parameters for the model system are g1 = m2 = 1,l12 = g12 = 0.01 ,k =

625 ,and β = 0.005 (Fath et al., 2003; Mayer et al., 2007; Frieden & Gatenby, 2010).

The initial conditions (predator and prey abundances) for the model system were

not provided in the original references (Fath et al., 2003; Mayer et al., 2007). I used

package deSolve in Program R (version 3.3.2) to solve the model system [Equation

Equation (3.1)] finding x1 = 277.781 and x2 = 174.551 to provide reasonable results.

A complete cycle of this system corresponds to 11.145 time units.

3.3.2 Inducing a Regime Shift

Mayer et al. (2007) calculated FI for a predator-prey system for several discrete values

of carrying capacity of prey. The results of this study showed that FI was different for

systems with different carrying capacities (K). However, this study did not address

the central question of FI behavior during a regime shift. As an extension of the

original study, I simulated a regime shift by modeling an abrupt decline in carrying

capacity, k. I assume k is described by Equation (3.2) where k1 is the initial carrying

capacity, k2 is the final carrying capacity, tshift is the time the regime shift occurred,

and α is the parameter controlling the rate (slope) of the regime shift. The hyperbolic

tangent function (see Equation (3.2)) simulates a smooth and continuous change in k
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while still allowing for the regime shift to occur rapidly. I incorporate the change in

k into our system of differential equations by defining the rate of change in k, k′(t),

given by (Equation (3.2)). I assume k1 = 800 and k2 = 625, values corresponding

to the range of carrying capacities explored by Mayer et al. (2007). I simulated a

time series of 600 time units, introducing a regime change after 200 time units, and

α = 0.05, where t∗ indicates the

k(t) = k1 − 0.5(k1 − k2)(tanh(α(t− t∗)) + 1)

k′(t) = 0.5α(k1 − k2)(tanh(α(t− t∗))2 + 1) (3.2)

3.3.3 Decoupling the Steps for Calculating Fisher Information

Two methods exist for calculating Fisher Information (FI) as applied to ecological sys-

tems data to which I refer the “derivatives-based” method (first appearing in Cabezas

& Fath (2002) and the binning method (first appearing in Karunanithi et al. (2008)).

Although the binning method is proposed as an alternative to the derivatives-based

method for handling noisy and sparse data, our decoupling method reveals it may be

an unnecessary method. Therefore, I focus on only the derivatives-based method for

explaining the theoretical basis for the FI method. The general form of FI can be

found in (Fath et al., 2003; Mayer et al., 2007) and I refer the reader to (Cabezas &

Fath, 2002).
ds

dt
=

√
(dx1

dt

2
+ dx2

dt

2
) (3.3)

Step 1: Dimensionality Reduction. The key idea of the dimensionality reduction step

is to calculate the Euclidean distance traveled in phase space. In phase space, each
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coordinate axis corresponds to a system state variable (e.g., number of predators and

number of prey). The state of the model system over time describes a path or tra-

jectory through phase space. The distance traveled represents the cumulative change

in state relative to an arbitrary starting point in time. For the model system, the

distance traveled in phase space can be obtained by solving the differential equation

given by Equation (3.3)

The original motivation for the dimensionality reduction step is that, under re-

strictive conditions, there is a one-to-one mapping between the state of the system

(s), defined in a multidimensional phase space, and the distance traveled, a one-

dimensional summary (Cabezas & Fath, 2002). To relate this abstract idea to a more

familiar situation, we draw an analogy between the path traced by the system in

phase space and the path of a car over the course of a trip. The distance traveled by

the car over time is related to the position of the car. Given the route of the car, we

could determine the location of the car at any point in time if we know how far it has

traveled. However, the distance traveled provides no information about the proxim-

ity of locations (i.e., system states). For example, two points in phase space may be

arbitrarily close, but the distance traveled would be different if these system states

occur at different points in time. Moreover, if the system revisits the same state twice

then the one-to-one mapping breaks down and a single state maps to potentially very

different values of distance traveled.

What is preserved in the calculation of distance traveled is the rate of change

of the system (e.g., the speed and acceleration of the car). The rate of change of

the system is the first derivative of the distance traveled in phase space. This is an

important point because the concept of a “regime shift” is often associated with the

idea of a sudden change in system state. Therefore, it may not be unreasonable to

employ a dimensionality reduction procedure that preserves these system dynamics.
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Step 2: Statistical Analysis. The product of Step 1 is a one-dimensional time

series of what I call “distance traveled”, s, (in phase space). The variable s is referred

to as “Fisher variable s” and “represent[s] a particular state of phase space” in the

FI literature (Mayer et al., 2007). I believe distance traveled (s) is more descriptive

than “Fisher Variable s” and avoids confusing the state of the system, defined in

multiple dimensions by the multivariate data, with the one-dimensional summary.

Using this measure, we next calculate the probability of observing the system in a

particular state by assuming a one-to-one mapping between distance traveled and

the system state. That is, we calculate the probability of observing the system at

a particular distance, p(s), along the trajectory for some period of time from 0 to

tend. The time at which we observe the system is assumed to be a random variable,

Tobs ∼ Uniform(0, tend). This approach assumes the system is deterministic and is

observed without error. However, the observed distance traveled by the system, s, is

a random variable because it is a function of the random observation time.

I =
∫ ds

p(s)

[
dp(s)
ds

]2

(3.4)

I = 1
T

∫ T

0
dt

[
s′′2

s′4

]2

(3.5)

Importantly, the probability of observing the system at a particular value of s increases

if the system is changing slowly at that point in time. That is p(s) is inversely

proportional to the system rate of change, s′. Mathematically, the distance traveled

in phase space, s, is a monotonically increasing function of time and we assume it is

differentiable. Therefore, the probability density function of the distance traveled is

p(s) = 1
T

1
s′

, where s′ = ds
dt

is the speed (or velocity) of s, and T is the time interval over

which the system was observed (tstart-tend). We note that p(s) is simply a constant
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multiplied by the inverse of the speed of the system.

The original motivation for the FI calculation as applied to ecological systems

was the hypothesis that “since Fisher Information is a measure of the variation” it

is also “an indicator of system order, and thus system sustainability” (Cabezas &

Fath, 2002). Equation (3.4) is a general form of FI and Equation (4.4) is the form

used in the derivative-based method for FI (see Equation 7.3b and 7.12 in Mayer

et al., 2007). To better understand the FI calculation, note that Equation(4.4) is,

in part, a measure of the gradient content of the probability density function. As

the probability density function becomes flatter, the FI value will decrease. In this

way, the FI calculation is closely related to the variance. In fact, the FI value for

a normal distribution calculated according to Equation (4.4) is simply one over the

variance. It is also important to note that FI is zero for a uniform distribution,

as the probability density function is flat. Note also that FI goes approaches ∞ if

the system is not changing over some period of time (Equation (4.4)). ##Results

Distance traveled (s), speed (ds
dt

), and acceleration (d2s
dt2

) capture the dynamics of the

model system [Equation (3.1); Figure 31]. I simulated a regime shift in the carrying

capacity of this model system, at approximately t = 200 (Figure 32). The location of

this regime shift with respect to the system trajectory in phase space over the entire

simulated time period is shown in (Figure 33). Although a slight change is captured

by s (Figure 4) at the location of this regime shift, it is not pronounced. Although

the distance traveled, s (Figure 34) changes fairly smoothly around the location of

the regime shift, the system exhibits a steep decline in speed ds/dt soon after the

induced regime shift (Figure 35).

I calculated FI for the distribution of s over a series of non-overlapping time

windows. According to Mayer et al. (2007) the length of the time window should be

equal to one system period such that FI is constant for a periodic system, however, the
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system periods are not identical before, during, and after the regime shift. Therefore,

I performed two separate calculations of FI using window sizes corresponding to the

initial (when t < 200) and the final (t > 200) periods of the system (winsize = 13.061

and 11.135 time units, respectively). Using these window sizes the drop in FI at the

regime shift initiation is bigger than the magnitude of the fluctuations preceding it

(Figure 36).

3.4 Discussion

Part of the appeal of the FI method of regime shift detection is that it provides a

1-dimensional visual summary of system “orderliness”. However, I have demonstrated

that, because only a single measure is required to calculate the Fisher Information, the

dimensionality reduction step need not necessarily use the ‘distance traveled’. Rather,

for example, one can calculate the Fisher Information of anohter reduced dimension

like the components of an ordination (e.g. using Principal Components Analysis). The

rate of change of the system (velocity, ds
dt
}), on which FI method is based, is also a 1-

dimensional quantity. In the simple predator-prey example, calculating and plotting

FI did not provide a clear benefit over simply plotting the system rate of change

directly. I suggest that future research uncouple the dimensionality reduction step

and the FI calculation step in order to better illustrate the benefits of the FI method

relative to dimensionality reduction alone. In the predator-prey example, I assumed

the data was free from observation error. Despite these ideal conditions, the estimated

FI had high variation and the results depended on the size of the time window used in

the calculation. This issue arises because the period of the cyclic system is changing

during the regime shift such that it is difficult to find a single window size that works

well for the entire time series. Mayer et al. (2007) describe this as a “confounding
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issue” related to “sorting out the FI signal of regime change from that originating

from natural cycles” and suggest using a time window that is large enough to include

several periods. However, in the absence of a quantitative decision rule defining what

changes in FI indicate regime shifts, it is difficult to separate the signal in the FI

metric from the noise due to fluctuations in the natural cycles. Further research is

needed to define quantitative decision rules for what changes in FI constitute a regime

shift.

The example used in this study is unrealistic in that I assume no measurement

error and therefore focus on the “derivatives-based” method of calculating FI. How-

ever, our analysis also has implications for the “binning” method of calculating FI

that was later developed for high-dimension noisy data (Karunanithi et al. (2008)).

Rather than attempting to estimate the rate of change of each system component

(e.g., hundreds of species) and combining these estimates to get the total system rate

of change, I suggest an approach where the dimensionality of the data is first reduced

by calculating distance traveled in phase-space and then only a single rate of change

is estimated. The advantage of this approach is that for an n-dimensional system it

only requires the estimation of one derivative rather than n-derivatives . The draw-

back to this approach is that noisy observations will likely introduce some bias into

the estimate of the system rate of change. Nonetheless, I believe this approach is

worth exploring due to its simplicity relative to the “binning” method. The Fisher

Information of an n-dimensional system is a vector of unit-less values which can only

be compared within a data set (e.g., within a single community time series) and in-

terpreting FI is still largely a qualitative effort (Fath et al., 2003; Mantua, 2004), not

unlike most regime detection methods [Ch. 2]. When the FI of a system is increas-

ing, the system is said to be moving toward a more orderly state, and most studies of

FI propose that sharp changes in FI, regardless of the direction of the change, may
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indicate a regime shift (Cabezas & Fath, 2002; Karunanithi et al., 2008; Spanbauer

et al., 2014). Although the aforementioned and numerous other works interpret FI in

this context (e.g., Eason et al., 2014; Eason & Cabezas, 2012), I suggest future work

which clearly identifies the ecological significance of the Fisher Information metric

and its significance within the ecological regime shift paradigm.
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Figure 31: From top to bottom, distance traveled in phase
space, speed tangential to system trajectory, acceler-
ation tangential to system trajectory.



59

Figure 32: Carrying capacity over time with a regime shift oc-
curing around time 200.
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Figure 33: Phase space plot of system trajectories for different
values of k. Colored point indicates the coordinates
coorresponding to the shift induced in carrying capac-
ity.
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Figure 34: Distance travelled in phase space over time. Dashed
vertical line at time 200 indicates location of regime
shift.
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Figure 35: Speed of the system (rate of change, velocity) in
phase space. Dashed vertical line at time 200 indicates
location of regime shift.
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Figure 36: Fisher Information calculated for non-overlapping
time windows. Two different window sizes were used
as indicated by color. Dashed vertical line at time 200
indicates approximate location of regime shift.
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Chapter 4

An application of Fisher Information to bird community

data does not reveal distinct regimes in the continental

United States

4.1 Introduction

Ecosystems are open, dynamical systems that are most often not easily described

using fully parameterized models. Some patterns have emerged in certain statistical

mechanics of ecological observations. despite the complexity of most ecological sys-

tems. An uptick in recent years of studies of regime shifts (Table 01) in ecology

has spurred an increase in the number of new methods for detecting ecological regime

shifts (Chapter 2), some of which have been applied to spatial information (Brock &

Carpenter, 2006; Guttal & Jayaprakash, 2009; Kefi et al., 2014; Butitta et al., 2017;

Sundstrom et al., 2017). As defined in Table 01, a regime shift is largely considered

an abrupt and persistent change in a system’s structure or functioning. Following

this definition and without considering the pressures (Table 01) associated with the

observed regime shift, it is not yet clear whether identifying a ‘spatial regime’ using

a snapshot of a system (i.e. using a single or short period of time relative to the time

scale of the system dynamics and/or pressures) is pragmatic. A concise and global
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definition of the spatial regime detection measure is important since observations of

non-random spatial processes (e.g., land cover) can manifest as either a rapid shift

(e.g. an ecotone) or as a gradual change (e.g., slow mixing along a gradient). Conse-

quently, and because most regime detection measures signal abrupt change, only the

former may be identified as “regime shifts” using spatial regime detection measures.

Although it is suggested that statistical and pragmatic methods are advanced more

rapidly by bottom-up approaches, i.e. using case studies (see DeAngelis & Yurek,

2017), there is much work to be done in the way of testing the statistical rigor of

spatial regime detection measures. The objective of this chapter is to determine

whether the Fisher Information as a regime detection method [Eq. (4.4)] identifies

spatial regime boundaries in the bird communities of the continental United States.

This chapter is also supported by original software developed for implementation in

Program R, which is publicly available (see Appendix .4).

4.2 Data and Methods

4.2.1 Data: North American breeding bird communities

I used community abundance data (Sauer et al., 2014) from long-term monitoring

programs to identify spatial and temporal regimes using the Fisher Information (FI)

derivatives method (see Eq. (4.4)). The North American Breeding Bird Survey

(NABBS) trains citizen scientist volunteers to annually collect data using a standard-

ized roadside, single observer 3-minute point count protocol and has organized data

collection annually across North America (Figure 41) since 1966. The roadside sur-

veys consist of 50 point counts (by sight and sound) along ∼ 24.5 mile stretch of road.

Due to strict reliance on volunteers, some routes are not covered every year. Addi-

tionally, some routes are moved or discontinued due to changing landscape conditions
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Figure 41: Locations of Breeding Bird Survey routes sampled
between 1966 and 2017.

and change in observer safety. Route-year combinations that were missing years but

were not discontinued were treated as missing data. Although NABBS volunteers

attempt to identify all species as possible, persistent biases exist in this protocol. De-

spite a standardized survey protocol, some species are difficult to detect using these

methods. For example, crepuscular species are less likely to be detected beyond the

first few points of the BBS route, given they are most active at sunrise and the sur-

vey begins within 30 minutes of sunrise. Further, species which congregate in large

groups and are highly mobile (e.g., waterfowl) tend to have less reliable inter-annual
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abundance estimates given their ability to move long-distances in a short period of

time. To remove any potential influence of sampling bias on the Fisher Information

result, I removed birds of these types from all analyses: waterfowl, waders, and shore

species (BBS AOU numeric codes 0000 through 2880).

4.2.2 Study area

Although the NABBS conducts surveys throughout much of North America (most of

the United States, Canada, and Mexico), coverage of the boreal forests of Canada are

sparse in space, and many routes in Mexico have fewer than 25 years of observations.

For these reasons I limited analyses largely to the continental United States and parts

of Southern Canada (see Figure 41).

4.2.2.1 Focal military base

The Mission of the U.S. Department of Defense is to provide military forces to deter

war and protect the security of the country, and a primary objective of individual

military bases is to maintain military readiness. To maintain readiness, military

bases strictly monitor and manage their natural resources. Military bases vary in

size and nature, and are heterogeneously distributed across the continental United

States (See Figure 43). The spread of these bases (Figure 42), coupled with the top-

down management of base-level natural resources presumably influences the inherent

difficulties associated with collaborative management within and across military bases

and other natural resource management groups (e.g., state management agencies,

non-profit environmental groups).

Much like other actively managed landscapes, military bases are typically sur-

rounded by non-managed lands, or lands not managed specifically for natural resource

or ecological biodiversity or conservation. Natural resource managers of military bases
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Figure 42: Locations of focal U.S. military bases, Eglin Air
Force Base (AFB) and Fort Riley Military Base.

face environmental pressures within and surrounding their properties, yet their pri-

mary objectives are very different. Natural resource managers of military bases,

whose primary objective is to maintain military readiness, are especially concerned

with if and how broad-scale external forcings might influence their lands. Prominent

concerns include invasive species, wildlife disease, and federally protected species

(personal communication with Department of Defense natural resource managers at

Eglin Air Force and Fort Riley military bases). For these reasons, natural resource

managers attempt to create buffers along their perimeters (e.g., live fire/ammunition

suppression, wide fire breaks). Identifying the proximity of military bases to historic

and modern ecological shifts may provide insight into the effectiveness of their natural
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Figure 43: Three East-West running transects analyzed in this
Chapter overlayed against the Omernick Ecoregion
boundaries map.

resource management efforts.

The NABBS routes chosen for analyses in this Chapter lie within or near Fort Riley

military base (located at approximately 39.110474◦, −96.809677◦; Kansas, USA). Fort

Riley (Figure 42) is a useful reference site for this study. Woody encroachment of the

Central Great Plains over the last century has triggered shifts in dominant vegetative

cover and diversity (Ratajczak et al., 2018) in the area surrounding Fort Riley military

base (Van Auken, 2009). This phenomena should present itself as a regime boundary

if Fisher Information is a reliable spatial regime detection measure.

4.2.2.2 Spatial sampling grid

Fisher Information has been applied to empirical data as a spatial regime detection

measure in recent years (Sundstrom et al., 2017; Eason et al., 2019). The authors of
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Sundstrom et al. (2017) used the Fisher Information binning method to demonstrate

the utility of this method as an indicator of spatial regime boundaries, suggesting that

rapid changes in the resulting value of Fisher Information as calculated for spatially

adjacent sites should indicate ‘regime changes’. Sundstrom et al. (2017) identified

sampling sites which transected multiple ecoregions, resulting in a transect which

zigzagged across a region of the Midwestern United States (Sundstrom et al., 2017).

I identified sites using a gridded system across the continental United States and

parts of Canada to ameliorate potential bias associated with handpicking NABBS

routes. The gridded system comprises East-West running transects transects, ame-

liorating potential sampling bias as the transect location and widths were designed

to capture large-scale shifts in bird communities at regular intervals. This spatial

sampling grid approach also allows for raster stacking, or layering data layers (e.g.,

vegetation, LIDAR, weather), providing an opportunity to identify potential relation-

ships with abiotic drivers, should regime shifts be observed in the avifauna data. This

spatial sampling method also provides a simple vector for visualizing changes in the

Fisher Information over space-time. For brevity, I present visual results of only three,

spatially-adjacent, East-West running transects (Figure 43) at multiple time periods.

4.2.3 Calculating Fisher Information (FI)

Fisher Information, I(θ), was developed in 1922 by Ronald Fisher as a measure of

the amount of information that an observable variable, X, reveals about an unknown

parameter, θ. Fisher Information is a measure of indeterminacy (Fisher 1922) and is

defined as,

I(θ) =
∫ dy

p(y|θ)

[
dp(y|θ)
dθ

]2

(4.1)
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where p(y|θ) is the probability density of obtaining the data in presence of θ. The

Fisher Information measure (FIM) is used to calculate the covariance matrix associ-

ated with the likelihood, p(y|θ). Fisher Information is described as Extreme Phys-

ical Information (Frieden & Soffer, 1995; Frieden et al., 2002), a measure that has

been used to track the complexity of systems in many scientific disciplines including,

physics, cancer research, electrical engineering, and, recently, complex systems theory

and ecology

Fisher Information as gathered from observational data provides insight as to

the dynamic order of a system, where an orderly system is one with constant (i.e.,

unchanging) observation points, and one whose nature is highly predictable. A dis-

orderly system is just the opposite, where each next data point is statistically unpre-

dictable. In ecological systems, patterns are assumed to be a realization of ecosystem

order; therefore, one should expect orderliness in a system with relatively stable

processes and feedbacks. Orderliness, however, does not necessarily infer long-term

predictability. Equation (4.1) is next adapted to estimate the dynamic order of an

entire system, s, as

I =
∫ ds

p(s)

[
dp(s)
ds

]2

(4.2)

where p(s) is the probability density for s. Here, a relatively high Fisher Information

value (I) infers higher dynamic order, whereas a lower value (approaching zero) infers

less orderliness. To limit the potential values of I in real data, we can calculate the

amount of Fisher Information by re-expressing it in terms of a probability amplitude

function q(s) (Fath et al., 2003; Mayer et al., 2007):

I = 4
∫
ds

[
dq(s)
ds

]2

(4.3)

A form specific to the probability density function of distance traveled by the entire
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system, which I call the ‘derivatives’ method, is defined as (Mayer et al., 2007, eq.

7.12):

I = 1
T

∫ T

0
dt

[
s′′2

s′4

]2

(4.4)

where T is the number of equally spaced time points over which the data are inte-

grated. Numerical calculation of I using the binning method (Eq. (4.3) and (4.4))

each incorporate a moving-window procedure for calculating the probability of the

system, p(s), as being in one of an unidentified number of states (s). Although pre-

viously applied to spatially-explicit terrestrial community data,the binning method

requires multiple parameters to be defined a priori, which have been shown to influ-

ence inference based on the metric. I therefore calculated FI using the derivatives

equation [see Chapter 3].

The binning procedure allows for a single point in time or space to be categorized

into more than one state, which violating the properties of alternative stable states

theory. The size of states (see Eason & Cabezas, 2012) measure is required to con-

struct p(s). In the case of high dimensional data, a univariate binning procedure of

p(s) is not intuitive (i.e., reducing a multivariate system to a single probability distri-

bution rather than constructing a multivariate probability distribution). Importantly,

when using community or abundance data, rare or highly abundant species can in-

fluence the size of states criterion, thus influencing the assignment of each point into

states. Finally, Eq. (4.3) assumes equal spacing (in space or time) between sampling

points. Each of these violations can be avoided by using Eq. (4.4) (Cabezas & Fath,

2002; Fath et al., 2003) to calculate the Fisher Information measure (see Chapters

3, 6 for detailed discussions on this topic). Briefly, derivatives method (Eq. (4.4))

estimates the trajectory of the system’s state by calculating the integral of the ratio

of the system’s acceleration and speed in state space (Fath et al., 2003). Here, I use
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the derivatives method (Eq. (4.4)) to calculate Fisher Information for all East-West

transects (see Figure 43) at decadal intervals (years 1980, 1990, 2000, and 2010).

Justification for using this method is provided in detail in Chapter 3.

4.2.4 Interpreting and comparing Fisher Information across spatial tran-

sects

4.2.4.1 Interpreting Fisher Information values

Interpretation of FI, like the interpretation of numerous other regime detection mea-

sures, is currently a qualitative effort. Fisher Information is proposed as an indicator

of system orderliness, where periods of relatively high values of FI indicate the system

is in an “orderly” state, possibly fluctuating around a single attractor. A rapid change

in FI is proposed as an indicator of a change in a system’s orderliness, suggesting a

potential reorganization phase. Whether Fisher Information can identify a switch

among basins of attraction within a single, stable state remains unknown, as does

the number of states which a system can occupy. When a system occurs within any

number of states equally, i.e., p(s) is equal for each state, both the derivative, (dq(s)
ds

,

and I are zero. As (dq(s)
ds
→∞), we infer the system is approaching a stable state, and

as dq(s)
ds
→ 0 the system is showing no preference for a single stable state and is on an

unpredictable trajectory. Eq. (4.3) bounds the potential values of Fisher Information

at [0, 8], whereas Eq. (4.1), Eq. (4.2), and Eq. (4.4) are positively unbounded [0,∞).

If the Fisher Information is assumed to represent the probability of the system being

observed in some state, s, then the absolute value of the Fisher Information index is

relative within a single datum (here a single datum is a spatial transect). It follows

that Fisher Information should be interpreted relatively, but not absolutely.

Here I define a potential regime change as a point(s) having a non-zero deriva-



74

tive, and at which relatively large changes (manifested as either a sharp increase or

decrease) in FI occurs. Regime shifts are identified as data changing from one state

to another, thus, rapid shifts in the value of FI should indicate the locations of these

shifts in the time and space, at which the system undergoes reorganization. Spa-

tial and temporal Fisher Information calculation does not vary, but interpretation of

either differ in that a spatial analysis will identify a spatial regime boundary (Sund-

strom et al., 2017) within a single time period, whereas temporal analysis identifies

the point in time at which the system undergoes a regime shift. I follow published

recommendations for interpreting the Fisher Information results in the context of

identifying regime shifts (e.g., Karunanithi et al., 2008; Fath et al., 2003; Eason &

Cabezas, 2012).

4.2.4.2 Interpolating results across spatial transects

NABBS are not regularly spaced, and pairwise correlations of adjacent transects (see

Figure 43) is not possible without either (1) binning the Fisher Information calcula-

tions using a moving-window analysis, or (2) interpolating the results to regularly-

spaced positions in space. To avoid potential biases associated with the former option

(i.e. choosing window size, location of data aggregation), I linearly interpolated the

calculated Fisher Information within each spatial transect to 50, evenly-spaced points

along the longitudinal dimension. The 50 longitudinal points to which I interpolated

were the same across each spatial transect, while latitude varied across transects. I

used the function stats::approx() (with argument rule=1) to linearly approximate

the Fisher Information. I did not interpolate values beyond the longitudinal range of

the original data (i.e., no extrapolation).
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4.2.4.3 Spatial correlation of Fisher Information

If Fisher Information captures and reduces information regarding abrupt changes in

community structure across the landscape, then it follows that the values of Fisher

Information should be spatially auto correlated. That is, the correlation of FI values

should increase as the distance between points, both within and among transects,

decreases. Further, direct comparison of FI across routes is not possible since FI (Eq.

(4.4)) is a relative value with no upper limit (i.e. can take on any value between 0 and

∞). In other words, FI values calculated are not relatively comparable outside of a

single spatial transect (Figure 43). Fisher Information is, however, directly compara-

ble within each spatial transect (e.g., 43). For these reasons, we can identify spatial

regime shifts both within and among spatial transects by using pairwise correlations

among two transects (e.g., 43) to determine whether values of FI are consistent across

space. Here, I calculate the pairwise correlation (Pearson’s) among each pair of ad-

jacent spatial transects (e.g., Figure 43). I removed a pair of points if at least one

point was missing an estimate for Fisher Information. This occurs when the original

longitudinal range of one transect exceeded the range of the adjacent pair.

4.3 Results

4.3.1 Fisher Information across spatial transects

As suggested earlier, rapid increases or decreases in FI are posited indicate a change

in system orderliness, potentially suggesting the location of a regime shift. Using this

method yields inconclusive results regarding the location of ‘spatial regimes’ (Figure

44). Of the three spatial transects analyzed in this chapter (see Figure 43), Figure

44 is representative of the lack of pattern observed in the Fisher Information values

across all analyzed transects. I did not identify patterns of spatially contagious abrupt
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Figure 44: The change in the Fisher Information values along
a single, East-West-running spatial transect (Transect
number 12) over time.

changes in the Fisher Information values within or among spatial transects.
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Figure 45: Fisher Information of two spatially adjacent tran-
sect pairs (transects 12, 13) over time. Interdecadual
trends in FI are very different within each transect and
are not highly correlated among transects over time.



78

Figure 46: Fisher Information of select East-West spatial tran-
sects over time. These transects are representative of
the results obtained from the remaining transects.
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Figure 47: Contrary to expectations there appear no clear pat-
terns of abrupt change in the Fisher Information
results along three selected East-West running tran-
sects (Year 2010). The results are visualized here at
regularly-spaced intervals such that the locations are
not precise relative to the location of corresponding
Breeding Bird Survey routes.

4.3.2 Spatial correlation of Fisher Information

This study did not identify spatial correlation of the Fisher Information results among

most of the spatially adjacent transects (Figures 48 and 49)). For spatially-adjacent

transects (e.g, transects 11 and 12, or 12 and 13 in Figures 48 and 49), we should
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Figure 48: Pairwise relationships of Fisher Information (in-
terpolated values) of spatially adjacent transects over
time do not exhibit expected patterns of high postive
correlation. Pairs were compared (column) at se-
lect sampling years (rows), and pair-wise correlations
among paired transects are presented. Large, positive
correlations indicate Fisher Information signals simi-
larly at adjacent spatial transects.

expect high and positive correlation values, and these values should stay consistent

across time unless the spatial transects were separated by an East-West running phys-

ical or functional boundary. This is not, however, what I expect in our East-West

running transects (Figure 43), as the spatial soft-boundaries limiting the distribution

and functional potential of avian communities are largely North-South (Figure 43).
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Figure 49: Pairwise relationships of Fisher Information (in-
terpolated values on the log-scale) of spatially adjacent
transects over time. Pairs were compared (column)
at select sampling years (rows), and pair-wise corre-
lations among paired transects are presented. Large,
positive correlations indicate Fisher Information sig-
nals similarly at adjacent spatial transects.

Note spatial transects in Figure 43 overlap multiple, large spatial ecoregion bound-

aries, such that we should expect our data to identify these points (boundaries).

Upon initial investigation, there are no consistent signs of broad-scale patterns in

FI across space (Figure 47)1. If Fisher Information is an indicator of spatial regime
1Here, shape size indicates the relative value of the scaled and centered Fisher Information

results. Red box (top panel) indicates the extent of the results presented in the bottom panel.
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boundaries, we should expect to see large changes in its value (in either direction)

near the edges of functional spatial boundaries (e.g., at the boundaries of ecoregions).

No clear regime changes appeared in areas where we might expect rapid changes (e.g.,

along the 105th meridian West, where a sharp change in altitude occurs). Numerical

Figure 410: Fisher Information results (scaled and centered;
larger circles (points) represent higher values of
Fisher Information) plotted against ecoregion bound-
aries (EPA Level 2 boundaries) for the year 2000.

investigation of the spatial correlation among adjacent transects also yielded no clear

patterns. I did not identify any obvious correlation with changes in FI values and

functional potential (using Omernick Ecoregion Level 2; see Figure 47). However, in
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years 2000 and 2010 the transects 11 and 12, and 12 and 13 were highly positively

correlated (Figure 49). Rather than abrupt changes in Fisher Information I found

gradual changes (e.g., see results for years 2000 and 2010 in Figs. 47 and 410.

4.4 Discussion

The Fisher Information measure was introduced as a method to avoid analytical is-

sues related to complex and noisy ecological data (Fath et al., 2003; Karunanithi et

al., 2008) and was recently suggested as an indicator of spatial regimes (Sundstrom et

al., 2017; Eason et al., 2019). Contrary to expectations, I did not consistent abrupt

changes in the Fisher Information metric (Eq. (4.4)), which would indicate a regime

shift of sorts, in the avian communities. Further, there was an absence of autocorre-

lation among the spatially adjacent transects in my study area, suggesting that the

Fisher Information may not be a suitable metric for identifying abrupt changes in

bird communities at this scale.

Although the Fisher Information equation (Eq. (4.4)) used in this study is a

relatively straightforward and fairly inexpensive computational calculation, extreme

care should be taken when applying this index to empirical data. Fisher Information

is capable of handling an infinite number of inputs (variables) and, given sufficiently

low window size parameters, can technically calculate an index value for only two

observations. It is important that the user understands the assumptions of identifying

regime shifts or abrupt changes when using this method, as rigorous testing of its

efficacy is necessary (but see Chapter 5). The sampling design of the North American

Breeding Bird Survey data in this Chapter was designed to avoid subjective decisions

present in a previous application (Sundstrom et al., 2017).

There are three primary assumptions required when using Fisher Information
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to estimate relative orderliness within ecological data (Mayer et al., 2007): (i) the

order or state(s) (s) of the system is observable; (ii) any observable change in the

information observed in the data represents reality and the variables used in the

analyses will not produce false negatives; and, (iii) changes in I presumed to be

regime shifts do not represent the peaks of cyclic (periodic) patterns. Assumption

(i) is one of philosophical debate and is thus not controllable. To attempt to control

for false negatives or false positives that may result from violating assumption (ii),

the user of this metric should take care in their selection of state variables. In the

the case of a high dimensional data, relativization of state variables and/or a state

variable reduction technique may be useful. However, Fisher Information does not

convey information on how specific variables relate to the calculated index. Finally,

we can take measures to account for cyclic behavior [assumption (iii)] in the data

by ensuring integration periods capture at one full cycle of the system and, given

sufficiently high number of observations, increasing the integration period may also

alleviate some issues related to irreducible error, or white noise.

The lack of patterns identified using Fisher Information may be influenced by a

mismatch among the ecologically relevant scales and the temporal resolution and ex-

tent of our data may influence the ability of this index to capture large-scale changes

in whole bird communities. Aside from the typical biases associated with the BBS

data (e.g., species detection probability, observer bias), there are additional consider-

ations to be made when using these data to identify ‘spatial regime shifts’. Breeding

Bird Survey routes are spaced apart so as to reduce the probability of observing the

same individuals, but birds which fly (especially in large flocks) overhead to foraging

or roosting sites have a higher probability of being detected on multiple routes. We

have, however, removed these species (waders, shorebirds, waterfowl, herons) from

analysis. Regardless, this study assumes there is potential for each unique BBS route
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to represent its own state. If routes were closer together, it is more probable that the

same type and number of species would be identified on adjacent routes. Therefore,

if this method does not detect slight changes in nearby routes which occupy the same

‘regime’, then it follows that the method is sensitive to loss or inclusion of new species,

which are spatially bounded by geological and vegetative characteristics. What new

information does this give us about the system? Fisher Information reduces and re-

moves the dimensionality of these systems, which may omit information or signals

integral to understanding the ecological processes at play.

Effective regime detection measures should provide sufficient evidence of the drivers

and/or pressures associated with the identified regime shifts (Mac Nally et al., 2014).

The Fisher Information index, while collapsing a wealth of data into a single metric,

does not allow the user to relate the resulting value to the original data, unlike other

dimension reduction techniques. For example, the loadings, or the relative influence of

variables on the ordinate axes, can be derived from a Principal Components Analysis–

this cannot be achieved using Fisher Information. If Fisher Information clearly sug-

gested a spatial regime boundary or shift, a before-and-after post-hoc analysis of the

regional community dynamics might confirm the regime shift occurrence.

A rapid change in either direction (increase or decrease) of the Fisher Information

value is proposed as an indicator of ecological regime shifts, or a change in the or-

derliness of a system (Mayer et al., 2006; Eason & Cabezas, 2012). After calculating

the Fisher Information for each spatial transect (Figure 43) during each sampling

year in this study, I used pairwise correlation to determine whether spatial autocor-

relation existed among pairs of spatial transects. If some set of points are close in

space and are not separated by some physical or functional boundary (e.g., an eco-

tone, high altitude rock formations), then the Fisher Information calculate should

exhibit a relatively high degree of spatial autocorrelation that is consistent over time.
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It follows that the correlation coefficient of spatially adjacent transects should be

similar, diverging only as the distance between the transects differs and/or a func-

tional or physical boundary separates them. Contrary to these expectations, I did

not find evidence of such abrupt changes within nor across the East-West running

spatial transects. Several questions remain regarding the application of regime shift

detection methods to spatially-explicit data. If signals of regime shifts do exist, the

results of this study suggest the Fisher Information metric may not be ideal for iden-

tifying them. This study provided an objective evaluation of the Fisher Information

metric as a spatial regime detection measure. Future work on the following areas may

improve our understanding of if and how Fisher Information may provide insights of

ecological regime shifts in spatial and/or temporal data:

1. Sensitivity of Fisher Information to data quality and quantity (this is explored

in Chapter 5).

2. What, if any, advantages does FI have over other density estimation techniques?

3. Does FI provide signals in addition to or different than geophysical and vegeta-

tive (e.g. LIDAR) observations (data)?

4. Relationship of Fisher Information to likelihood ratio-based unsupervised change-

point detection algorithms (e.g., ChangeFinder; Liu et al., 2013).

5. How does Fisher Information perform relative to other regime detection mea-

sures (see Chapter 5)?
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Chapter 5

Using Resampling Methods to Evaluate the Relative

Performance of Regime Detection Measures

5.1 Introduction

Ecological systems have many unpredictable and variably interacting components.

Methods for analyzing these complex systems, e.g. Dynamic Bayesian Networks, net-

work models, and food webs are designed to handle these complexities, yet require

data- and knowledge-intensive models. Although ecological data collection and data

management techniques are improving (La Sorte et al., 2018), the aforementioned

approaches to modeling and understanding complex system are often unfeasible in

ecosystem research and management (Clements & Ozgul, 2016).

A growing concern with anthropogenic impacts on the environment has increased

the demand for mathematical and statistical techniques that capture these dynamics.

These often undesirable changes in the structure or functioning of ecological systems

are often referred to as regime shifts, regime changes, state change, abrupt change, etc.

(Andersen et al., 2009) . A yet-unattained goal of ecological research and management

is to reach a point where these methods can predict impending regime shifts in real-

time and with high confidence. Ideally, ecological regime shift detection methods

(hereafter, regime detection measures) would require little knowledge of the intrinsic
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drivers of the system, and the users of the method would not be required to know if

and where a regime shift occurred in the data.

Despite the suite of regime detection measures in the environmental and ecological

research literature, they are not used in ecological management. We can describe the

current state of regime detection measures as being either system specific (i.e., the

method is not system agnostic) or not. Methods of the latter type are convenient in

that they can be applied across various system and data types, but the results of these

analyses require some degree of subjective interpretation (Clements & Ozgul, 2018;

c.f. Batt et al., 2013). Efforts to develop and/or improve regime detection measures

that do not require such subjectivity will aid the advance of regime detection measures

research and application.

Current efforts to improve regime detection measures may be stunted by the lack

of application beyond simple and/or theoretical systems data. Like most statistical

and mathematical approaches, the evolution of many regime detection measures be-

gins with application to theoretical data, followed by application to empirical data.

Current applications of regime detection measures to empirical, ecological data are

largely limited to data describing populations (Anderson & Piatt, 1999; Alheit et al.,

2005; deYoung et al., 2008), climatic, marine, and Paleolithic regime shifts (Yang &

Wu, 2006; Spanbauer et al., 2014; Kong et al., 2017), with few applications to ter-

restrial data (c.f. Bahlai et al., 2015; Sundstrom et al., 2017). Although testing the

performance and inference boundaries of theoretical and simple systems is important,

they are of little use to ecosystem managers if they are not proven to be easily and

reliably applicable to their system. Additionally, regime detection measures should

be capable of handling empirical ecological data, which are often sparse, noisy, and

haracterized by irregular time intervals.

Ecological systems data are expensive to capture, often exhibiting large process
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variation and observation errors. This variability reduces data quality and quantity,

limiting the numerical tools for identifying trends and changes in the system (Thrush

et al., 2009). Some methods, new and old, proposed as regime detection measures

are purported to handle the data limitation and quality issues inherent in ecological

data, and minimize subjective decisions for choosing state variables and interpreting

results. For example, variable reduction techniques, e.g. principal components analy-

sis (Rodionov & Overland, 2005; Andersen et al., 2009; Reid et al., 2016), clustering

algorithms (Weijerman et al., 2005; Weissmann & Shnerb, 2016), an index of variance

(Brock & Carpenter, 2006), and Fisher Information (Cabezas & Fath, 2002; Fath &

Cabezas, 2004; Karunanithi et al., 2008) were introduced as methods which collapse

the system into a single indicator of ecological regime shifts. Although these methods

have been used on empirical ecological systems data, their robustness to empirical

data quality and quantity have yet to be examined.

In this Chapter I examine the influence of observation and process errors on the

inference obtained from select multivariate regime detection measures. There are

three major objectives:

1. Identify the effects of data quality on regime detection measure inference.

2. Identify the effects of data quantity on regime detection measure inference.

3. Explore the relative performance of velocity (described in Chapter 6) to the

above mentioned methods under multiple scenarios.

This Chapter provides baseline relative performance estimates of select, multivariate

regime detection measures under various scenarios of data quality and quantity. The

results from this Chapter inform the practical ecologist of the potential limitations

to consider when applying these regime detection measures to their data, and has

potential to inform the data collection process. Additionally, the software accompa-
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nying this Chapter allows the end user to implement these methods on this or their

own system data, or on theoretical data.

Figure 51: Relative abundances of the diatom species in Foy
Lake over the time period.
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Figure 52: The amount of time elapsed between observations
for the Foy Lake paleodiatom data.

5.2 Data and Methodology

5.2.1 Study system and data

I used paleodiatom time series from a freshwater system in North America (Foy Lake,

present day Montana) that apparently underwent rapid shifts in algal community

dynamics at multiple points in time. This data comes from a single soil core sample,

from which the relative abundances of 109 diatom species were identified at 768

observations (time points) over ≈ 7, 000 years (Figure 51). Although the soil core was

sampled at regular distances, the soil accumulation process is not necessarily linear

over time, resulting in irregularly-sampled observations (i.e., time elapsed between
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sampling points differs varies; see Figure 52). The data were published in Spanbauer

et al. (2014) and can be downloaded at the publisher’s website.

5.2.2 Regime detection measures

Fewer model-free regime detection metrics exist than do model-based metrics (Chap-

ter 2) and of these, only a few are suggested for multivariate data. Here, I compare

the results for three regime detection metrics that are model-free and can handle mul-

tivariate data: velocity (Chapter 6), the Variance Index (Brock & Carpenter, 2006)

and Fisher Information (Fath et al., 2003). I chose the Variance Index, as this is

one of the more widely applied multivariate, model-free regime detection measures,

and has been shown to, in some empirical data, identify regime shifts post hoc. I

introduced the velocity in Chapter 6 as a new, potential regime detection metric. As

this is the first time it has been used for such a purpose, including it in this approach

allows us to further identify potential flaws with the method, but also to gain some

baseline estimates of its relative performance. In Chapter 3, I presented the Fisher

Information metric as it is used in detecting ecological regime shifts, and discuss the

situations under which it may or may not be a good metric.

5.2.2.1 Velocity (v) calculation

In Chapter 6, I describe a new method, velocity, v, as a potential dimension reduction

and regime detection method. First introduced by Fath et al. (2003) as one of

multiple steps in calculating their variant of Fisher Information, velocity calculates

the cumulative sum of the mean root square change in all state variables over a

period of time (Eq. (5.1)). Steps for calculating this metric are described in detail in
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Chapters 3 and 6.

∆si =
√∑n

j=1(xi,j − xi−1,j)2sk = ∑k
i=2 ∆si2 ≤ k ≤ nv = ∆s

∆t
(5.1)

5.2.2.2 Variance Index (VI) calculation

The Variance Index was first introduced by Brock & Carpenter (2006), and can be

simple defined as the maximum eigenvalue of the covariance matrix of the system

within some period, or window, of time. The Variance Index (also called Variance

Indicator) was originally applied to a modelled system (Brock & Carpenter, 2006) and

has since been applied to empirical systems data (Spanbauer et al., 2014; Sundstrom et

al., 2017). Although rising variance has been shown to manifest prior to abrupt shifts

in some empirical systems data (Nes & Scheffer, 2005; Brock & Carpenter, 2006), the

Variance Index, which is intended for multivariate data, appears most useful when

the system exhibits a discontinuous (non-linear) shift (Brock & Carpenter, 2006).

5.2.2.3 Fisher Information (FI) calculation

Fisher Information (I) is essentially the area under the curve of the acceleration to

the fourth degree (s′′4) divided by the squared velocity (s′2; also referred to as v in

Chapter 6) of the distance traveled by the system, s over some period of time (T ),

and is given in Eq. (5.2):

I = 1
T

∫ T

0
dt

[
s′′2

s′4

]2

(5.2)

I refer the reader to Chapter 3 for a complete description and to Cabezas & Fath

(2002) for a complete derivation of Fisher Information.
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Figure 53: Density plot of the coefficient of variation (CV) as
a percentage (%) of the Variance Index resampled val-
ues over 10,000 iterations. Densities are drawn based
on all values of CV but values greater than 100% are
not printed.

5.2.2.4 Using moving window analysis to calculate Fisher Information

and Variance Index

Unlike velocity, the Variance Index and Fisher Information are calculated using mov-

ing window analysis. That is, over the entire time series, T ∗, these metrics are

calculated within multiple windows of time, T . In this approach, all state variables,

xi, are used to inform the calculations (of Variance Index and Fisher Information)

over a time interval, T , where T is the length in [time] units of the time interval and

satisfies the following condition: 2 ≤ T < (T ∗ − 1). If T = T ∗ − 1, then only a single

value of the metric will be calculated for entire time series, which does not allow for

any estimate of change.

When using these metrics in the context of identifying abrupt changes in ecological
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Figure 54: Mean Variance Index (VI) and associated 95% con-
fidence intervals over 10,000 iterations using the ob-
servations resampling method. Red line indicates the
value of VI when M and P are 100%.

systems data across T∗, it is ideal the value of T meets the following conditions:

3 < T � T ∗ − 1. The length of a time window dictates the number of calculations

one can obtain over T ∗, such that the number of potential metric calculations increases

as T
T ∗

decreases. Previous applications of moving window analyses to calculate Fisher

Information found that at least eight observations (time points) should be used.

An additional parameter is required when conducting moving window analyses:

the number of time points by which the window advances. In order to maximize the

number of poitns at which results were obtained, I advanced the moving window at a

rate of one time unit (rather than skipping observations). However, it is important to

note that because these data are not sampled annually and the because the window

always advances by a single time unit, the number of observations included in each

calculation will not be the same. If fewer than 5 observations are in a window, I

did not calculate metrics, advancing the window forward. I assigned the calculated
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values of Fisher Information and Variance Index within each moving window to the

end (the last time unit) of the moving window. In temporal analyses, assigning the

value[which value] to any other point in time (e.g., the beginning or the middle)

muddles the interpretation of the metric over T ∗. Also note that this method has the

potential to result in calculating a metric for all integers between 0.20T ∗ and T ∗.

Figure 55: Mean Variance Index (VI) and associated 95%
confidence intervals over 10,000 iterations using the
species resampling method. Red line indicates the
value of VI when M and P = 100%.

5.2.3 Simulating data quality and quantity issues using resampling tech-

niques

Using a resampling approach I calculated the regime detection measures over differ-

ent scenarios simulating data quality and data quantity issues common to ecological

data analysis. The scenarios are categorized as observations and species. The ob-

servations scenario simulates a loss of temporal observations (decreasing the number

of times the system was observed), and the species scenario simulates a loss of in-
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formation about the system by removing some proportion of the species. The loss

of temporal observations and the loss of species were examined at three proportions:

P = [0.25, 0.50, 0.75, 1.00], where P is the proportion of species and time points re-

tained for analysis. For example, when P = 0.25, a random selection of 25% of the

species are retained for analysis in the species scenario. I re-sampled the data over

10, 000 iterations (Nsamp) for each scenario and P combination. Note that because

when P = 1.00, all data are retained. Therefore, no resampling was conducted at

this level because only a single metric (e.g. Velocity) value is possible.

Figure 56: Mean velocity and associated 95% confidence inter-
vals over 10,000 iterations using the observations re-
sampling method. Red line indicates the value of ve-
locity when M and P are 100%.

5.2.4 Comparing regime detection measures

Interpretation of the regime detection measures used in this analysis are currently

limited to visual inspection. Therefore, I limit inference in this study largely to the

impact of data loss on the variability with a regime detection measure (i.e. how robust
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is the measure to data loss). It is important to not only identify the influence of data

quality and quantity on the performance of individual regime detection metrics, but

also to somehow relate these qualities. I visually inspect the relative performance of

these metrics by comparing the coefficient of variation of the re-sampled samples for

the results of resampling method (M; species, observations) and sampling percent-

age (P; 25%, 50%, 75%) combination for each metric (FI, VI, v). The coefficient

of variation measures provides a relative measure of the variability in the estimated

metric across re-sampled samples as 100σ
µ
, where σ is the standard deviation and

µ is the mean value. I observed the distributions of the CV to identify potential

flaws in the metrics should data quality or quantity (M, P) decrease. First, within a

value of P a low error to mean ratio (CV) indicates that the metric value is similar

across the re-sampled samples (Nsamp = 10, 000). The efficacy of the metric should

be questioned as CV→ 1, and perhaps even abandoned as CV� 1. Next, we can

examine how the distribution of CV changes within M and across P. As we increase

P, we are increasing the volume of data we are feeding the metric. Intuitively, we can

assume that as we add more data (volume), we are supplying the metric with more

information, theoretically increasing the signal-to-noise ratio. Following this logic,

we should expect the distribution of CV to generally decrease in mean CV value and

also become less variable (less dispersion around the mean CV). A visual examination

of the distribution of CV across P and within M was sufficient to achieve inference

regarding the quality of these metrics upon loss of observations and species.



99

Figure 57: Mean velocity and associated 95% confidence in-
tervals over 10,000 iterations using the observations
resampling method for a subset of the time series
(the second ‘regime’ identified). Red line indicates the
value of velocity when M and P = 100%.

5.3 Results

5.3.1 Velocity of the distance travelled (v)

The velocity of the distance traveled, ds
dt

or v, exhibited dispersion across the values

of P, however, yielded consistent results (i.e., high overlap in the densities of the CV

across values of P and across methodologies; e.g. Figures 59 and 53). Further, it

should be noted that because v is calculated using first differences, it will be sensitive

to large changes in the state variables. By examining the density plot of the CV of

the distance traveled, s, we notice that this measure is highly insensitive to data loss

(Figure 58), suggesting that a finite differencing approach (e.g., using total variation

regularized differentiation; see Chapter ) which can yield a much smoother derivative

than the approach used here, may decrease the sensitivity of v to data loss. This

hypothesis is further supported when examining the effect of species (Figure 56) and
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Figure 58: Density plot of the coefficient of variation (CV) as
a percentage (%) of the Distance Metric (s) resam-
pled samples (10,000 iterations). Densities are drawn
based on all values of CV, but values >100% are not
printed.

temporal observation loss (Figure 57) on the velocity metric. These conditions are

representative of the other P-M combinations.

5.3.2 Variance Index

The Variance Index (VI) performed best under the the observations resampling method,

exhibiting low values for and low dispersion in the CV density (Figure 53) across iter-

ations. However, the VI appears sensitive to high losses of species information, where

the density of the CV still exhibits low dispersion but with higher overall mean values

(Figure 53). Surprisingly, the Variance Index was insensitive to temporal observation

loss (Figure 54), exhibiting a similar amount of noise across various degrees of data

loss (P). Although the signal was dampened under the species method, the signals
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for the shifts in community composition were not lost across levels of P (Figure 55).

This is likely due to the high probability that the dominant species were rarely always

excluded from the re-sampled observations.

Figure 59: Density plot of the coefficient of variation (CV) as
a percentage (%) of the Fisher Information resam-
pled samples (10,000 iterations). Densities are drawn
based on all values of CV, but values >100% are not
printed.

5.3.3 Fisher Information is highly sensitive to information loss

The Fisher Information method did not yield conclusive results regarding the abrupt

shifts in the paleodiatom community composition. Further, this method appears

highly sensitive to varying quality and quantities of data (Figures 510, 59). Although

the Fisher Information identifies the shift in community composition at ∼ 1, 300 years

before present, it fails to identify shifts outside this period. Further, it is difficult to

visually analyze any value of the Fisher Information on the original scale as the values
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range from ≈ 0 to 1015 (Figure 510). In addition to failing to identify the shifts in

community composition, the standard deviation of Fisher Information far exceeded

the mean value of Fisher Information under all M-P scenarios (Figure 59). When

I re-sampled the data using 25% and 50% of the species the ratio of mean Fisher

Information to standard deviation (CV) of Fisher Information is always� 1 (i.e, not

pictured in Figure 59). The high variation in FI values across re-sampled iterations

coupled with the high dispersion within each M-P combination (Figure 59) suggests

Fisher Information will not produce similar trends when we lose or distort the data

collected. This is also suggested by the high confidence intervals surrounding each

M-P combination (Figure 510).

5.4 Detrending the Data Prior to Calculations

If and how to manipulate the original data prior to calculating various regime de-

tection methods is an important consideration, and a line of research that has not

yet been fully explored. Although most of the multivariate methods identified in the

literature review do not require data that conforms to a specific distribution, how

the results of these methods can vary as we change the quality and characteristics of

the original data (Michener & Jones, 2012). In fact, since many of the methods for

regime shift detection are specifically looking for changes in variance structure and

autocorrelation, standardizing variances is not counter-intuitive.

Some studies detrend the original time series prior to data aggregation and cal-

culation of regime detection metrics. I did not detrend the original data for two

reasons. First, the authors of the original paper analyzing this data set (Spanbauer

et al., 2014) did not detrend species time series. Like Spanbauer et al. (2014) I only

scaled the original data, rather than detrending. Second, detrending a time series
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requires yet another subjective decision by the data analyst. For example, a “span-

ning” parameter must be chosen when detrending (smoothing) non-linear time series

using local regression (Loess) regression (see Figure 511). Other smoothing methods

are being explored for both detrending (e.g., PcR; Beck et al., 2018) and regime shift

identification (e.g., generalized additive modelling; Beck et al., 2018). Finally, this

data exhibits rapid and drastic shifts in community composition and contains a dis-

proportionate amount of dominant versus non-dominant species. Consequently, most

species contain more zero than non-zero observations, which makes loess smoothing

difficult. Future work studying the impact of detrending, data scaling, outlier re-

moval, and other related decisions would be of value in understanding the efficacy of

these and other regime detection measures in real-world situations.

5.5 Conclusion

In this chapter I provide additional evidence for the sensitivity of select regime de-

tection measures to information (data) quality and quantity loss. The loss of data

quantity was simulated by randomly sampling subsets of both the species and the

temporal observations, and the reduction in data quality manifests as a function of

removing whole species from the community profile. Previous studies of the robust-

ness of uni-variate regime detection metrics have found similar results, suggesting

the measures fail in numerous real-world ecological conditions (Andersen et al., 2009;

Contamin & Ellison, 2009). This chapter also highlights the relative insensitivity

of the new velocity metric (see Chapters 3, 6) to data and information quality and

quantity (e.g., Figure 56) loss.
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Figure 510: Mean Fisher Information (FI; note the scale) and
associated 95% confidence intervals over 10,000 iter-
ations using the species resampling method. Red line
indicates the value of FI when M and P are 100%.
A very small value was added to the mean FI prior
to log transformation.



106

Figure 511: Local regression (loess) smoothing of a dominant
species in the paleodiatom community, Anomoeoneis
costata varies with the span parameter, making it
difficult to justify smoothing the data prior to calcu-
lating various regime detection metrics.
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Chapter 6

Velocity (v): Rate of Change of System Trajectory Identifies

Abrupt Changes in Ecological Systems

6.1 Introduction

When, how and why ecological systems exhibit abrupt changes is a hallmark of mod-

ern ecological research, and changes that are unexpected and undesirable can have

undesirable downstream consequences on, e.g., ecosystem services, biodiversity, and

human well-being. Quantitatively detecting and forecasting these changes, however,

has yet to be accomplished for most ecological systems (Chapter 2; Ratajczak et al.,

2018). Moving from abrupt change methods requiring highly descriptive models and a

priori assumptions of the state variable responses to drivers to methods requiring few,

if any, a priori assumptions or knowledge is increasingly necessary for forecasting and

managing complex ecosystems under an era of intensifying anthropogenic pressures.

A few broad classes of quantitative approaches exist for quantitatively identifying

abrupt changes in complex ecosystems. First, one can use simple mathematical mod-

els to describe the system and statistically test for discontinuities in the observed

variables (e.g., in coral reefs, Mumby et al., 2013). Although mathematical represen-

tations are ideal, very rarely are ecological systems easily and well-described by them

and often fail to meet the assumptions of the model. Second, we can track changes
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Figure 61: An example solution of the Lorenz (’butterfly’) rep-
resented in 3-dimensional phase-space. Phase plots
are typically used to visualize stable areas within a
system’s trajectory but reconstruction requires the dif-
ference models to be known and parameterized.

in the mean or variance of state variables to identify departures from the norm (e.g.,

early-warning indicators such as variance and variance index, Brock & Carpenter,

2006). Much like the mathematical modelling approach, these early-warning indi-

cators have shown to be useful in some simple driver-response systems (e.g., lake

eutrophication Carpenter et al., 2008b), but are unreliable in other empirical systems

(e.g., Perretti & Munch, 2012; Dakos et al., 2012b; Dutta et al., 2018). The last type

of approach is the model-free approach [Dakos et al. (2012a); Chapter 2]. This group

of abrupt change indicators can incorporate multiple state variables, and ideally re-

quires no a priori assumptions about the expected driver-response relationships, or

even about the drivers at all. It is this class of abrupt change indicators to that this

chapter contributes.
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Figure 62: An example solution of the Lorenz (’butterfly’) rep-
resented in individual system components.

6.1.1 Tracking ecosystem trajectory through time to explore system dy-

namics

A classic example of state-switching by a system is demonstrated in the Lorenz (‘but-

terfly’) attractor (Figure 61; Takens, 1981). This phase plot (Figure 61) provides

an informative visual of the behavior of a chaotic system manifesting two attractors.

Although the periodic, attractor behaviors are made clear when examining the time

series of each dimension (Fig 62), identifying such behaviors in additional dimensions

becomes increasingly difficult.

System trajectory in phase space are used often in dynamical systems theory

and systems ecology to make inference regarding system behavior and dynamics,

but phase space (trajectory) dynamics are not commonly applied outside theoretical

studies as a tool for ecological data analysis (c.f. Sugihara et al., 2012 for an example

of phase-space reconstruction using Taken’s theorem applied to ecological time series).
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Some methods of attractor reconstruction have been applied to environmental data

(e.g., individual time series of fisheries stocks, climate, stock market; Sugihara et al.,

2012; Ye et al., 2015), yet they do not incorporate the dynamics of whole-

systems. Model-free methods for exploring and describing the dynamics of whole

ecological systems are largely restricted to the commonly-applied dimension reduction

techniques and clustering algorithms (e.g., Principal Components Analysis, K-means

clustering). In fact, this is true of many abrupt change and regime shift indicators.

6.1.2 Rate of change as an indicator of abrupt change in the system

trajectory

How quickly a system switches states [e.g., moving from attractor to another; 61] may

yield insights into the responses of ecological systems to perturbations (e.g., anthro-

pogenically induced pressures such as climate change, urbanization) and community

shifts (e.g., species introductions or extinctions, shifts in dominance). For example,

Beck et al. (2018) tracked rate of change using chord distances—a data transforma-

tion for positive values and that is suitable prior to ordination analysis—to capture

abrupt changes in community composition of a temperate, paleodiatom community.

Chord distance, however, is greatest when the observations among data rows (e.g.,

time, location) have no species in common. In other words, this measurement may be

most useful in high community turnover conditions. Alternative numerical methods

for estimating system rates of change may be useful when the system does not exhibit,

for example, high degrees of turnover or changes other in simple, biodiversity metrics.

Rate of change (ROC, often represented as ∆) is a term used for various measures

that describe the relationship among to variables, measuring the change in one vari-

able relative to another. As a refresher ROC is represented as speed (S) or velocity

(V), where (S) is the adirectional magnitude (i.e. it is a scalar) of the displacement
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of an object over unit time and V describes both the direction and magnitude (i.e. it

is a vector) of the object’s movement in space-time. S is a scalar taking values of ≥ 0

and V can take any value between −∞ and∞. For example, consider a car travelling

at a constant speed of 50km
h

around along a hilly landscape, where it is ascending and

descending hills. Although S is constant, V changes in a sinusoidal fashion, where V

is V > 0 when ascending, V < 0 when descending, and V ≈ 0 at in the valleys and

at the peaks of the hills. Although S is useful when estimating other scalar quantities

(e.g., miles
gallon

), given a starting and/or final position in space, S is not informative of

its the path traveled.

6.1.3 Aims

Here, I propose a method that simply describes the rate of change behavior of system

dynamics in phase space: velocity, V . An alternative to other model-free approaches

(e.g., Fisher Information; Cabezas & Fath, 2002), the velocity metric allows one to

examine the behavior of an entire system along its trajectory (through space or time)

without having to reconstruct the phase space. The ability to handle noisy and

high-dimensional data and the lack of subjective parameters in calculating the metric

makes this method an alternative to existing early warning indicators and phase-space

reconstruction methods.

I first describe the steps for calculating this new metric (V ), as both a dimension

reduction technique and abrupt change indicator. Although this is the first instance

of this calculation to, alone, be suggested as a regime detection metric, it has been

used as part of a larger series of calculations of the Fisher Information metric [see

Chapter 3], first introduced in Fath et al. (2003). I use a simple, two-variable system

theoretical system to present baseline estimates of the expected behavior of V under

various scenarios. I induce abrupt shifts under varying conditions of changing means
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and variance of each of these two variables and discuss the contexts under which

this metric (V ) may signal or may fail to signal abrupt changes. Finally, I explore

the utility of this metric in identifying known regime shifts in an empirical, high-

dimensional paleoecological community time series.

6.1.4 Analytical approach

I first describe the steps for calculating velocity by constructing a simple, two-variable

system that exhibits only a rapid, discontinuous change in the means of the state

variables. I next vary the mean and variance of the state variables of this system to

demonstrate baseline expectations for the behavior of velocity under a simple rapid

shift scenario. Next, I construct a second model system similar to the first, but one

that exhibits a continuous rapid change in the state variables. The purpose of this

section is three-fold. First, I demonstrate how velocity behaves when the system

undergoes varying degrees of change (e.g., slow change versus nearly discontinuous,

rapid). Second, I concurrently identify baseline expectations of velocity under vary-

ing conditions of mean and variability of the state variables before and after a shift.

Third, by introducing a smoothing function to the rapid shift, we gain an understand-

ing of how process variability (noise) impacts the shift detectability by the velocity

metric. Finally, I calculate the velocity of an empirical, paleolithic freshwater diatom

community time series to demonstrate the utility of the velocity metric in highly

noisy, high dimensional, and irregularly-sampled data.

6.2 Steps for Calculating Velocity, V

S In this section, I first demonstrate the calculations of velocity using a very simple,

two-variable toy system. The first system exhibits a rapid shift at a single point



113

in time, where mean and variance are constant before and after the shift point. I

demonstrate the signals achieved with and the variability within the V calculation

by exploring a number of scenarios of this simple system. For the examples in this

section, observations of xi are randomly drawn from distribution xi ∼ Normal(µ, σ),

where µ is the mean and σ is the standard deviation. Consider a system (Figure

Figure 63: The 2-variable discrete time toy system used to
demonstrate steps for calculating system velocity.
Each variable, x, is drawn from a normal distribution
with means that change at t = 50. State variables have
constant standard deviation, σ = 5.

63) with N state variables (xi), with observations taken at time points, t. System

velocity is calculated as the cumulative sum over time period t0 to tj, as the total

change in all state variables, {x1...xN}, between two adjacent time points, e.g., tj

and tj+1, denoted tj,j+1. I use this simple, two-variable system to demonstrate how

velocity is calculated. The system comprises variables x1 and x2, with observations
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occurring at each time point t = 1, 2, 3, ...100. First, we calculate the change in each

state variable, xi, between two adjacent points in time, tj and tj+1, such that the

difference, xtj+1 − xtj is assigned to the latter time point, tj+1. For example, in our

toy data, we use observations at time points t = 1 & t = 2 (Figure 64). For all

examples in this chapter, the state variables x1 and x2 were drawn from a normal

distribution (using function rnorm), with parameters x̄i (mean) and σi (sd) for 100

time steps, t. Under each scenario I induce a regime shift at time t = 50, where either

or both a change in x̄i or σi occurs.

Figure 64: Data used to calculate velocity at the first two time
points, t1 and t2.

6.2.1 Step 1: Calculate ∆xi

The first step is to calculate the change in values for each state variables, xi, between

two consecutive time points [e.g., from time t to t + 1 for the discrete-time system;
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Figure 64; Equation (6.1)]:

∆xi = xi(t+1) − xit (6.1)

Note that ∆xi can take any value between −∞ and ∞.

6.2.2 Step 2: Calculate distance traveled, s

Next, we calculate the total change in the multivariate system as a function of the

change in all state variables xi. First, we calculate ∆s as the square root of the sum

of squares of the changes in all state variables per Pythagoras’s theorem [Equation

(6.2)]:

∆s =
√∑

∆x2
i (6.2)

Although ∆s represents the absolute change in the system between consecutive points

in time, this measure is not yet relative along the system’s trajectory. To create a

relative value we next calculate the total distance traveled along the system trajectory,

s, as the cumulative sum of ∆s [Equation (6.2)] since the first observation, such that

a cumulative sum is calculated for every t over the interval [0, T ] [Equation (6.3)]:

sT = ΣT
t=0∆s (6.3)

We now have a single measure, sT [hereafter referred to as s; Equation (6.3)] at each

discrete point in time in our N -dimensional system (Figure 65). It should be noted

that s(Figure 65) is monotonically increasing since the value of ∆s [Equation (6.2)]

is a sum of squares. Although discussed in a later section, it is important to note

that s is not unitless—that is, s has units of the state variables, xi. For example,

if our 2-variable toy system represents biomass, then the units of s represents the

cumulative absolute change in biomass of the entire system.
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Figure 65: Distance traveled, s, for the 2-species toy system.

6.2.3 Step 3: Calculate velocity, V (or ∆s
∆t )

Finally, we calculate the system velocity, V (or ∆s
∆t ), by first calculating the change

in s [Equation (6.3)], and then divide by the total time elapsed between consecutive

sampling points:

v = ∆s
∆t (6.4)

The numerical results for each step in the calculation of velocity [Equation (6.4)] is

demonstrated using the first five time points of our toy system (Figure 63) in Table

61.
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Figure 66: System change (s) and velocity (V ) of the model
system over the time period. Constant means (x̄pre =
25, x̄post = 10) and sharp change in variance for both
state variables, σ = 5.

Table 61: Steps outlined for calculating system velocity, V , us-
ing the 2-variable toy data as an example.

t x1 x2 ∆x1 ∆x2 ∆t
√

( ∑N
i=1 ∆x2

i ) s V

1 22.198 21.448
2 23.849 26.284 1.651 4.836 1 5.111 5.111
3 32.794 23.767 8.944 -2.518 1 9.292 14.403 9.292
4 25.353 23.262 -7.441 -0.504 1 7.458 21.861 7.458
5 25.646 20.242 0.294 -3.020 1 3.035 24.895 3.035

6.3 Velocity v Performance Under a Discontinuous Transi-

tion

I used simulation techniques to determine the baseline expectations of the perfor-

mance of velocity V under varying degrees of rapid shifts in the mean and variance

of the toy system. The toy system in this section undergoes a discontinuous shift at
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t = 50 (see 63). If the system undergoes a rapid and discontinuous change in one or

more state variables, the velocity, because it is a rate of change, has the potential to

approach ∞ as ∆t→ 0. Therefore, it is important to understand the degree to that

velocity can detect very sudden changes in mean values, despite effect sizes. Here, I

varied each of the following system parameters at the regime shift location (t = 50):

x̄1, increase in the mean value of x1 and σ1, the change in variance of x1.

Simulations consisted of 10,000 random samples drawn from the normal distribu-

tion for each parameter, I randomly drew the toy system samples 10,000 times under

increasing values of x̄1 and σ1. To identify patterns in the influence of parameter val-

ues on velocity, I present the mean values of V across all simulations, with confidence

intervals of ±2 standard deviations. As mentioned above, the state variables x1 and

x2 were drawn from a normal distribution (using function rnorm), with parameters

x̄i (mean) and σi (sd) for 50 time steps, t.

6.3.0.1 Varying post-shift mean

I examined the influence of the magnitude of change in x1 in the period before (pre;

t < 50) and after (post; t ≥ 50) by varying the mean parameter, x̄1 in the set

W = {25, 30, 35, ...100} (Figures 67 and 68). As expected, the magnitude of V

increases linearly as the total difference between x̄1pre and x̄1post increases (Figure

68). This is not surprising because s increases as the total change in abundance

across the entire system increases [Equation (6.3)]. Consequently the potential of

V also increases with total state variable values (e.g. abundance, biomass). The

linear relationship among V and total state variable values indicates that while V

is capable of identifying large shifts in data structure, it may fail to identify subtle

changes (i.e. lower effect sizes).
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Figure 67: Velocity (V ) generally increases as the total change
in the mean value of x̄1t=50 increases in a single itera-
tion of our toy system (Niter = 1, seed = 123). This 2-
variable system exhibits a regime shift at t = 50, where
variance is constant σ = 5, x̄1 = 25 when t < 50,
x̄2 = 50 when t ≥ 50, x̄1 = 25 when t < 50.

6.3.0.2 Varying Post-shift Variance

In the previous example, variance was constant before and after the abrupt shift at

t = 50. To determine whether the signal emitted by V at the regime shift is lost or

dampened when increasing variance I varied the variance parameter, σ1 along the set

W = {1, 2, 3, ...25}. The variance for both state variables (x1, x2) prior to the regime
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Figure 68: Change in velocity (V ) as the total change in the
mean value of x̄2t=50 over 10,000 simulations. A
regime shift was induced at t = 50 with constant
varoance σ = 5, x̄2 = 25 when t < 50, and changes in
variable mean values, x̄2 = 50 when t ≥ 50, x̄1 = 25
when t < 50.

shift, σx1 and σx2 , was 5, with the change occurring in σx1post.

6.3.0.3 Smoothing the data prior to calculating v

To determine whether process or observational noise influences the signal in V , I

used linear approximation techniques to smooth the data prior to calculating the
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Figure 69: High variance of velocity (V ) in a single iteration
(Niter = 1, seed = 123) of simulations as we increase
σ1 at t = 50.

derivatives. I used the function stats::approx that linearly interpolates the original

data, x1 and x2, to regularly-spaced time points along the set t = {1 : 100}. I then

calculated V as described in (Eqs. (6.1) through (6.4)). Increasing the number of

points (t) at that the original state variables were smoothed (i.e., t) did not influence

the amount of noise surrounding the signal of the regime shift (at t = 50) in system

velocity, V (Figure 610).
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Figure 610: The variance around the average (±2 SD) veloc-
ity (V ) increases as the variance of x̄2t=50(post) (post
shift) increases. x̄1pre = 25, x̄1post = 100, x̄2pre = 25,
x̄2post = 50, σ1pre = 5, σ2pre,post = 5

6.4 Velocity Performance Under a Smooth Transition

In the previous section I presented expectations for velocity signals under a discon-

tinuous transition in a discrete-time system. Given velocity is a measure of the rate

of a change in a system and the range of transition speeds ecological systems exhibit

(e.g., slow driver-response or threshold dynamics), it is important to understand if

and when the velocity signal is dampened under varying degrees of transition speeds.
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Figure 611: The noise in system velocity (V ) is not obviously
reduced in this system as the original data (x1, x2)
is increasingly smoothed.

In this section I use a similar toy system, to demonstrate the expectations of velocity

under a smooth shift and under varying degrees of rapidity.

Although the data constructed in this section are similar to that used in the

previous section in that we are manipulating the mean and variance of two state

variables before and/or after an abrupt shift, this section introduces a component

of process noise into the shift itself. This is important because the derivative of a

nearly discontinuous function is infinite. Although we are interested in identifying
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Table 62: Conditions for generating various scenarios of the
hyperbolic tangent-induced abrupt change. σi represents
the standard deviation of µxi

as the percent of µxi
, µxi

is the mean of the state variable, xi, and pre and post
represent the periods before and after the regime shift
at t = 50, respectively.

conditions σx1pre
σx1post

σx2pre
σx2post

µx1pre
µx1post

µx2pre
µx2post

µx1 , µx2 , σx1 , σx2 0.05 0.10 0.05 0.10 10 55 15 44
µx1 , σx1 0.05 0.10 0.05 0.05 10 55 15 15
µx1 , µx2 0.05 0.05 0.05 0.05 10 55 15 44
µx1 0.05 0.05 0.05 0.05 10 55 15 15
σx1 , σx2 0.05 0.10 0.05 0.10 10 10 15 15
σx1 0.05 0.10 0.05 0.05 10 10 15 15

rapid shifts in systems, velocity will approach infinity as the rate of change in the

shift increases and the sampling intervals decrease. In other words, if the system

exhibits turnover in e.g. 25% of the state variables, we expect the value of velocity to

be similar to that of a turnover in e.g. 75% of the variables. Removing the possibility

of infinite values provides more relative measures within the community time series.

6.4.1 Generating the data

Here we consider a two-variable system over the time interval [1, 100] with state

variables x1 and x2 that exhibits abrupt shifts in mean and/or variance of one or

both variables at time t = 50. I generated species observations for the true process

and the true process with process variability. The true process data were created

using the parameters for µ and σ for each of the conditions in described in Table 62

(random seed in Program R was 12345).
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6.4.1.1 True process model

Data were generated from a normal distribution and an abrupt shift in the mean was

incorporated using a hyperbolic tangent function. The true process for each state

variable, xi, was generated from [Equation (6.5); see Figure 613]:

µxipre ∼ Normal(µxipre, σxipre)

µxipost ∼ Normal(µxipre, σxipost)

µxi
(t) = µxipre− 0.5(µxipre− µxipost)(tanh(α(t− tshift)) + 1)

(6.5)

where µxi
(t) is the mean value of xi at time t and pre and post are the periods before

and after the abrupt shift (tshift), respectively. The parameter α in Equation (6.5)

controls for the rate of change at the point of the abrupt change, tshift, where higher

values of α correspond with a higher slope at tshift. I simulated a single iteration

(data set) for various conditions of changing µxi and σxi (see Table 62), for two state

variables x1 & x2 at intervals of t = 1 along the temporal interval t = [1, 100].

6.4.1.2 Observed process data

I generated observations by imputing noise into the true process model [Equation

(6.5)] through random sampling of σxi from a normal distribution [Equation (6.6);

Figure 613]:

µxipre ∼ Normal(µxipre, σxipre)

σxipre ∼ Normal(0, σXipreµXipre)

µxipost ∼ Normal(µipost, σipost)

σxipost ∼ Normal(0, σXipostµxipost)

µxi(t) = µxipre− 0.5(µxipre − µxipost)(tanh(α(t− tshift)) + 1)

(6.6)
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Figure 612: An example of the data generated by the true pro-
cess model. In this example the mean values (µxi),
but not the percent standard deviation (σxi), are var-
ied before and after the transition point. The ob-
served data are plotted against the true-process model
for each state variable, xi. Panels represent dif-
ferent degrees of the smoothing parameter, α (top:
α = 0.25, bottom:α = 1.00).

where σxi is the observed error around µxi, and σXi is X% of µxi under various

sampling conditions (as described in Table 62). I generated the error as a percent of

the mean as this scaling relationship is commonly observed in ecological data (Taylor,

1961).
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Figure 613: An example of the data generated by the true pro-
cess model. In this example the mean values (µxi),
but not the percent standard deviation (σxi), are var-
ied before and after the transition point. The ob-
served data are plotted against the true-process model
for each state variable, xi. Panels represent dif-
ferent degrees of the smoothing parameter, α (top:
α = 0.25, bottom:α = 1.00).

6.4.2 Evaluating Velocity Performance Under Conditions of Changing

Means and Variance

I simulated a single data set (using in Program R) by randomly drawing a single re-

alisation (observed data) of the hyperbolic tangent process model with additive noise

process [Equation (6.6)]. I then calculated the distance traveled, s, and the velocity of

the distance traveled, V (also referred to as ds
dt

) using Equation (6.4)—this approach

(Equation (6.4)) is a simple alternative to numerical integration techniques, requir-

ing only simple algebraic techniques. This method is ideal for discrete time data, or
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where computational power would not suffice for numerical integration. When using

the first differences method, however, V will demonstrate high variability, depending

on the amount of time between samples (i.e. as the intervals of t− t+ 1 increase).

I also calculated V using a numerical integration method for non-smooth, noisy

data, called total variation regularized differentiation (Chartrand, 2011). I used the

R package tvdiff (Price & Burnett, 2019a) to perform numerically integrate the

distance traveled, s. The regularized differentiation method in this package (func-

tion tbdiff::tvRegDiff; described fully in Chartrand, 2011) provides a numerical

solution for calculating non-noisy derivatives of noisy, non-smooth data. Using this

smooth-derivative estimation technique may be an ideal supplement to the velocity

method in cases where process and observational error generate noisy observational

data. Although not possible in most ecological systems data, here we can compare

the fit of the smooth-derivative to the derivative of the true process, allowing us to

determine the usefulness of calculating a smooth-derivative. There are two tuning pa-

rameters required to be chosen by the analyst when implementing the total-variation

regularized differentiation, each of that influence the amount of noise smoothed out

in the resulting derivative: α and the number of iterations. I implemented this

numerical differentiation over 1,000 iterations, and selected α by comparing the anti-

differentiated distance traveled, s, to the true process values of s (e.g., see Figure

614). For most conditions and smoothness I found the tuning parameter for tvdiff

α = 0.50 provided a good fit of s (Figure 614), however, when the hyperbolic tangent

smoothing parameter, α was low (i.e. αtanh = 0.25) higher values of αtvdiff yielded

more abrupt changes in the derivative.
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Figure 614: Antidifferentiated values (’observed’) of the dis-
tance traveled, s, to the true process values of s
(’true) provides a method for identifying the best val-
ues of the smooothing parameter, α. Under most
conditions α � sufficed. Here, we compare the true
and antidifferentiated values of s under the condition
of changing µx1 when the hyperbolic tangent function
is most rapid (αtanh = 1) for the ‘tvdiff‘ α = 0.50.
Not pictured: the antidifferentiated values of s (ob-
served) is increasingly smoothed as α increases.

6.4.2.1 Smooth changes in the mean

As discussed earlier, the velocity of the distance traveled, V , is a measure of how

quickly the sum of the squared system variables change between observations (i.e. time).

Consequently, as the total change in state variables grows, so will the maximum po-

tential of the velocity, V . Following this logic, we should expect to see a spike in

the derivative of the distance traveled when the system changes quickly. I tested this

hypothesis under two conditions of changing means, where either one or both vari-
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Figure 615: The velocity signal is muted when the hyperbolic
smoothing parameter, α, is low (0.25). True and
observed values of xi (panel A), observed distance
traveled (s, panel B), observed velocity (C), and the
smoothed velocity (D).

ables underwent mean shifts (see Table 62), and under varying degrees of transition

smoothness (i.e. αtanh = 0.25, 0.50, 0.75, 1.00).

When the hyperbolic tangent smooth transition function is less steep (Figure

615) the observed velocity signal is dampened. This signal, however, quickly recovers

when the transition function becomes more abrupt (Figures 616, 617 ,618; αtanh =

0.5, 0.75, and1.00, respectively). The signal of velocity as an indicator of abrupt

change appears more rapid when the mean of both state variables (Figure 622),

rather than a single (Figure 615), are shifted (assuming constant variance). Figure

619 is representative of the increasing signal in velocity as αtanh increases.
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Figure 616: The velocity signal is muted when the hyperbolic
smoothing parameter, α, is moderate (0.50). True
and observed values of xi (panel A), observed dis-
tance traveled (s, panel B), observed velocity (C),
and the smoothed velocity (D).

6.4.2.2 Smooth changes in variance

Abrupt changes sometimes manifest first as a change in the variability, rather than the

mean value, of the state variables. This condition manifests in the velocity signal when

both variables experience a shift in relative variance (Figure 620), however, velocity

does not signal change when only one variable exhibits a shift in variance (Figure

621). Again, given the total magnitude of change influences the distance traveled,

s, and the derivative of s, V , it is not surprising that the velocity signal is greater

around the transition point when both, compared to a single, state variable exhibits

increased variability about the mean. In these scenarios I shifted the variability in the

state variables xi from only ∼ 5% to ∼ 10% (see Table 62)—this percent variability
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Figure 617: The velocity signal is muted when the hyperbolic
smoothing parameter, α, is moderate (0.50). True
and observed values of xi (panel A), observed dis-
tance traveled (s, panel B), observed velocity (C),
and the smoothed velocity (D).

is low relative to most empirical observational ecological data sets. As such, I expect

the velocity signal to be more pronounced when empirical systems undergo shifts in

variance in at least one state variable.

6.4.2.3 Smooth changes in the mean and variance

Given the signals identified in the velocity when one or both state variables exhibits a

shift in mean and/or variance, it is unsurprising that even under smooth transitions

(when αtanh = 0.25), velocity manifests as a signal of change (Figure 623). This signal

is most pronounced when the shift is abrupt (Figure 624).
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Figure 618: The velocity signal is muted when the hyperbolic
smoothing parameter, α, is moderate (0.50). True
and observed values of xi (panel A), observed dis-
tance traveled (s, panel B), observed velocity (C),
and the smoothed velocity (D).

6.5 Velocity Performance Under Empirical Transitions: pa-

leolithic freshwater diatom communities

To gather baseline information on the use of velocity in empirical systems data, I

calculated velocity for the paleodiatom system described in Chapter 5. Briefly, the

paleodiatom community comprises 109 time series over a period of approximately

6936 years (Figure 625). As elaborated in Spanbauer et al. (2014), the paleodiatom

community is suggested to have undergone regime shifts at multiple points. These

abrupt changes are apparent when exploring the relative abundances over time, as

there are extreme levels of species turnover at multiple points in the data (Figure 625).
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Figure 619: The velocity signal is regained under smoooth
transition (αtanh = 0.75) when both state variables
undergo a shift in the mean. True and observed val-
ues of xi (panel A), observed distance traveled (s,
panel B), observed velocity (C), and the smoothed
velocity (D).

Using Fisher Information and climatological records, Spanbauer et al. (2014) suggest

that regime shifts in this system at approximately 1,300 years before present (where

years before present is equal to year 1950; Spanbauer et al., 2014). Spanbauer et al.

(2014) used different regime detection metrics coupled with regional climatological

events to identify regime shifts in the system, suggest that a regime shift occurred

at ˜1,300 years before present. Using the methods outlined above, I calculated the

distance traveled (s) and velocity (V ; Figure 629). The results of V and s (Figure

626) on the relative abundance data correspond with both the large shifts in species

dynamics (see Fig 625, and also with the regime shift identified by Spanbauer et al.
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Figure 620: The velocity signals a rapid shift in the variance of
both state variables under a moderately abrupt tran-
sition (αtanh = 0.75). True and observed values of
xi (panel A), observed distance traveled (s, panel B),
observed velocity (C), and the smoothed velocity (D).

(2014). However, two primary results can be made from the metrics V and s that are

not obvious nor identified numerically in the results of Spanbauer et al. (2014):

1. Two additional large shifts occurred at approximately 2,500, 4,800 and years

before 1950

2. The periods before the first and after the second large shifts appear oscillatory

(Figure 627).

To determine the effect of dampening the noise in the data on the velocity sig-

nal, I interpolated the each time series using function stats::approx to 700 time
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Figure 621: The velocity does not signal shifts in the variance
of a single variable (x1) under a moderately abrupt
transition (αtanh = 0.75). True and observed values
of xi (panel A), observed distance traveled (s, panel
B), observed velocity (C), and the smoothed velocity
(D).

points. Next, I calculated the distance traveled of the entire system, s. Finally,

I obtained the derivative of s by using a regularized differentiation (using function

tvdiff::TVRegDiffR; parameters were iter = 2000, scale = small, ep = 1x10−6, and

α = 100). This method of regularized differentiation is an ideal approach to smooth-

ing s because it assumes the data are non-smooth and incorporates finite differencing.

The total variation regularized differentiation is described in Chartrand (2011), Price

& Burnett (2019a), and in the previous first-level section. The smoothed velocity

(Figure 629) provides a similar but smoother picture of the velocity of the system

trajectory. Comparing the smoothed (Figure 629) to the non-smoothed velocity (Fig-
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Figure 622: The velocity signal is regained under smoooth
transition (αtanh = 0.25) when both state variables
undergo a shift in the mean. True and observed val-
ues of xi (panel A), observed distance traveled (s,
panel B), observed velocity (C), and the smoothed
velocity (D).

ure 626) yields similar inference regarding the location of the regime shifts at 2,200

and 1,300 years before present, however, it more clearly demonstrates potential inter-

regime dynamics (e.g., between 7,000 and 4,800 years before present), that were not

identified in previous study of this system (Spanbauer et al., 2014).

6.6 Discussion

Here, I described the steps for calculating a novel regime detection metric, system

velocity (V ). First described in Fath et al. (2003), V is used as a single step for

calculating a more complicated regime detection metric, Fisher Information (see also
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Figure 623: The velocity signals a shift when both variables un-
dergo shifts in the mean and variance under a slightly
abrupt transition (αtanh = 0.25). True and observed
values of xi (panel A), observed distance traveled (s,
panel B), observed velocity (C), and the smoothed
velocity (D).

Chapter 3). System velocity is arguably simple to calculate, as shown in this chapter,

captures the total change in system variables under a variety of mean and variance

conditions. The metric does not, however, perform well as variance increases (Figure

610), and smoothing the original data does not reduce the noise surrounding this

metric when variance is moderate. Variance is a commonly-used indicator of ecological

regime shifts (Brock & Carpenter (2006)), however, is difficult to interpret when the

number of variables is much greater than a few. System velocity, V , may be useful in

situations where the number of state variables is much greater than few, and appears

especially useful when the magnitude of change in one or more state variables is high
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Figure 624: The velocity signals a shift when both variables un-
dergo shifts in the mean and variance under a slightly
abrupt transition (αtanh = 1.00). True and observed
values of xi (panel A), observed distance traveled (s,
panel B), observed velocity (C), and the smoothed
velocity (D).

(Figures 68,619). For example, this method will likely identify signals of regime shifts

where the shift is defined as high species turnover within a community (Figure 624).

This study provides baseline expectations of the velocity of the distance traveled,

V , as an indicator of abrupt change in a multivariate system. Although a useful

first step, this metric should next be critiqued in a sensitivity analytical approach,

where a statistical measure is used to determine whether V indicates abrupt shifts

prior to occurrence (c.f. during or after), particularly with respect to its perfor-

mance in community-level empirical data. The paleolithic diatom data used in the

last section of this chapter is also presented in the documentation for my R Package,



140

Figure 625: Relative abundances of the most common diatom
species in the time series. Few species dominate the
data over the entire time series, and turnover is ap-
parent at multiple observations.

regimeDetectionMeasures (Appendix .4). In this case study, the ‘distance trav-

eled’, s [Equation (6.1)], clearly exhibits shifts at points where expert opinion and

species turnover (in species dominance) agree that a large change occurred. Further,

velocity, V (see dsdt in package materials) indicates a large shift at only the most

predominant shift in the time series, perhaps due to the sensitivity of the metric to

variance (Figure 68.

Further work is required to determine the utility of system velocity as a regime
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Figure 626: Velocity V and distance traveled s of the paleodi-
atom time series. Dashed line at 1,300 years before
1950 indicates the regime shift identifed in Spanbauer
et al. (2014). Dotted lines indicate regime shifts as
visually identified on metrics s and V .

detection metric, however, this chapter demonstrates that the metric may indicate

clear shifts in variable means and variability about the means. In addition to ex-

amining high-dimensional and noisy data, a study of the performance of V under

conditions where few variables exhibit large changes while many variables are rela-

tively constant may also prove useful. Additionally, this metric may be a useful tool

for reducing the dimensionality of high dimensional data. Although the metric loses
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Figure 627: Inter-regime (regimes A and B) trends in the ve-
locity signal (V ) identify the fluctuating decadal and
centurial abiotic conditions discussed in Spanbauer
et al. (2014).

much information, as opposed to some dimension reduction techniques, e.g. Princi-

pal Components Analysis PCA, the metric is simple to calculate (even by hand),

is computationally inexpensive, and is intuitive, unlike many clustering algorithms

(e.g., Non-metric Multidimensional Scaling NMDS). Like system velocity, methods

of the latter variety (e.g. NMDS) require post-hoc statistical analyses to confirm the

location of clusters (or abrupt change, regime shifts), while methods of the former

variety (e.g. PCA) retain loadings but do not necessarily identify the locations of
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Figure 628: The regularized differentiation of s was best fit us-
ing α = 100. Higher overlap of s and pred indicates
a good fit of the regularized differentiated metric to
the non-smoothed metric, s.

abrupt shifts.

6.7 Supplementary Figures

Figures 630, 631, and 632 provide additional examples of the behavior of velocity,

V when varying the mean and/or variance prior to and/or after the induced abrupt

shift in the toy system with a discontinuous transition at t = 50.
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Figure 629: The velocity metric (V ) signals potential period-
icities in the paleo diatom time series data when the
distance traveled metric, s, is smoothed using regu-
larized differentiation methods (see Price and Bur-
nett 2019).
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Figure 630: System change (s) and velocity (V ) of the model
system over the time period. Change in means
(x̄1pre = 25, x̄1post = 100, x̄2pre = 50, x̄2post = 10)
and an increase in variance (σ1pre = 2, σ1post = 10,
σ2pre = 5, σ2post = 10).
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Figure 631: System change (s) and velocity (V ) of the model
system over the time period. Constant means (x̄1 =
25, x̄2 = 50) and sharp change in variance for one
state variable σ1pre = 2, σ1post = 12, σ2pre,post = 5
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Figure 632: System change (s) and velocity (V ) of the model
system over the time period. Variance equal to mean
(/barxi = /sigmai), where means (/barx1pre = 25,
/barx1post = 50, /barx2pre = 15, /barx2post = 150).
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Chapter 7

Grassland Obligates and Declining Birds Operate Near

Edges of Body Mass Distributions

7.1 Introduction

Animal body mass distributions have been used to identify scaling structures of eco-

logical communities (Holling, 1992; Allen & Holling, 2002; Allen, 2006). Using sta-

tistical methods to identify gaps, or discontinuities, in body mass distributions, some

patterns are observed within and across taxonomic groups and biomes. Given the

ubiquity of discontinuities identified in body mass distributions of fauna and so-

cial systems (Allen, 2006), the ecological significance of these patterns may prove

useful in understanding ecosystem structure and functioning (Angeler et al., 2016).

Various hypotheses are posited as drivers of the observed discontinuities in animal

body mass distributions, including those related to resource use (the Energetic and

Textural Discontinuity hypotheses), community interactions, biogeography, and evo-

lution/phylogenetics (Holling, 1992; Blackburn & Gaston, 1994; Allen, 2006; Allen et

al., 2006).

Body size influences the frequency and intensity of inter- and intraspecific compe-

tition for resources, territory, and mates, thereby dictating the spatial and temporal

scales at which a species of a distinct body size operates (Peters & Wassenberg, 1983;
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Silva & Downing, 1995; Allen et al., 2006). The scaling structure of terrestrial com-

munities are have been found to have ‘lumpy’ distributions; that is, they are not

well-described using parametric statistical descriptions. If the scaling structure of a

community manifests in the body mass distribution of the community, it is considered

reflective of the discontinuous and heterogeneous nature of resource use. Specifically,

Holling (1992) suggests that the body mass distribution of a community or group of

species reflects the discontinuous nature of environmental structures and processes.

Quantitative analyses of animal body sizes (Allen et al., 2006; Nash et al., 2014b) and

other similar distributions has revealed the ubiquity of the discontinuous nature of

distributions of animal body masses (Havlicek & Carpenter, 2001; Skillen & Maurer,

2008), plant biomass (Spanbauer et al., 2016), city population sizes (Garmestani et

al., 2005), and animal home range sizes (Restrepo & Arango, 2008).

Avian distribution and presence data are abundant, easily accessible and, more

importantly, provide insights into resource availability and structure at the local and

landscape scales. In this Chapter I used discontinuity analysis of avian body mass

distributions to identify the scaling structures of local avian communities in the Prairie

Potholes, Central Mixed Grass, and Eastern Tall Grass regions of the central Great

Plains of North America. I then use linear mixed modelling to determine whether the

body mass distributions of these avian communities exhibit change corresponding

to the spatial boundaries recently proposed in (Roberts et al., 2019). Although I

found evidence supporting the hypothesis that declining grassland birds operate near

the ‘edges’ of body mass aggregations, which represent the spatiotemporal scaling of

resource use and availability, I did not identify shifts in the body mass distributions

corresponding with the previously proposed pole ward, spatial shifts.
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7.2 Methods

Figure 71: My study area (red box) overlaying the terres-
trial Breeding Conservation Regions (BCR) in North
America.

7.2.1 Study area

A recent study (Roberts et al., 2019) identified what they refer to as spatial regimes

across a large portion of the central United States (see Figure 71) using inference

gained from discontinuity analyses of avian body mass distributions. The authors



151

hypothesize that a spatial regime boundary exists in the Central Great Plains and

suggests it has exhibited a Northward shift at a rate of ∼ 0.05◦ latitude
year

. The authors

used discontinuity analysis to identify these ‘spatial regimes’, using the body masses

of breeding birds. Their hypothesized spatial regime boundary occurs at 39◦ latitude

in year 1970, 39.5◦ latitude in year 1985, 40◦ latitude in year 2000, and 40.5◦ latitude

in year 2015 (see Figure 72). Sampling sites were classified each year as belonging to

either the Southern or Northern regime according to whether the location was below

(Southern) or above (Northern) the regimes identified by Roberts et al. (2019).

My study area is designed such that there is minimal crossing of very different

BCR, or habitat types (Figure 71). In other words, this study area largely falls

within BCRs which can be generally classified as grassland habitat (BCR 11, Prairie

Potholes; BCR 19, Central Mixed Grass ; BCR 22, Eastern Tall Grass). Using this

design we should expect that the functional groups within our avian communities

should be similar across BCR boundaries, despite a potential turnover in species

identity. Accounting for change in habitat across space allows us to assume that any

observed change in the scaling structure of the avian community is due to changes in

habitat and resource availability such that similar species are or are not included in

the community.

7.2.2 Data

7.2.2.1 Avian census data - North American Breeding Bird Survey

I constructed body mass distributions using route-level data from the North American

Breeding Bird Survey hereafter (NABBS; Sauer et al., 2014). The NABBS uses citi-

zen scientist volunteers to annually collect data using a standardized roadside, single

observer, 3-minute point count protocol and has organized data collection annually
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across North America (Figure 41) since 1966. Each roadside survey consists of 50, 3-

minute point counts (data collected using sight and sound) along ∼ 24.5 mile stretch

of road. Although the point counts are designed to collect estimates of relative abun-

dance, the method for building body mass distributions used in this chapter require

only presence absence data. I therefore converted abundances to presence-absence

data. I considered a species as ‘present’ if it was detected on the year in question or

the ±1 year to account for potential false negative observations (i.e., a species was

not detected in the NABBS route despite its presence in the local community).

Identifying avian census locations To determine whether the spatial regime

shifts identified in Roberts et al. (2019) manifested in local avian community struc-

ture, I restricted analysis to the grassland habitat of the Central Great Plains. All

routes falling within a rectangular area bounded by coordinates 37.8◦ and 44.5◦ lati-

tude, and −101◦ and −95.5◦ longitude [see Figure 72]. I retained all NABBS routes

which used the sampling protocol ‘101’, which is the standard method for conducting

NABBS point count surveys.

Avian body mass data Species operating at similar spatial and temporal scales

are those which are close in body size as identified using statistical aggregation identi-

fication techniques (Allen et al., 1999). The interactions among species within a single

body mass aggregation are presumed to experience a higher frequency and intensity of

interspecific interactions with each other as opposed to those in different aggregations

(Peterson et al., 1998). Although some species of birds are sexually size dimorphic, I

am unaware of any sexually size-dimorphic birds that would likely operate at different

spatial and temporal. Therefore, I constructed body mass distributions of each avian

census using the sex-averaged body masses published in Dunning Jr (2007) (available
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for download at CRC press).

Removing species from analysis Due to strict reliance on volunteers, some

routes are not covered every year. Although NABBS volunteers attempt identify all

species in the point-count area, biases exist in data collection. Rather than retain ob-

servations of cryptic or species with low detection rates, I removed select species from

the censuses (see Methods section in Chapter 4 for further discussion of this topic). I

analyzed species of the following taxonomic families: Accipitriformes, Apodiformes,

Cathartiformes, Charadriiformes, Columbiformes, Coraciiformes, Cuculiformes, Gal-

liformes, Gruiformes, Passeriformes and Piciformes. Although removing cryptic, noc-

turnal, and some crepuscular species (e.g. Caprimulgiformes) from the analysis may

yield a more conservative body mass distribution, including them may result in cor-

rectly identifying additional scaling structures (or body mass aggregations) in some

routes but not in others. This method of exclusion also results in a loss of some

medium- and larger-bodied Ciconiiformes (Podicipediformes, Phoenicopteriformes,

Ciconiiformes; e.g. grebes, pelicans).

Taxonomic munging of the census data Although the NABBS survey reports

species-specific abundances, some birds are only classified to genera or order. Com-

mon examples of these species are those which are nearly indistinguishable from each

other (e.g., Glossy Ibis and White-faced Ibis), birds which are difficult to see under

certain conditions (e.g., hummingbirds, fast-moving hawks or accipiters), or species

whose songs are similar. Numerous species were presented as identified to family or

genus (e.g., Accipiter sp., Buteo sp., and Trochilids sp.) and others are categorized

as hybrid.

I made decisions regarding species-specific classification based on the North Amer-

https://www.crcpress.com/CRC-Handbook-of-Avian-Body-Masses/Dunning-Jr/p/book/9781420064445
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ican breeding range maps provided by the Cornell Lab of Ornithology. Many uniden-

tified species were easily categorized given the lack of overlap in species’ ranges in

our study area. For example, Baeolophus bicolor is nearly indistinguishable from

Baeolophus atricristatus, however B. atricristatus is not known to occur in our study

area (Figure 71)–therefore all accounts classified as either B. bicolor or B. atricrista-

tus were classified as the former. Informed decisions of this nature were made re-

garding the following unidentified species, where the second name in the binomial

was assigned as the species preceding the “/”: Passerina cyanea / amoena, Corvus

brachyrhynchos / ossifragus, Petrochelidon pyrrhonota / fulva, Corvus brachyrhyn-

chos, Quiscalus major / mexicanus, Pipilo maculatus / erythrophthalmus, Sturnella

magna / neglect, Plegadis chihi / falcinellus, Coccyzus erythropthalmus / americanus,

Empidonax traillii / alnorum, Icterus galbula / bullockii, Nyctanassa nycticorax / vi-

olacea, and Poecile atricapillus / carolinensis were all classified according to their

known distributions. I classified unidentified hummingbirds (Trochilid sp.) as Selas-

phorus rufus, and unidentified Terns (Tern sp.) as Childonias niger. All unidentified

Accipiters (Accipiter sp.), Buteos (Buteo sp.), and Gulls (Gull sp.) were removed

from analysis entirely as there are no clear differences in the probability of occurrence

in our study area.

7.2.2.2 Identifying species of interest

Allen et al. (2006) propose alternative hypotheses for the relative locations of species

within the body mass aggregation distributions as a function of ‘distance-to-edge’, a

measure indicating the distance (in log-mass units) of each species to the edge of a

body mass aggregation. This distance-to-edge measure is zero when the species falls

at the edge of a statistically identified body mass aggregation. This species is often

referred to as an ‘edge species’. To determine the effect of spatial regime shifts on



155

Figure 72: North American Breeding Bird Survey routes
(points), latitudinal locations (horizontal bars) of the
spatial regimes identified by roberts2019shifting.

edge species, I identified three types of species of interest: (1) grassland obligates

species, (2) species with widespread population declines in the study area, and (3) a

combination of these groups. All remaining species were classified as ‘other’.

Grassland obligate species The spatial regimes identified in Roberts et al. (2019)

are attributed to large-scale changes in the landscape, including woody plant inva-

sion. The loss of native grassland in our study area due to land conversion is largely

attributed to anthropogenic land use change (e.g., development) and fire suppression.

Numerous species have been negatively impacted by this widespread habitat loss, but

grassland obligates are particularly at risk. Grassland obligates should be strong indi-

cators of the large-scale spatial regime shifts identified in Roberts et al. (2019), given
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their high sensitivity to grassland habitat loss (Herkert, 1994). I identified North

American grassland obligate species from the grey literature (Shriver et al., 2005; Ini-

tiative et al., 2009) and white literature (Peterjohn & Sauer, 1999). Although some

grassland obligates were positively impacted by the Conservation Reserve Program

(CRP; Peterjohn & Sauer, 1999), this group of birds exhibited strong declines in

North America until approximately 2003 (Initiative et al., 2009).

Declining species I classified a species as ‘declining’ based on the results of the

North American Breeding Bird Survey (Sauer et al., 2014). The Patuxent Wildlife

Research Center uses hierarchical modelling techniques to estimate the trends of

species using the NABBS data at various spatial scales. Sauer et al. (2014) also

provides estimates of data credibility according to data availability, number of routes

used to build the population trend estimate, abundance, and probability of detecting a

small change in population trend. These credibility scores are generated for multiple

spatial extents: state-level, BCR-level, and across the three regions of the United

States (Western, Central, and Eastern). Given the extent of this study, I considered

the data credibility estimates using the Central Breeding Bird Survey Region, the

Prairie Pothole BCR (BCR 11) and Eastern Tallgrass Prairie (BCR 22). A species

was considered as declining only if the trend estimate was categorized as having

moderate precision and abundance (blue) or having a deficiency (yellow). I considered

the population trend estimates provided for the period of 1966 - 2015.
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7.2.3 Statistical analysis

7.2.3.1 Identifying scaling structure of avian communities using body

mass distributions

Discontinuities in body mass distributions been quantified using various methods

(e.g., multivariate time series models, regression trees, and gap rarity index) which

are collectively referred to as ‘discontinuity analyses’ (Allen, 2006; Stow et al., 2007;

Nash et al., 2014a; Barichievy et al., 2018). Using various methods, the discontinuous

nature of body masses of ecological communities has been observed in various taxa

of both terrestrial (Allen et al., 2006) and aquatic (Spanbauer et al., 2016) commu-

nities. Multiple methods are proposed for identifying discontinuities in body mass

aggregations (Allen & Holling, 2001), including clustering algorithms (Stow et al.,

2007), body mass difference indices (Holling, 1992), gap rarity index (Restrepo &

Arango, 2008), and more recently the discontinuity detector (Barichievy et al., 2018),

an extension of the gap rarity index (Restrepo & Arango, 2008).

I used the discontinuity detector described in Barichievy et al. (2018), which uses

likelihood to determine whether the observed data contains multiple modes as com-

pared to that of a Gaussian (uni-modal) distribution. This method requires multiple

user-defined parameters, including an imputation resolution (1000) and a bootstrap

sample size (1000) over which the null distribution is randomly sampled. I pro-

vided a slightly altered and annotated version of the functions Neutral.Null and

Bootstrap.Gaps (first printed in Barichievy et al. (2018)) used to identify discon-

tinuities in a continuous variable in Appendix .4. Two criterion have been used to

determining the exact location of discontinuities within a rank-ordered continuous

variable: using a constant significance/threshold level (Barichievy et al., 2018) and

a power constant table for varying sample sizes (Roberts et al., 2019). It should be
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noted because the power-constant method identifies a larger proportion of “signifi-

cant” discontinuities, or edges, identifying aggregations requires subjective measures

regarding actual aggregation locations. Using the percentile method avoids this sub-

jectivity, however, the aggregation number and locations are sensitive to choice of

percentile or threshold value. Following the methods of Barichievy et al. (2018) I

considered a value to be a discontinuity if the gap percentile (see Appendix .4 was

≥ 90. I built route-level body mass distributions for each route-year combination by

using presence absence data from the current, previous, and following year to account

for observational and process errors impacting the detectability of a species within a

single route. Using this method reduces the amount of species-specific, and conse-

quently specific-body mas turnover within a route over time. This also assumes that

an unobserved species is truly absent, an assumption which is difficult to avoid with-

out a sophisticated occupancy modelling approach for each species in the community.

7.2.3.2 Determining Effects of a Spatial Regime Boundary on Grassland

Birds

If the spatial regime shift occurred in the bird community, it should manifest in the

local community scaling structure through one or both of species turnover and a

shift in the number of body mass aggregations. I used linear mixed modelling to

determine whether the local scaling structure and the location of grassland obligates

and declining species within these scaling structures are impacted by the spatial

regime boundaries proposed by Roberts et al. (2019).

I used a linear mixed model to determine whether the proposed moving spatial

regime boundaries influenced the location of species of interest (grassland obligates,

declining species) within their respective body mass aggregation. Each species was

assigned a ‘distance to edge’, which served as a proxy of the proximity of a species
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to the nearest edge of its respective body mass aggregation. Previous studies suggest

that this distance to edge measure can be used to identify zones of transitions, as

invasive and threatened species tend to be located at the edges of aggregations (Allen

et al., 1999). Following this hypothesis, one should expect to see changes in the

locations of sensitive and declining species change in the areas undergoing so called

spatial-regime shifts (Roberts et al., 2019).

Table 71: Grassland obligates and species with declining trends
over the period of (1966-2015) in the Central Breeding
Bird Survey region in our study area.

Common Name Species Group

Bobolink Grassland Obligates

Lark Sparrow Grassland Obligates

Chipping Sparrow Grassland Obligates

Henslow’s Sparrow Grassland Obligates

Ferruginous Hawk Grassland Obligates

Upland Sandpiper Declining Grassland Obligates

Ring-necked Pheasant Declining Grassland Obligates

Horned Lark Declining Grassland Obligates

Eastern Meadowlark Declining Grassland Obligates

Western Meadowlark Declining Grassland Obligates

Vesper Sparrow Declining Grassland Obligates

Grasshopper Sparrow Declining Grassland Obligates

Field Sparrow Declining Grassland Obligates

Dickcissel Declining Grassland Obligates

Savannah Sparrow Declining Grassland Obligates
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Lark Bunting Declining Grassland Obligates

Cassin’s Sparrow Declining Grassland Obligates

Chestnut-collared Longspur Declining Grassland Obligates

Killdeer Declining

Northern Bobwhite Declining

Rock Pigeon Declining

Mourning Dove Declining

Yellow-billed Cuckoo Declining

Black-billed Cuckoo Declining

Belted Kingfisher Declining

Downy Woodpecker Declining

Red-headed Woodpecker Declining

Red-bellied Woodpecker Declining

Chimney Swift Declining

Eastern Kingbird Declining

Western Kingbird Declining

Great Crested Flycatcher Declining

Blue Jay Declining

American Crow Declining

European Starling Declining

Red-winged Blackbird Declining

Orchard Oriole Declining

Baltimore Oriole Declining

Common Grackle Declining
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Song Sparrow Declining

Purple Martin Declining

Barn Swallow Declining

Loggerhead Shrike Declining

Common Yellowthroat Declining

House Sparrow Declining

Brown Thrasher Declining

Black-capped Chickadee Declining

Gray Partridge Declining

Wood Thrush Declining

Northern Harrier Declining

Greater Prairie-Chicken Declining

Scissor-tailed Flycatcher Declining

Black-billed Magpie Declining

Northern Mockingbird Declining

Bewick’s Wren Declining

Kentucky Warbler Declining

Carolina Chickadee Declining

King Rail Declining

Bullock’s Oriole Declining

Rock Wren Declining

Ovenbird Declining

Prothonotary Warbler Declining

Curve-billed Thrasher Declining
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Brewer’s Blackbird Declining

Clay-colored Sparrow Declining

Willet Declining

Marbled Godwit Declining

I modelled the ‘distance to edge’ for each species as a function of time, whether the

NABBS route is in the ‘Southern’ or ‘Northern’ spatial regime [South or North of the

boundaries proposed in Roberts et al. (2019); see Figure 72], time, route identity, and

a descriptive group (one of grassland obligate, declining, declining grassland obligate,

other). The ‘distance to edge’ response variable was not strongly correlated with

body mass (Figure 712), however, I scaled and centered the response values to avoid

obtaining predictions lower than zero for the unscaled response.

Fixed effects included an interaction among year (β1i) and regime location (β2i),

and an interaction among regime (β2i) and species group (β3). Random intercepts

were estimated for each species (b1) within each NABBS route (b2). That is, species

was nested within route. An auto-regressive lag-1 correlation structure was assumed

for the random intercept estimates. The model was fitted using restricted maximum

likelihood. The model was fitted using nlme::lme and was coded as: > nlme::lme(

distEdge.scaled ˜ year.center * regime + regime * sppGroup, random = ˜ 1 | loc/aou,

correlation = corAR1(form = ˜ 1 | loc / aou ), method = “REML”)

7.3 Results
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Table 72: The number of NABBS routes analysed in the South-
ern regime is smaller than those used in the Northern
regime each year given the location of the regimes iden-
tified in a previous study with respect to the contiguous
grasslands of Central North America.

Year North South

1967 38 11

1968 43 12

1969 53 11

1970 45 17

1971 43 13

1972 38 17

1973 39 15

1974 29 17

1975 41 16

1976 46 18

1977 47 16

1978 45 18

1979 46 17

1980 43 16

1981 40 18

1982 38 16

1983 37 16

1984 30 14

1985 30 24

1986 31 21
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1987 36 21

1988 34 24

1989 33 25

1990 40 21

1991 31 22

1992 33 23

1993 39 23

1994 37 23

1995 37 22

1996 39 22

1997 36 24

1998 34 21

1999 32 23

2000 37 37

2001 31 34

2002 32 36

2003 36 38

2004 35 35

2005 38 36

2006 39 35

2007 39 36

2008 35 34

2009 39 37

2010 37 30
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2011 38 33

2012 33 35

2013 39 37

2014 42 38

2015 36 33

2016 37 30

2017 35 32

7.3.1 Summary statistics of censuses (NABBS data)

Given the location of the study area (Figure 71) with respect to the location of the

contiguous Central Great Plains, fewer NABBS routes falling into the Southern regime

were analysed than those in the Northern (Table 72). Likely due to the increase in the

total number of routes surveyed over time across the entire North American Breeding

Bird Survey region, species richness increased over time within our study area (Figure

74). Annual turnover rates were relatively low but became more dispersed over time

(Figure 75; Table 73).

Table 73: Summary statistics for annual species richness and
annual turnover in all NABBS routes in study area.

Annual Richness Annual Turnover

Year x̄ σ N x̄ σ N

1967 39.4 8.14 27 -0.1 8.13 27

1968 41.4 8.11 37 1.6 10.25 37

1969 39.9 7.44 47 0.6 10.12 47

1970 41.3 7.73 43 0.9 9.74 43
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1971 39.4 7.50 36 0.7 10.62 36

1972 41.0 9.80 32 -1.2 12.94 32

1973 40.1 8.33 33 -2.1 10.42 33

1974 38.8 7.67 27 -2.2 10.53 27

1975 38.3 7.37 32 -1.4 9.57 32

1976 41.2 7.53 45 0.6 10.31 45

1977 39.5 8.48 43 -1.7 9.69 43

1978 39.5 8.88 42 -1.9 10.09 42

1979 39.7 8.06 43 -1.7 10.03 43

1980 40.4 7.18 37 -1.1 10.16 37

1981 41.2 8.76 39 -1.2 9.26 39

1982 42.3 6.65 32 -1.6 8.28 32

1983 41.3 8.47 33 -1.9 8.91 33

1984 41.7 7.85 22 -4.1 6.12 22

1985 40.8 8.54 34 -1.1 11.30 34

1986 42.2 9.17 32 -2.7 10.42 32

1987 43.4 8.94 38 -1.3 9.82 38

1988 41.7 9.35 37 -1.4 12.19 37

1989 42.3 8.67 40 -1.8 9.98 40

1990 42.3 9.47 38 -1.6 9.69 38

1991 43.3 9.69 30 -2.1 10.14 30

1992 44.6 7.52 31 -0.8 9.61 31

1993 42.7 9.35 41 -1.0 12.87 41

1994 43.4 9.76 38 0.4 12.50 38
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1995 42.2 9.98 39 -0.8 12.75 39

1996 44.1 7.44 36 1.0 10.68 36

1997 44.6 9.45 39 1.0 12.65 39

1998 43.8 9.00 32 -1.9 12.25 32

1999 45.9 9.52 28 -1.8 11.66 28

2000 45.8 9.30 56 0.5 11.86 56

2001 46.5 8.51 46 0.7 11.95 46

2002 46.8 8.94 50 0.5 13.91 50

2003 48.1 9.84 57 -0.2 13.11 57

2004 45.8 10.88 49 0.1 13.97 49

2005 46.3 9.13 52 -0.6 11.20 52

2006 46.2 10.46 52 -0.5 11.94 52

2007 46.7 9.59 57 0.3 11.29 57

2008 48.2 11.00 47 1.0 14.84 47

2009 47.8 9.92 56 -0.4 12.11 56

2010 47.4 9.62 45 -0.9 11.93 45

2011 47.0 10.53 47 -1.0 14.61 47

2012 47.7 10.33 46 0.7 13.46 46

2013 47.0 10.03 57 1.1 13.50 57

2014 47.8 9.35 59 -0.2 11.22 59

2015 48.5 9.33 49 0.4 10.79 49

2016 50.8 9.38 44 2.0 12.73 44

2017 47.6 9.84 45 0.2 11.84 45
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Figure 73: Number of NABBS routes analysed per year. Some
routes are not sampled annually due to volunteer avail-
ability, environmental conditions, or route discontin-
uation.

7.3.1.1 Species of interest

A total of 163 species were considered for analysis across the entire study area. 18

were classified as grassland obligate species, or species deemed highly sensitive to

changes in amount and quality of grassland habitat. Of the grassland obligates, 13

were considered as declining species. An additional 49 species were classified as non-

grassland obligate and declining (Table 71).

The total (Figure 78) and mean (Figure 79) number of birds counted within each

species group was relatively constant across time in the Prairie Potholes and Eastern

Tallgrass Prairie bird conservation regions, but fluctuation in stop totals appeared

greater in the Badlands and Prairies BCR (Figures 79, 78)). The latter BCR com-

prises a much smaller portion of the study area (Figure 71) and accordingly the coeffi-
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Figure 74: Species richness increases over time across the en-
tire study area.

cient of variation (CV; ratio of deviation to the mean) around the stop totals (Figure

710) was highest in this region. It is worth noting the high CV (CV is considered low

when < ∼ 40) in all regions.

7.3.2 Statistical analysis

7.3.2.1 Identifying scaling structure in body mass distributions

Discontinuity analysis was conducted to identify the aggregations in the body mass

distributions of 103 routes over a 50 period across the Central Great Plains (Figure

71)). Discontinuity analysis suggested discontinuities existed in all routes analysed,

and were relatively similar within NABBS routes over time. The number of body mass

aggregations identified within each NABBS route using the discontinuity detector
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Figure 75: Variance in the total species turnover increases
over time across the entire study area.

(Barichievy et al., 2018) was similar was similar across time (Figure 711a) and was

approximately normally distributed across all survey-year combinations (x̄ = 4.7, σ =

1.6; Figure 711a). Species richness at the route level was strongly positively correlated

with the number of aggregations (Figure 712). The distance to edge variable was

statistically, but not strongly, correlated with body mass r = −0.02, p =< 0.01, and

this relationship was similar across species groups except grassland obligates.

The discontinuities in the body mass distribution identified appeared relatively

similar over time at most NABBS routes (Figure 713). If the shifting spatial regimes

proposed in an earlier study [Roberts et al. (2019); Figure 72], then we should expect

changes in the body mass distribution of NABBS falling within or near the regime

boundary. This was not observed on the routes falling within this zone (Figure 713
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Figure 76: Declining species were closer to the edge of body
mass aggregations in the ’northern’ than were in the
’southern’ regimes.

is representative of the ˜5 NABBS locations falling in this area of expected changes

shifting).

7.3.2.2 Linear mixed effects analyssis of distance to edge

Declining species and declining grassland obligate species were located closer to the

edge than the ‘other’ species, while grassland obligate species were further from the

edge than ‘other’ species (Table 74). Similar trends held for declining grassland obli-

gates and grassland obligates in the Northern regime location. There was, however, no

evidence to suggest additive effects of the regime location or year, or their interactions

(Table 74).
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Figure 77: Declining species were closer to the edge of body
mass aggregations in the ’northern’ than were in the
’southern’ regimes.

7.4 Discussion

South-North shifts in the past 50+ years have been demonstrated in large scale pro-

cesses, including bird populations and ranges (Sorte & III, 2007) and plant hardening

zones (Mckenney et al., 2014). A recent application of discontinuities in body mass

distributions (Holling, 1992) corroborated these previous observations of large-scale

changes as manifested in the avian community (Roberts et al., 2019). support for the

hypothesis that declining species operate at the edges of body mass aggregations, but

did not identify changes in the body mass distributions of avian communities near

the proposed spatial regime boundary (Roberts et al., 2019) proposed in impact of

these proposed spatial regime shifts on local bird communities

The lack of additive effects in the presence of multiplicative effects of the regime
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Figure 78: Total number of birds across the entire study area
per species group per year.

location (Table 74) strengthens the support for the differences in grassland obligates

and declining grassland obligates with respect to all other species, however, the con-

fidence intervals around the estimates of declining grassland obligates, grassland ob-

ligates may suggest that the evidence for such an effect is relatively weak (Figure

77). This is unsurprising given the distribution of grassland obligate body masses

is highly skewed right relative to the remaining species (Figures 714), 715)). Many

grassland obligate species have small body masses, reducing the probability that they

will appear in different body mass aggregations, however, depending on the local bird

community identities, local grassland obligates may all have similar body masses, re-

moving this effect. The larger, non-declining grassland obligates occur in a relatively

small portion of our study area, Shortgrass Prairie BCR (Figures 71,716).
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Figure 79: Average coefficient of variation in the number of
birds across the entire study area per species group
per year.

Although the body mass distributions of terrestrial communities at small scales

tends to differ from those at larger spatial scales (Blackburn & Gaston, 1994), nu-

merous studies confirm the evidence for ‘discontinuities’ in these distributions across

multiple spatial scales for a variety of phenomenon (Allen et al., 1999; Wardwell &

Allen, 2009; Nash et al., 2014a; Spanbauer et al., 2016; but see Siemann & Brown,

1999; Manly, 1996 for applications yielding negative results; Bibi et al., 2019). This

study found evidence supporting the hypothesis that scaling structures manifest in

the body masses of fauna communities, adding to the growing number of case studies

which suggest this phenomena is widespread across systems and scales.



175

Figure 710: Average number of birds across the entire study
area per species group per year.

Table 74: Coefficient estimates for the linear mixed effects
model predicting species’ ’distance to edge’ of a body
mass distribution.

Estimate CI
(Intercept) 0.04 (0.02, 0.07)
Year 0.00 (0, 0)
North 0.01 (-0.01, 0.03)
Declining -0.05 (-0.08, -0.02)
Declining Grassland Obligates -0.17 (-0.2, -0.14)

Grassland Obligates 0.15 (0.11, 0.2)
Year x Declining 0.00 (0, 0)
North x Declining 0.02 (-0.01, 0.04)
North x Declining Grassland Obligates -0.05 (-0.07, -0.03)
North x Grassland Obligates 0.04 (0.01, 0.07)
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Figure 711: Number of body mass aggregations identified in
each route unchanged across the time period (**a**)
and is approximately normally distributed (x̄ =
4.7, σ = 1.6)
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Figure 712: Relationship between species richness per route
and (a) the number of aggregations identified in body
mass distributions and (b) distance to the edge (units
log body mass) of aggregations.
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Figure 713: Aggregation locations of body mass distributions of
the avian community at a single NABBS route (state
7 route 24) appear relatively similar across time.
Panels include data for years 1=1970, 2=1985,
3=2000, 4=2015. Red triangles indicate grassland
obligate species.
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Figure 714: Body mass distribution for species in the study
area over the entire time period varies by species
group. Distributions represent the species pool for
each group over the entire study area and all years.
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Figure 715: The body mass distribution of declining species
differ only slightly between the Southern and North-
ern regimes.
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Figure 716: Body mass distribution for species in the study
area over the entire time period varies by species
group. Distributions represent the species pool for
each group and Bird Conservation Region over all
years.
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Chapter 8

Conclusions

Climate change is expected to induce an increase in both the intensity and frequency

of rapid ecological change or disturbance, impacting social systems, potentially to

the detriment of human communities most vulnerable. Identifying and forecasting

these changes is critical for community and ecological planning, management, and

disaster mitigation. Because ecological and social systems are tightly coupled, it is

commonplace to use ecological indicators to identify change and potential changes

that may impact these systems. Many papers introducing or discussing regime de-

tection measures suggest the ecologist uses multiple lines of evidence, ranging from

historical observations to ecological modelling results, for identifying an ecological

regime shift (Lindegren et al., 2012). Although valid, comparing results of multiple

methods or lines of evidence within a single system has yielded inconsistent results,

and inconsistent results can result in either improper conclusions, or in what I am

calling method mining. That is, a data set is analyzed using until a sufficient

number of methods yield affirmative results.

Data = Information

= Signal

= Process+Noise

(8.1)
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8.1 Method Mining

Many regime detection measures have yet to be statistically (or numerically) scruti-

nized for robustness or sensitivity to data quality, data quantitaty, and shift types.

However, it should be noted that, in part due to both (i) the popularity and (ii) the

sheer number of ‘new’ methods introduced by only a handful of authors1. Ecological

indicators (a.k.a. indices, metrics) have been suggested as ‘early-warning indicators’

of ecological regime shifts or abrupt change (Chapters 1 and 2) and are methods of

measurement designed to provide inference about one or more unobserved or latent

processes, are inherently biased. Regardless of the state of the theory supporting

regime shifts in ecology, ecological indicators and the methods for calculating them

should be heavily scrutinized prior to being used in an ecological management or

policy-making setting. Rather, new methods (indices, metrics, etc.) are being in-

troduced into the literature at a rate exceeding that at which they are scrutinized

(Chapter 2). This dissertation demonstrates that, while potentially useful, regime

detection metrics are inconsistent, not generalizable, and are currently not validated

using probabilities or other statistical measurements of certainty.

8.2 Ecological Data are Noisy

Regime detection metrics appear more reliable when the signal-to-noise ratio is high

(Chapter 2, Chapter 6, Taranu et al., 2018). Ecological systems are noisy, and the

observational data we are collecting at large scales (e.g., the North American Breeding
1S.R. Carpenter is one example of an author who has relative infamy in the field and has, as

primary author or otherwise, introduced a relatively large number of new methods (e.g., rising
variance, the variance index, Fourier transform, online dynamic linear modelling, TVARSS)
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Bird survey), is noisy. Using methods incapable of identifying meaningful signals in

noisy data appears futile, yet, methods for doing so are increasingly introduced in the

scientific literature (Chapter 2).

8.3 Data Collection and Munging Biases Limit Inference

Regime detection measures and other ecological indicators can signal various changes

in the data, however, understanding what processes are embedded in the signals (i.e.,

removing the noise) requires expert judgement. And because a consequence of data

collection and data analysis limits the extent to which we can identify and infer pro-

cesses and change within an ecological system, I suggest the practical ecologist

scrutinizes her data prior to identifying and conducting analyses, including

those that are purely exploratory. By collecting and analyzing data, the ecologist

has defined the boundaries of the system a priori (Beisner et al., 2003 states this

eloquently as, “The number and choice of variables selected to characterize the com-

munity will be determined by what we wish to learn from the model”). The influence

of state variable selection is ignored by some metrics (e.g. Fisher Information, Eason

et al., 2014 and velocity, Chapter 6), in that the resulting measure is composite and

carries no information regarding the influence of state variables on the metric result.

The actual limitations to the system should be, theoretically, known as a result of

bounding the system. Inference beyond this system is extrapolation, and should be

treated as speculation, especially when not accompanied by a measure of uncertainty

around one’s predictions.
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8.4 Common Limitations of Regime Detection Measures

Limitations of the findings in this dissertation and of the regime detection methods

used herein are largely influenced by the data collection, data munging processes.

Although the below mentioned points may seem logical to many, these assumptions

are overlooked by many composite indicators, including regime detection measures.

1. Signals in the indicators are restricted to the ecological processes captured by

the input data. Extrapolation occurs when processes manifest at scales different

than the data collected [resolution; Chapter 4]

2. Normalization and weighting techniques often impact results (whether ecologi-

cal or numerical) (Appendices .2 and .4)

3. Data aggregation techniques often impact results (Chapter 5)

4. Some indices fail to generalize across systems or taxa (see Chapters 1 and 2)
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Appendix A bbsAssistant: an R package for Download and

Munging Data and Information from the North American

Breeding Bird Survey

This package is awaiting review at the Journal for Open Source Software. JLB is the

creator and maintainer of the package. G. Palomo-Mu˜{n}oz and Lyndsie Wszola

are co-authors. Tentative doi: 10.21105.joss.01550

.1 Package Summary

This package contains functions for downloading and munging data from the North

American Breeding Bird Survey (BBS) FTP server (Sauer et al., 2017; Pardieck

et al., 2018). Although the FTP server provides a public interface for retrieving

data and analysis results, this package consolidates the efforts of the data user by

automating downloading and decompression of .zip data files, downloading route-level

information, and saving them as .feather files for speedy import from disk. The data

subsetting features of this package also allow the user to readily import and save

to file only the data necessary for her purposes. Although the primary audience is

for those wishing to use BBS data in Program R for visualization or analysis, this

package can be used to quickly download the BBS data to file for use elsewhere.

The BBS team uses hierarhical modelling techniques to generate population trend

estimates (Sauer et al., 2014) at various spatial scales see the BBS results webpage.

https://github.com/openjournals/joss-papers/tree/joss.01550/joss.01550
https://www.mbr-pwrc.usgs.gov/
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Given the variability in data availability, the BBS team also provides data credibil-

ity scores for species-regions combinations. This package contains two functions for

retrieving the population trend estimates produced by Sauer et al. (2014) and the as-

sociated data credibility scores: a web-scraping function for obtaining current region

and/or species-specific population trend estimates and data credibility scores via a

supplied url, get credibility trends(); and a function for the current and archived

population trends estimates for all species and regions, get analysis results().

.2 Package Vignette

Package vignette is available at https://github.com/TrashBirdEcology/bbsAssistant/

tree/master/vignettes

.3 Package Manual

For functions and descriptions please see the manual at github.com/bbsAssistant/tree/master/man.

.4 Acknowledgements

The authors of this package thank the participatory scientists who collect data an-

nually for the North American Breeding Bird Survey, and the Patuxent Wildlife

Research Center for making these data publicly and easily accessible. Some functions

in this package were adapted from the rBBS package and are mentioned in function

source code as appicable.

https://github.com/TrashBirdEcology/bbsAssistant/blob/master/R/get_credibility_trends.R
https://github.com/TrashBirdEcology/bbsAssistant/blob/master/R/get_analysis_results.R
https://github.com/TrashBirdEcology/bbsAssistant/tree/master/vignettes
https://github.com/TrashBirdEcology/bbsAssistant/tree/master/vignettes
https://github.com/TrashBirdEcology/bbsAssistant/tree/master/man
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Appendix B regimeDetectionMeasures: an R package for

calculating various regime detection measures

.1 Package Summary

This package provides functionality for calculating numerous regime shift detection

measures (see below). Additionaly, a ‘new’ metric, distance travelled and velocity

are also calculated:

Composite measures:

1. Distance travelled -see also package distanceTravelled.

1. Fisher Information 1. Variance Index

Single-variable measures:

1. Skewness (mean and mode versions)

1. Kurtosis

1. Variance

1. Mean

1. Mode

1. Coefficient of variation, CV

1. Autocorrelation lag-1 (using stats::acf)

Development source code for this package is available on GitHub as a compressed

file at https://github.com/TrashBirdEcology/regimeDetectionMeasures/archive/

master.zip or at https://github.com/TrashBirdEcology/regimeDetectionMeasures.

https://github.com/TrashBirdEcology/distanceTravelled
https://github.com/TrashBirdEcology/regimeDetectionMeasures/archive/master.zip
https://github.com/TrashBirdEcology/regimeDetectionMeasures/archive/master.zip
https://github.com/TrashBirdEcology/regimeDetectionMeasures
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.2 Package Manual

For functions and descriptions please see the manual at github.com/bbsAssistant/tree/master/man.

https://github.com/TrashBirdEcology/bbsAssistant/tree/master/man
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Appendix C bbsRDM: an R package for applying

regimeDetectionMeasures functionality to spatial data

The R package bbsRDM provides a template for using the North American Breeding

Bird Survey to calculate various regime detection measures across space. This docu-

ment provides a guide to to package functionality and results visualization. This pack-

age is not actively developed. Development source code for this package is available

on GitHub as a compressed file, https://github.com/TrashBirdEcology/bbsRDM/

archive/master.zip or at https://github.com/TrashBirdEcology/rRDM.

.3 Package Vignette

Package vignette is available at https://github.com/TrashBirdEcology/bbsRDM/

tree/master/vignettes. This example provides source code for analyzing the North

American Breeding Bird Survey across regularly-sampled spatial transects at one or

more points in time.

.4 Package Manual

For functions and descriptions please see the manual at github.com/bbsRDM/tree/master/man.

https://github.com/TrashBirdEcology/bbsRDM/archive/master.zip
https://github.com/TrashBirdEcology/bbsRDM/archive/master.zip
https://github.com/TrashBirdEcology/rRDM
https://github.com/TrashBirdEcology/bbsRDM/tree/master/vignettes
https://github.com/TrashBirdEcology/bbsRDM/tree/master/vignettes
https://github.com/TrashBirdEcology/bbsRDM/tree/master/man
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Appendix D Functions used to calculate discontinuities in

avian body mass distributions.

This code was first published in Barichievy et al. (2018) and has been slightly modified

and annotated for the purposes of this dissertation. This code was used to produce

body mass discontinuities in Chapter #ref(discontinuity)

.1 Neutral.Null function

Neutral.Null <- function(log10.data, resolution = 4000) { Dmax = max(log10.data,

na.rm = FALSE) Dmin = min(log10.data, na.rm = FALSE) ds = (Dmax - Dmin) /

resolution MaxK = (Dmax - Dmin) / 2 MinK = ds * 2

#define h’s to analyze ks = seq(MinK, MaxK, by = 1 / resolution)

# generate matrix bws = matrix(data = NA, nrow = length(ks), ncol = 1)

for (i in c(1:length(ks))) { # Calculate KS density estimate KSdens <- den-

sity(log10.data, bw = ks[i], “gaussian”, adjust = 1)

# Test if the ksdensity is unimodal

TF <- which(diff(sign(diff(KSdens$y))) == 2) + 1

if (length(TF) == 0)

bws[i] = 1

else

bws[i] = 0
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} # Define the neutral Null r = min(which(bws == 1)) hnull = ks[r] return(hnull) }

.2 Bootstrapping Function

DD <- function(log10.data, hnull, Sample.N = 1000) { NNull <- density(log10.data,

bw = hnull, “gaussian”, adjust = 1) N <- length(log10.data)

# generate matrix null.samples <- matrix(data = 0, ncol = Sample.N, nrow = N)

for (i in 1:Sample.N) {#sample the null model rand.N<- sample(NNullx,N, replace =

TRUE, prob = NNully) #calculate the gaps null.samples[, i] <- sort(rand.N, de-

creasing = FALSE) #put into the matrxi }

# generate gaps gaps.log10.data<- diff(log10.data) gaps.null.samples<- diff(null.samples,

decreasing = FALSE) # difference between random samples and 1st diff orig dat

gap.percentile <- matrix(data = 0, nrow = length(gaps.log10.data), ncol = 1) for

(i in 1:length(gaps.log10.data)) { # generate distribution of gaps per row (per gap

rank) gap.percentile[i] <- ecdf(gaps.null.samples[i, ])(gaps.log10.data[i]) # returns the

percentile at each observation

} Bootstrap.gaps <- rbind(gap.percentile, 0) Bootstrap.gaps <- cbind(log10.data,

Bootstrap.gaps) return(Bootstrap.gaps) }
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