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Angler populations and the waterbodies they use are patchily distributed, creating 

putatively complex user-resource dynamics on the landscape. Spatially and temporally 

dynamic relationships between anglers and waterbodies can be difficult to track, 

understand, and manage. We often focus our efforts on the angler (directly or indirectly) 

with far less attention devoted to understanding the spatial structure and dynamics of 

fisheries on the landscape. Waterbodies serve as dynamic attractors on the landscape, 

shaping landscape patterns in angler participation.  We surmise that by understanding the 

spatial structure and dynamics of recreational fisheries we can gain tremendous insight to 

cross-scale patterns that shape angler behavior.   

We constructed waterbody-specific “anglersheds” that reveal critical links 

between anglers (i.e., users) and waterbodies (i.e., resources) on the landscape. 

Anglersheds represent the area of influence or spatiotemporal draw of anglers to a 

waterbody.  Anglersheds were constructed from frequencies of anglers’ zip codes that 

were collected during on-site interviews (April-October 2014-2017) at eight prominent 

Nebraska waterbodies.  We used these anglersheds to visually depict the spatiotemporal 

structure and dynamics of these recreational fisheries at multiple spatial scales and 

temporal levels.  We then quantified these spatiotemporal dynamics by extracting 

multiple anglershed metrics. Anglersheds were dynamic in both space and time; 

anglershed features such as anglershed area (i.e., size), the degree of fragmentation (i.e., 
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number of patches), and compactness (i.e., angler density) also differed among 

waterbodies. We then selected 11 independent variables that encompassed variation in 

the spatial socioeconomic structure, on-site attributes, and angler heterogeneity to explain 

changes in anglershed area for seven prominent Nebraska waterbodies.  Anglershed area 

exhibited a positive relationship with air temperature, wind speed, and population 

density, but was unrelated to angler effort, catch rate, fuel price, household income, party 

size, precipitation, trip days, and waterbody size.  

Anglersheds have the potential to “unlock” a wealth of information concerning 

the underlying spatial structure and dynamics of recreational fisheries. This approach has 

the ability to expose and capture cross-scale interactions within coupled social-ecological 

systems.  
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GLOSSARY  

Resource –provides users with provisioning, supporting, regulating, and cultural services 

User – entity, organism or being looking to utilize services provide by resources 

Anglershed – area of influence of a resource; the spatiotemporal draw of anglers to a 

waterbody on the landscape  

Anglershed Area – spatial draw or coverage of angler participation on the landscape, 

measured as hectares 

Anglershed Patches – degree of fragmentation of angler participation on the landscape, 

measured as number of fragments 

Anglershed Compactness – degree of angler density for the primary anglershed relative to 

the median and total anglersheds, measured as a ratio of primary to median and primary 
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CHAPTER 1: INTRODUCTION  

 

 Recreational fisheries are important to society; recreation comprises the 

predominate use of most inland waterbodies around the world, generating substantial 

economic gain as well as promoting social well-being (Arlinghaus and Cooke 2009). The 

benefits of recreational fishing are enjoyed by 46 million Americans annually, generating 

a total economic impact of $115 billion per year for the United States of America 

(Southwick Associates 2017). In Nebraska, there are over 222,000 fishing license holders 

in a year (Southwick Associates 2015) who distribut fishing effort across 618 Nebraska 

lentic public waterbodies. Managing these fisheries is a difficult task but essential to 

continue to reap the social-ecological benefits these fisheries provide. The main 

management challenge resides with optimizing resource use. The available ecological 

resources are diverse, but the angler population is also very diverse, with a range of 

angler preferences, specializations and motivations (Carpenter and Brock 2004; Johnston 

et al. 2010; Hunt et al. 2011; Matsummura et al. 2017). These waterbody resources serve 

as dynamic attractors for anglers on the landscape. The spatial structure and dynamics of 

recreational fisheries is currently unknown. However, managers and policy makers must 

account for spatial and temporal heterogeneity among resources and user groups to 

sustain these recreational fisheries. 

Though it is important to recognize and incorporate resource and angler 

heterogeneity into fisheries management, we have overlooked the role of landscape 

patterns in shaping resource use.  For example, at a basic level (ignoring heterogeneity) 

we have an unequal distribution of waterbodies and potential anglers on the landscape. 

This unequal distribution has resulted in areas of high population densities nested within 
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waterbody-rich landscapes and other areas of low population density nested within 

waterbody-poor landscapes (Figure 1-1). We know that distance is an important 

consideration for anglers when choosing to participate in recreational fishing (Hunt 

2005). Therefore, the spatial arrangement of waterbodies and anglers on the landscape 

should affect angler behavior. We also recognize that some anglers are willing to travel 

further because of different preferences, specializations, and motivations (Beardmore et 

al. 2013). The spatial arrangement and social-ecological heterogeneity among 

waterbodies and anglers can lead to emergent properties (Kaemingk et al. 2018). We 

know very little about how these waterbodies or resources influence landscape patterns in 

angler participation. How far are anglers willing to travel to participate in recreational 

fishing? Is the acceptable travel distance equal among all waterbodies or are some 

waterbodies able to attract a more spatially widespread and diverse angler groups? Are 

these landscape patterns in participation a function of spatial context or waterbody-

specific attributes? We have developed a concept and tool that will aid in addressing 

these questions and understanding the landscape perspective of angler behavior. We hope 

that this tool will equip managers and researchers alike to sustain recreational fisheries 

for future generations. 
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Figure 1-1. Population density (people/km2) by zip code for Nebraska, USA, during 2018 and locations of lentic public waterbodies 

(black dots; N=618). Legend beneath map indicates population density with dark green indicating low population density, and dark 

red indicating high population density.



6 

 

 

6
 

CHAPTER 2: VISUALIZING AND QUANTIFYING LANDSCAPE-SCALE 

ANGLER PARTICIPATION PATTERNS  

 

INTRODUCTION 

Anglers are highly mobile (Johnson and Carpenter 1994; Cox and Walters 2002; 

Cox et al. 2003; Post et al. 2008), but not all anglers are willing or able to travel large 

distances. The decision to travel may also vary through time for each angler (Hunt et al. 

2007). Angler heterogeneity, such as the degree of specialization, or preferences (Fisher 

1997; Oh and Ditton 2006) among anglers, can lead to different decisions about where 

and when to participate in fishing activities and resource selection in general (Bryan 

1977). Anglers often consider many facets of the fishing experience during the site-

selection process (Scrogin et al. 2004; Hunt 2005). For these reasons, angler 

heterogeneity combined with waterbody heterogeneity create unique patterns and 

dynamics of angler behavior that are difficult to understand, let alone track (Carpenter 

and Brock 2004; Johnston et al. 2010; Hunt et al. 2011; Matsummura et al. 2017). Angler 

behavior also differs across spatial and temporal scales, creating emergent properties in 

recreational fisheries that stem from local interactions to create large scale patterns in 

resource use (Kaemingk et al. 2018). Unfortunately, knowledge about how anglers 

interact with waterbodies across multiple spatiotemporal scales is lacking, especially at 

the landscape level. This information is required for effective cross-scale fisheries 

management. 

To date, most human dimension fisheries research has focused on understanding 

the decision-making process of the angler to disentangle complex participation dynamics 
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(Johnson and Carpenter 1994; Arlinghaus et al. 2017). We often simplify this decision 

process and assume it is solely based on on-site perception of catch rates or an estimate of 

fish abundance at a waterbody (Johnson and Carpenter 1994; Beard et al. 2003; Cox et al. 

2003). More recent research has recognized that this decision process is more complex 

than initially thought. Anglers decide to participate in fishing based on both social and 

ecological aspects of a recreational fishery that may include: available fish species, size 

of fish population, interference from other anglers, on-site amenities, regulations, and 

general waterbody aesthetics (Hunt 2005). Hunt et al. (2011) modelled angler behavior 

and expected that anglers should systematically fish waterbodies with the most 

productive stocks, ultimately attracting more overall fishing effort at these waterbodies, 

at least until stocks collapsed. This hypothesis was not supported because anglers sought 

to maximize overall angler utility, which includes more factors than just catch-related 

attributes (Hunt et al. 2011). Given this outcome, there is need to incorporate multi-utility 

attributes to successfully understand angler behavior (Johnston et al. 2010). 

Indeed, angler heterogeneity is important but should we also consider waterbody 

heterogeneity as an integral part of angler behavior at the landscape level? Waterbodies 

are expected to attract different anglers based on inherent waterbody characteristics, such 

as amenities, fish-community composition, and aesthetics (Kaemingk et al. 2018). We 

rarely focus on how individual waterbodies may serve as dynamic attractors for anglers 

on the landscape. The spatiotemporal “draw” of anglers to a waterbody can be assessed to 

reveal how angler participation changes as a function of inherent waterbody features. 

Waterbody heterogeneity could support different subpopulations of anglers through time 

if anglers vary in their preferences and specializations (Hahn 1991; Fisher 1997; 
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Connelly et al. 2001). It is unclear how inherent waterbody characteristics could shape 

angler mobility and participation across spatial and temporal scales. Understanding 

patterns in angler behavior could reveal angler heterogeneity and waterbody 

heterogeneity on the landscape (Matsummura et al. 2017). Visualizing and quantifying 

where anglers reside (i.e., landscape-level spatial structure) could be tremendously 

valuable for local and regional fisheries management. The spatiotemporal draw of anglers 

to a particular waterbody may allow managers to better understand who is participating, 

when they are participating, and why they are participating – all very important fisheries 

management and conservation considerations. 

The spatiotemporal draw of anglers to a waterbody may depend on the 

waterbody’s spatial positioning or landscape context, in addition to inherent waterbody 

characteristics. Surrounding landscape features, such as human-population density and 

other competing recreational opportunities, may play a dominant role in a waterbody’s 

ability to attract anglers. These landscape features, which may depend on where the 

waterbody is positioned relative to other landscape features, factor into angler-utility 

attributes, such as travel costs and avoidance of other anglers (Arlinghaus and Mehner 

2004; Martin et al. 2015). Anglers may also choose to alter temporal patterns based on 

distance, leading to single-day and multi-day trips; anglers are more likely to take multi-

day trips to waterbodies that are further from their residence (Hunt et al. 2011). Factors 

such as the urban (or rural) composition of the surrounding landscape and density of 

waterbodies (i.e., waterbody-rich or waterbody-poor landscapes) could affect 

spatiotemporal patterns of angler participation. For example, waterbodies situated in 

urban landscapes received greater fishing effort relative to lakes in rural landscapes 
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(Carpenter and Brock 2004; Post et al. 2008; Matsummura et al. 2017). Ultimately, 

surrounding landscape attributes should be considered when evaluating how angler 

behavior is shaped by a resource or waterbody. 

The interaction of angler heterogeneity, inherent local or waterbody 

characteristics, and landscape context should be assessed to understand angler 

participation. Recreational fishing-effort models are often based on the assumption that 

participation rates are constant (Hunt et al. 2007). However, several studies highlight 

seasonal fluctuation in angler participation is related to catch rates and perceived 

catchability (Lux and Smith 1960). Furthermore, monthly fishing effort is highly variable 

(Johnson and Carpenter 1994) with anglers often preferring to fish on a particular day of 

the week (Hunt et al. 2007). Weather patterns can introduce variation in angler behavior 

across multiple temporal scales (Provencher et al. 2002; Barenklau and Provencher 

2005). Temporal dynamics in angler participation can also vary across spatial scales. 

Local-level angler-participation patterns may form emergent properties at larger spatial 

scales. Large-scale synchrony in angler behavior emerged from local-level patterns that 

were associated with inherent waterbody characteristics (Kaemingk et al. 2018). Local-

level processes likely shape decisions for less specialized anglers, whereas more 

specialized anglers shape their decisions at much broader spatial scales (Matsummura et 

al. 2017). It is evident that angler behavior is highly dynamic and depends on the scale of 

reference; this requires a more comprehensive evaluation of cross-scale angler behavior. 

Our objective was to characterize and understand spatiotemporal structure and 

dynamics of angler behavior within inland, recreational fisheries. Specifically, we were 

interested in understanding landscape level angler participation. Resources, such as 
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waterbodies, are predicted to shape landscape patterns in angler participation. It is 

unlikely that all resources or waterbodies function similarly on the landscape with respect 

to their ability to attract anglers, but it is unclear how waterbodies may differ.  For 

example, do some waterbodies have the ability to attract anglers from distant locations, 

whilst other waterbodies can only attract local anglers?  We expect that changes in the 

area of influence or spatiotemporal draw of a waterbody could reflect critical differences 

among landscape context, on-site attributes, and angler heterogeneity. We used angler 

ZIP codes collected from on-site interviews at eight Nebraska waterbodies to visualize 

and quantify the spatial structure and dynamics of recreational fisheries across multiple 

spatial levels and time scales. These “anglersheds” depicts the area of influence (Martin 

et al. 2015) or the spatiotemporal draw of anglers to a waterbody. We build on previous 

work by Martin et al. (2015) to include temporal dynamics, encompass a broader spatial 

context, and incorporate useful, derived anglershed metrics. This study provided greater 

insight on the spatial structure and dynamic nature of recreational fisheries across 

multiple spatial levels and temporal scales. Our results and techniques provide guidance 

for site-selection of public meetings to better target an intended audience, threat 

assessment of invasive species, and management actions intended to influence cross-scale 

angler participation. 

 

METHODS 

Study sites 

We visualized and quantified anglersheds (i.e., spatial structure and dynamics) for 

eight Nebraska, USA, waterbodies that encompassed diverse locations, anglers, fishes, 
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and amenities (Table 2-1). Waterbodies varied in distance from large urban centers (i.e., 

Lincoln and Omaha, Nebraska) and state borders, attracted different angler types (e.g., 

boat and bank) and species-targeting groups, and offered a range of on-site amenities 

(e.g., camping facilities, boat ramps) and fish species (Pope et al. 2017). Population 

densities of the counties in which waterbodies were located ranged from 1 (Calamus 

Reservoir and Merritt Reservoir) to 345 (Branched Oak Lake and Pawnee Lake) people 

per 100 ha. Annual angling pressure on these waterbodies during the 2017 open-water 

season ranged from 1,917 (Harlan County Reservoir) to 30,359 (Lake Wanahoo) bank-

angling hours and from 5,178 (Pawnee Lake) to 240,919 (Lake McConaughy) boat-

angling hours. Surface area of waterbodies ranged from 299 (Pawnee Lake) to 12,141 

(Lake McConaughy) ha  (Table 1-1). 

Study design 

In-person interviews of anglers were conducted at each waterbody during monthly 

periods of the open-water fishing seasons (April-October) during 2014-2017, though not 

all waterbodies were sampled every year (Table 2-1). Interview days were determined 

using a stratified multi-stage probability sampling regime (Malvestuto 1996). Days were 

stratified by type, with 10 week-days and six weekend-days sampled each month. An 

additional two interview days were included for “high use” or holiday periods during 

May (Memorial Day), July (Fourth of July), and September (Labor Day). Each interview 

day was further stratified into two periods, sunrise to 1330 and 1330 to sunset. 

Clerks used automobiles to move (rove with the intent of gathering a 

representative sample of angler parties proportional to use) among parking areas around 

the waterbodies, and moved on foot along the shore and in parking lots to contact an 
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angler party (i.e., group of individuals travelling together for the purpose of fishing); 

thus, data were collected on-site at the party level. Boat anglers were contacted at ramps 

(generally completed fishing for the day) and bank anglers were contacted at parking 

areas (generally completed fishing) or on the shoreline (active in fishing). A clerk 

interviewed one individual within a party who was designated the party-appointed 

spokesperson. The spokesperson was asked to provide the ZIP code of their home, which 

was used to estimate the anglers’ residence or location from which they traveled. 

Constructing anglersheds 

An anglershed represents the spatiotemporal draw of anglers or landscape 

structure of a recreational fishery. We constructed anglersheds from ZIP codes of 

anglers’ residences for each study waterbody. We filtered interviewed anglers to only 

include ZIP codes from Nebraska and bordering states (Colorado, Iowa, Kansas, 

Missouri, South Dakota, Wyoming) to avoid influence from extreme outliers and to 

facilitate logistics of computational limitations. Anglers residing outside of this region 

represented less than 1% of interviewed anglers for study waterbodies across study years 

(Table 2-2). Each ZIP code (or angler party) was randomly assigned, using a 

bootstrapping method, to a census block within the ZIP code to reduce spatial error and to 

better represent the regional distribution of anglers (Martin et al. 2015). Census blocks 

are determined by population size; number of census blocks within a ZIP code increases 

as population density increases. The centroid of a selected census block was used to 

represent the location of a respective angler’s residence (Martin et al. 2015).   

Kernel-density estimation (Worton 1989; Seaman and Powell 1996) was used to 

delineate anglersheds (Figure 1-1). Kernel-density estimation is a common wildlife-
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ecology technique for mapping spatial distributions, and was previously used to assess 

angler participation in an urban setting (Martin et al. 2015). Kernel-density estimation has 

also been broadly applied to determine placement sites for hospitals (Donthu and Rust 

1989), quantify distribution of traffic accidents (Xie and Yan 2008) and crime hot-spots 

(Wang et al. 2013). Kernel-density estimation is the method of choice for modern studies 

of organism-space relationships (Marzluff et. al. 2004) because this method provides the 

ability to account for multiple centers of activity (Powell 2000; Kenward 2001; Kernohan 

et al. 2001) and is robust to changes in spatial resolution of data (Hansteen et al. 1997). 

We used the kernelUD function (classic kernel method) in the adehabitatHR 

package in R (Calenge 2006) to characterize and quantify anglersheds. A bivariate 

normal kernel was used, which places a bivariate normal kernel over each observed point 

(angler residence) and uses a smoothing parameter, h, to control the width of the bivariate 

normal kernel (Martin et al. 2015). We calculated 10%, 50%, and 95% utilization 

distribution (UD) contours with h set using the ad hoc level, “href”. Utilization 

distribution contours are referenced henceforth as primary anglershed (10%), median 

anglershed (50%), and total anglershed (95%); these three utilization distribution 

contours represent different spatial levels of participation. The primary anglershed 

reflects the densest area of angler participation on the landscape. We expected the 

primary anglershed to include the area near the waterbody, or areas of high population 

density, as it represents the locations with minimal travel distance. Each anglershed 

(primary, median, total) captures different information about spatial arrangement and 

distributions of participating anglers on the landscape and temporal patterns of angler 

participation. 
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Anglershed metrics 

We evaluated three anglershed metrics (across primary, median, and total 

anglersheds) to quantify spatial patterns of angler participation: area (ha), patches, and 

compactness (Table 2-2). Area represents the spatial draw or coverage of anglers on the 

landscape, and was estimated as the landmass encompassed by the utilization distribution 

contour(s). Patches represents the degree of fragmentation of angler participation on the 

landscape, and was estimated as the number of distinct and disconnected distribution 

contours. Compactness represents the degree of angler density for the primary anglershed 

relative to the median and total anglersheds, and was estimated as the proportion of area 

for an anglershed that was accounted by the primary anglershed (compactness of median 

anglershed = area of primary anglershed / area of median anglershed; compactness of 

total anglershed = area of primary anglershed / area of total anglershed). A large value for 

compactness is indicative of an increase in area of the primary anglershed and a small 

value is indicative of a decrease in area of the primary anglershed relative to the median 

and total anglersheds. There is little to no literature that applies landscape metrics, which 

are most commonly found in landscape ecology, to the spatial structure of angler 

participation. As a result, the process of deciding which metrics would be most 

informative was based on what we thought would provide unique information for 

visualizing and quantifying landscape-level angler participation. Area, patches, and 

compactness are well-studied landscape metrics, and thus also afforded the opportunity to 

quantify the spatial structure of angler participation. We expected these three anglershed 

metrics to vary among waterbodies, indicative of various social and ecological attributes. 
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Temporal Scale 

We used three scales to evaluate the temporal dynamics of anglersheds: monthly, 

seasonal (Spring = April-May, Summer = June-August, Fall = September-October), and 

annual. Each of these scales provides differing levels of detail and variation because 

angler participation frequency and timing of angler participation differs spatially on the 

landscape (see Kaemingk et al. 2018). To further evaluate dynamics, we calculated the 

coefficient of variation (CV) for each time scale and spatial level (primary, median, total) 

for each waterbody, and compared variations across spatial levels and time scales. For 

example, a high CV in the monthly scale for the area of the total anglershed would 

indicate high variation in the spatial structure of a fishery.  

 

RESULTS 

 A total of 21,026 angler-parties were interviewed across the 4 years at the 8 

waterbodies sampled. In-state (i.e., Nebraska residence) anglers comprised 95% of all 

interviews (Table 2-3). Most out-of-state anglers traveled from Colorado (Table 2-3) and 

a majority of those anglers fished at Lake McConaughy. Interviewed anglers comprised 

979 unique ZIP codes, 853 of which were contained within our study area (Nebraska and 

six adjacent states). In-state anglers resided in 526 (of 618 available) ZIP codes, 

representing 85% of the ZIP codes in Nebraska. Anglershed maps (Appendix 1, 2, 3) and 

metrics (Appendix 4, 5, 6, 7) illustrated dynamic landscape patterns in angler 

participation at multiple spatial levels (primary, median, and total) and temporal scales 

(monthly, seasonal, and annual). Anglersheds were most dynamic, as indicated visually 

and by the CV, at the monthly scale and least dynamic at the annual scale across all 
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spatial levels for area (Figures 2-2, 2-3, 2-4), patches (Figures 2-5, 2-6, 2-7), and 

compactness (Figures 2-8, 2-9). 

Monthly scale 

The smallest and largest area of both primary and median anglersheds occurred 

during April and June, respectively (Table 2-4). However, the smallest and largest area of 

the total anglershed occurred during August and June, respectively. Branched Oak Lake 

and Lake McConaughy had the smallest and largest area of the primary, and total 

anglersheds at the monthly scale, respectively (Table 2-5). In contrast, Branched Oak 

Lake and Merritt Reservoir had the smallest and largest area of the median anglershed, 

respectively.  

The fewest and greatest number of patches for the primary anglershed occurred 

during April and June, respectively. However, the fewest and greatest number of patches 

for the median anglershed occurred during June and August, respectively. The fewest and 

greatest number of patches for the total anglershed occurred during April and September, 

respectively. Branched Oak Lake, Harlan County Reservoir, Pawnee Lake, and Sherman 

Reservoir had the fewest number of patches and Calamus Reservoir had the greatest 

number of patches for the primary anglershed (Table 2-5). In contrast, Branched Oak 

Lake and Merritt Reservoir had the fewest and greatest number of patches for the median 

anglershed, respectively. Branched Oak Lake and Lake McConaughy had the fewest and 

greatest number of patches for the total anglershed at the monthly scale, respectively. 

As expected (based on definition), compactness of the median anglershed was 

considerably higher than compactness of the total anglershed (Table 2-4). The lowest and 

highest compactness of the median anglershed occurred during May and June, 
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respectively. However, the lowest and highest compactness of the total anglershed 

occurred during May and September, respectively. Branched Oak Lake and Lake 

McConaughy had the lowest and highest compactness, respectively, for both median and 

total anglersheds. 

Seasonal Scale 

The smallest and largest areas of the primary anglershed occurred during fall and 

spring, respectively (Table 2-4). However, the smallest and largest areas of the median 

anglershed occurred during summer and fall, respectively. In contrast, the smallest and 

largest area of the total anglershed occurred during spring and summer, respectively. 

Branched Oak Lake and Merritt Reservoir had the smallest and largest areas, 

respectively, of the primary, median, and total anglersheds at the seasonal scale (Table 2-

5). 

The fewest and greatest number of patches for the primary anglershed occurred 

during spring and fall, respectively (Table 2-4). However, the fewest number of patches 

for the median anglershed occurred during spring and summer and the greatest number of 

patches occurred during fall. The fewest and greatest number of patches for the total 

anglershed occurred during summer and fall, respectively. Branched Oak Lake, Harlan 

County Reservoir, Pawnee Lake, and Sherman Reservoir had the fewest number of 

patches for the primary anglershed and Merritt Reservoir had the greatest number of 

patches (Table 2-5). Branched Oak Lake, Harlan County Reservoir, Pawnee Lake and 

Sherman Reservoir had the fewest number of patches for the median anglershed and 

Merritt Reservoir had greatest number of patches. In contrast, Sherman Reservoir had the 
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fewest number of patches for the total anglershed and Branched Oak Lake and Pawnee  

Lake had the greatest number of patches for the total anglershed at the seasonal scale. 

The lowest compactness for the median anglershed occurred during spring and 

highest compactness occurred during summer and fall. However, the lowest and highest 

compactness for the total anglershed occurred during spring and fall, respectively. 

Sherman Reservoir and Pawnee Lake had the lowest and highest compactness for the 

median anglershed, respectively. In contrast, Merritt Reservoir and Branched Oak Lake 

had the highest and lowest compactness for the total anglershed, respectively.  

Annual Scale 

The smallest and largest areas of the primary and median anglersheds occurred 

during 2017 and 2015, respectively (Table 2-4). In contrast, the smallest and largest area 

of the total anglershed occurred during 2016 and 2014, respectively. Branched Oak Lake 

and Merritt Reservoir had the smallest and largest area of the primary, median, and total 

anglersheds at the annual scale, respectively (Table 2-5). 

The fewest number of patches for the primary anglershed occurred during 2017 

and the greatest number of patches occurred during 2014, 2015, and 2016 (Table 2-4). 

However, the fewest number of patches for the median anglershed occurred during 2014 

and 2016 and the greatest number of patches occurred during 2015. The fewest number 

of patches for the total anglershed occurred during 2015 and 2017 and the greatest 

number of patches occurred during 2014 and 2016. Branched Oak Lake, Calamus 

Reservoir, Harlan County Reservoir, Pawnee Lake, and Sherman Reservoir had the 

fewest number of patches for the primary and median anglersheds and Merritt Reservoir 

had the greatest number of patches (Table 2-5). In contrast, Calamus Reservoir, Harlan 
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County Reservoir, Lake McConaughy, and Pawnee Lake had the fewest number of 

patches for the total anglershed at the annual scale and Branched Oak Lake had the 

greatest number of patches. 

The lowest and highest compactness for the median anglershed occurred during 

2017 and 2014, respectively. However, the lowest and highest compactness for the total 

anglershed occurred during 2017 and 2015, respectively. Sherman Reservoir had the 

lowest compactness for the median anglershed and Calamus Reservoir and Pawnee Lake 

had the highest compactness. In contrast, Merritt Reservoir and Branched Oak Lake had 

the highest and lowest compactness for the total anglershed, respectively. 

Anglershed dynamics 

Anglershed area generally increased from the primary-anglershed level to the 

total- anglershed level. However, anglershed area decreased from the monthly to the 

annual scale. The number of patches generally increased from the primary-anglershed 

level to the total- anglershed level, but the number of patches generally decreased from 

the monthly to the annual scale. Compactness was much larger in the median-anglershed 

level compared to the total-anglershed level, and decreased from the monthly to the 

annual scale.  

There was no clear trend in CV for anglershed area across primary-, median-, and 

total-anglershed levels. However, the CV for anglershed area decreased from the monthly 

to annual scale (Figure 1-10). The CV in the monthly and seasonal scales were higher in 

the total-anglershed level and lower in the primary- and median-anglershed levels. 

However, there was not a clear pattern in CV at annual scale for the primary-, median-, 

and total-anglershed levels. The CV for number of patches showed a slight decrease from 
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the monthly to the annual scale (Figure 2-11). The CV for anglershed compactness was 

generally higher in the total-anglershed level compared to the median-anglershed level. 

The CV for anglershed compactness decreased from the monthly to the annual scale 

(Figure 2-12).  

 

DISCUSSION 

Anglersheds provide insights of the dynamic interaction between anglers and 

waterbodies distributed across the landscape. Our ability to better understand resource–

use, despite heterogeneity in both users and resources, was strengthened by the 

visualization and quantification of the spatiotemporal structure and dynamics of angler 

participation on a landscape. We characterized dynamics in angler participation by 

quantifying area, patches, and compactness of anglersheds across three spatial levels and 

three temporal scales for eight waterbodies. Our approach highlighted the dynamic 

behavior of angler participation; angler participation was dynamic in space and time 

across multiple scales. The visualization and quantification of anglersheds offer a novel 

way for disentangling complex spatiotemporal relationships between anglers and 

waterbodies at a landscape level. We believe this approach could be extended to other 

social-ecological systems that aim to understand landscape structure and dynamics in 

resource-use. 

Kernel density estimation is an appropriate tool for constructing, visualizing, and 

quantifying anglersheds. Even so, caution is warranted especially toward the minimum 

sample size required to accurately depict a spatial distribution (Seaman and Powell 1996; 

Seaman et al.1999; Boyle et al. 2009). Anglersheds at the monthly scale were particularly 
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vulnerable to sample size, especially at the beginning (i.e., April, May) and ending (i.e., 

September, October) of the fishing season when participation was low. For example, 

Seaman et al. (1999) recommends a minimum of 30 observations for calculating kernel 

densities and 4% (7 of 185 months) of our monthly samples fell below this benchmark. 

However, the recommended minimum sample size was easily met at both seasonal and 

annual scales. There was an obvious trend of decreasing anglershed area with increasing 

temporal scale; thus, the visual representation of the spatial draw of anglers to a 

waterbody appears to be related to the scale assessed, duration and intensity of angler 

interviews, and even the temperament of clerks, all of which affect sample size (i.e., 

number of parties interviewed). The monthly scale often had the largest anglershed size 

and the most variation compared to the other two time scales evaluated; these outcomes 

are likely related to a combination of spatiotemporal differences in participation rates and 

sample size. This is most likely a result of the fact that an increase in sample size at larger 

scales puts more points (i.e., angler locations) in the core area of the anglershed, which 

decreases the influence of outside points on the perimeter of the anglershed as seen 

during the monthly scale. However, we did not have a way of directly quantifying this 

relationship.  

Examining anglersheds across three time scales (monthly, seasonal, annual) 

provided different insight to landscape patterns in angler participation. In the same way, 

three different spatial levels (primary, median, and total) afforded a unique understanding 

of anglershed dynamics. Applications of our findings should consider the appropriate 

temporal and spatial scale before making recommendations. For example, the monthly 

scale will provide greater insight if we are interested in participation dynamics at a 
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waterbody during a year due to processes occurring at faster scales, such as fish 

catchability, air temperature, or boat-ramp congestion. Alternatively, the annual scale will 

provide greater insight if we are interested in participation dynamics at a waterbody 

across years due to processes occurring at slower scales, such as license sales, a strong 

year-class of fish, or inflation. The same approach applies to selecting the appropriate 

spatial level; more frequent participation should be assessed at the primary-anglershed 

level and less frequent participation at the total-anglershed level. Ultimately, based on our 

results, it is important to be mindful that it is not appropriate to generalize, for example, 

monthly anglershed patterns from annual-scale data or infer primary-anglershed patterns 

from total-anglershed data. 

Our three anglershed metrics proved useful for further characterizing angler 

participation across space and time. Anglershed area ultimately provides a landscape 

view of the spatial draw or structure of a fishery, reflecting angler residences and their 

spatial positioning relative to the waterbody. Anglershed area allowed us to characterize 

individual waterbodies and their ability to attract anglers from a distance. There appears 

to be a positive relationship between anglers’ willingness to travel and waterbody surface 

area (Hunt et al. 2007). However, this relationship should be empirically tested (see 

Chapter 2).  

Lake McConaughy (largest study waterbody) and Merritt Reservoir have similar 

landscape contexts as they are both situated in rural settings, but it appears that the social-

ecological attributes of these two waterbodies differ, uniquely affecting the spatial draw 

of anglers. We suspect that Merritt Reservoir had a larger than expected anglershed area 

because it is surrounded by a multitude of complementary outdoor recreational 
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opportunities (e.g., Niobrara River [designated by U.S. Congress as a National Scenic 

River], Sandhills of Nebraska [largest tract of stabilized sand dunes in the Western 

Hemisphere], Snake River Falls, Valentine National Wildlife Refuge, and The Prairie 

Club [top ranked golf course]). We predicted that inherent waterbody characteristics 

could interact with the landscape context to create unique anglersheds. Smaller spatial 

draws of anglers to these waterbodies near urban centers (e.g., Pawnee Lake and 

Branched Oak Lake) could be a function of their landscape context and inherent 

waterbody characteristics. Somewhat surprisingly, Pawnee Lake consistently had a larger 

anglershed area than Branched Oak Lake even though Pawnee Lake is one-third the size 

(Table 2-1) of and has half as many anglers as Branched Oak Lake (Pope et al. 2017). 

Branched Oak Lake is attractive to recreational boaters during summer, and a negative 

relationship could exist between anglers’ willingness to travel and perceived congestion 

at a waterbody (Hunt et al. 2007). Therefore, anglershed size was a meaningful metric 

that provided insight to social-ecological relationships and dynamics across different 

landscape settings. 

The number of anglershed patches reflected the amount of fragmentation of 

angler participation on the landscape. In other words, less fragmentation (number of 

patches) indicates a more cohesive distribution of anglers on the landscape within an 

anglershed. Whilst more fragmentation demonstrates an unequal and less cohesive 

distribution of anglers on the landscape within an anglershed. Anglershed fragmentation 

could expose urban areas or dense population centers on the landscape from which a 

waterbody can draw anglers from. However, the relationship between urban centers and 

greater fragmentation assumes that angler participation is proportional to population size. 
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Angler heterogeneity would predict that participation patterns are unequal, especially 

between urban and rural areas despite population size (Arlinghaus and Mehner 2004). We 

found greater anglershed fragmentation at Branched Oak Lake and Pawnee Lake at the 

total level, whereas greater anglershed fragmentation occurred at Lake McConaughy and 

Merritt Reservoir at the median and primary spatial levels. We interpret these results to 

suggest that anglershed fragmentation could be a function of complex interactions among 

the surrounding landscape (i.e., population density), angler heterogeneity, and inherent 

local waterbody characteristics. Branched Oak Lake and Pawnee Lake are both situated 

near Lincoln and Omaha, NE, the two largest urban centers in Nebraska. Both of these 

lakes have smaller anglersheds that are likely sensitive to changes in angler participation. 

For example, sometimes the Branched Oak Lake and Pawnee Lake anglershed at the total 

level encompass both Lincoln and Omaha metropolitan areas (i.e., two separate regions). 

On the other hand, Lake McConaughy is situated in a rural setting and has a large 

anglershed that is likely less sensitive to changes in angler participation at the total level. 

The total anglershed was less fragmented for Lake McConaughy, but the primary- and 

median-anglersheds were often more fragmented and situated at an area near Lake 

McConaughy and one centered on or near Denver, CO. Dynamic participation patterns 

are most evident in the primary and median-anglersheds, which suggests that in this case, 

population supply (i.e., Denver) and high participation frequency (i.e., near Lake 

McConaughy) may explain why fragmentation occurred at these two smaller spatial 

levels. We believe that the extent of anglershed fragmentation is a meaningful way to 

evaluate the evenness and cohesiveness of angler participation on the landscape that can 



25 

 

 

2
5

 

expose landscape aspects of population density, angler heterogeneity, participation rates, 

and inherent waterbody characteristics. 

Compactness highlights the relative proportion of high participation areas (i.e., 

primary and median levels) to that of the entire range of participation (i.e., total level) on 

the landscape. In other words, compactness focuses on intra-anglershed patterns that 

depict changes in high participation areas relative to low participation areas within the 

anglershed. A change in anglershed compactness could result from a distance-based 

phenomenon that modifies the area (increase or decrease) of angler participation in the 

primary and median levels or the high participation areas of the anglershed. A “hot” 

white bass bite could trigger an immediate change in the high participation areas through 

‘word-of-mouth’, spreading locally from the waterbody but not immediately modifying 

the less frequent or outlying participation areas. We did not see a distinct pattern in 

compactness among the waterbodies sampled for either the median or total compactness, 

but compactness increased from the monthly to annual scale. This may be a due to the 

increase of sample size, particularly in the primary anglershed, with a larger temporal 

scale as we are potentially adding more points nearby the waterbody, and decreasing the 

influence of outer points at the perimeter. If sufficient sample size is reached, 

compactness could also be evaluated at shorter temporal scales to detect subtle and quick 

changes within the anglershed. Anglershed compactness provides a unique view of angler 

participation that is not captured by anglershed area or patches. 

Each anglershed metric highlights a specific facet of spatial participation on the 

landscape, but are not necessarily meant to be evaluated separately. Alternatively, they 

can work together to further characterize waterbodies to highlight spatial patterns that can 
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be related to the spatial socioeconomic structure, inherent on-site waterbody attributes, or 

angler heterogeneity. For example, waterbody size could be used to explain landscape 

patterns in anglershed dynamics (Figure 2-13). This is only one example of the various 

relationships that could exist among waterbodies and anglershed metrics. Visualizing and 

quantifying anglersheds, or spatial structure and dynamics of recreational fisheries 

promotes the idea that the angler population is certainly not static but highly dynamic. 

Anglersheds also provide a tool for direct management applications. Anglersheds allow 

for targeted spatial approaches, revealing areas with and without active anglers. This 

information could bring about strategic placement of public meetings or marketing 

materials for current and future anglers.  

There still remains a need to further evaluate anglersheds, particularly their 

dynamic nature not only in the area or patches, but also their spatial location on the 

landscape. We may not see changes in the area of the anglershed, but the spatial location 

of the anglershed may have shifted drastically. This is a clear “next step” in the 

continuation of our investigation of understanding the spatial structure and dynamics of 

recreational fisheries. Despite identifying pronounced spatiotemporal variation in 

anglershed dynamics, it is unclear what is responsible for these changes in landscape 

participation. This level of understanding is required for proper cross-scale management 

that will sustain and optimize these complex social-ecological relationships on the 

landscape. 

 

 

 



27 

 

 

2
7

 

REFERENCES 

Arlinghaus, R., J. Alos, B. Beardmore, K. Daedlow, M. Dorow, M. Fujitani, D. Huhn, W. 

Haider, L.M. Hunt, B.M. Johnson, F. Johnston, T. Klefoth, S. Matsummura, C. 

Monk, T. Pagel, J.R. Post, T. Rapp, C. Riepe, H. Ward, and C. Wolter. 2017. 

Understanding and managing freshwater recreational fisheries as complex adaptive 

social-ecological systems. Reviews in Fisheries Science and Aquaculture, 25: 1-41. 

Arlinghaus, R and T. Mehner. 2004. A management-oriented comparative analysis of 

urban and rural anglers living in a metropolis (Berlin, Germany). Environmental 

Management, 33:331-344. 

Barenklau, K. A., and W. Provencher. 2005. Static modeling of dynamic recreation 

behavior: implications for prediction and welfare estimation. Journal of 

Environmental Economics and Management, 50:617-636. 

Beard, T.D., Jr., S.P. Cox., and S.R. Carpenter. 2003. Impacts of daily bag limit 

reductions on angler effort in Wisconsin walleye lakes. North American Journal of 

Fisheries Management, 23(4): 1283-1293. 

Boyle, S.A., W.C. Lourenco, L.R. da Silva, and A.T. Smith. 2009. Home range estimates 

vary with sample size and methods. Folia Primatologica 80:33-42. 

Bryan. H. 1977. Leisure value systems and recreational specialization: the case of trout 

anglers. Journal of Leisure Research 9:174-187. 

Calenge, C. 2006. The package adehabitat for the R software: a tool for the analysis of 

space and habitat use by animals. Ecological Modeling 197:516-519. 

Carpenter, S. R. and W.A. Brock. 2004. Spatial complexity, resilience and policy 

diversity: fishing on lake-rich landscapes. Ecology and Society, 9:8. 



28 

 

 

2
8

 

Connelly N.A., B.A. Knuth, and T.L. Brown. 2001. An angler typology based on angler 

fishing preferences. Transactions of the American Fisheries Society, 130:130-137. 

Cox, S.P. and C. Walters. 2002. Modeling exploitation in recreational fisheries and 

implications for effort management on British Columbia Rainbow Trout lakes. 

North American Journal of Fisheries Management, 22:21-34. 

Cox, S. P., Walters, C. J., & Post, J. R. 2003. A model based evaluation of active 

management of recreational fishing effort. North American Journal of Fisheries 

Management, 23:1294-1302. 

Donthu, N., and R.T. Rust. 1989. Estimating geographic customer densities using kernel 

density estimation. Marketing Science, 8:191-203. 

Fisher, M. R. 1997. Segmentation of the angler population by catch preference, 

participation, and experience: a management- oriented application of recreation 

specialization. North American Journal of Fisheries Management, 17:1-10. 

Hahn, J. 1991. Angler specialization: measurement of a key sociological concept and 

implications for fisheries management decisions. In D. Guthrie, J. M. Hoenig, M. 

Holliday, C. M. Jones, M. J. Mills, S. A. Moberly, K. H. Pollack, & D. R. Talhelm 

(Eds.), Creel and angler surveys in fisheries management: Proceedings of the 

International Symposium and Workshop on Creel and Angler Surveys in Fisheries 

Management, held at Houston, Texas, USA, 26–31 March 1990 (pp. 380-389). 

Bethesda, MD: American Fisheries Society. 

Hansteen, T.L., H.P. Andreassen, and R.A. Ims. 1997. Effects of spatiotemporal scale on 

autocorrelation and home range estimators. Journal of Wildlife Management, 

61:280-290. 



29 

 

 

2
9

 

Hunt, L.M., R. Arlinghaus, N. Lester, R. Kushneriuk. 2011. The effects of regional 

angling effort, angler behavior, and harvesting efficiency on landscape patterns of 

overfishing. Ecological Applications, 21:2555-2575. 

Hunt, L.M., B.N. Boots, and P.C. Boxall. 2007. Predicting fishing participation and site 

choice while accounting for spatial substitution, trip timing, and trip context. North 

American Journal of Fisheries Management, 27:832-847. 

Hunt, L. M. 2005. Recreational fishing site choice models: insights and future 

opportunities. Human Dimensions of Wildlife, 10:153-172. 

Johnson, B. M. and S. R. Carpenter. 1994. Functional and numerical responses: a 

framework for fish-angler interactions? Ecological Applications. 4:808-821. 

Johnston, F. D., R. Arlinghaus and U. Dieckmann. 2010. Diversity and complexity of 

angler behaviour drive socially optimal input and output regulations in a 

bioeconomic recreational fisheries model. Canadian Journal of Fisheries and 

Aquatic Sciences 67:1507-1531. 

Kaemingk, M., C. Chizinski, K. Hurley, and K. Pope. 2018. Synchrony – an emergent 

property of recreational fisheries. Journal of Applied Ecology 55:2986-2996. 

Kenward, R.E. 2001. A Manual for Wildlife Radiotracking. Academic Press, London. 

Kernohan, B.J., Gitzen, R.A., Millspaugh, J.J. 2001. Analysis of animal space use and 

movements. Radiotracking and Animal Populations. Pages 126-166. Academic 

Press, San Diego. 

Lux, F.E. and L.L Smith Jr. 1960. Some factor influences seasonal changes in angler 

catch in Minnesota Lake. Transactions of the American Fisheries Society, 89:67-79. 



30 

 

 

3
0

 

Malvestuto, S.P 1996. Sampling the recreational creel. In B. Murphy & D. Willis (Eds.) 

Fisheries techniques, 2nd edition (pp. 591-623). Bethesda, Maryland: American 

Fisheries Society. 

Martin, D.R., C.J. Chizinski, and K.L. Pope. 2015. Waterbody area of influence and 

implications for fisheries management. North American Journal of Fisheries 

Management 35:185-190. 

Marzluff, J.M., Millspaugh, J.J., Hurvitz, P. & Handcock, M.S. 2004. Relating resources 

to a probabilistic measure of space use: forest fragments and Steller’s jays. Ecology, 

85:411-1427. 

Matsummura, S., B. Beardmore, W. Haider, U. Dieckmann, R. Arlinghaus. 2017. 

Ecological, angler, and spatial heterogeneity drive social and ecological outcomes 

in an integrated landscape model of freshwater recreational fisheries, bioRxiv, 

227744. 

Oh, C. and R.B. Ditton. 2006. Using recreation specialization to understand multi-

attribute management preferences. Leisure Sciences 28:369-384. 

Pope, K.L., L.A. Powell, B.S. Harmon, M.A. Pegg, and C.J. Chizinski. 2017. Estimating 

the number of recreational anglers for a given waterbody. Fisheries Research 

191:69-75. 

Post, J. R., L. Persson, E. A. Parkinson, and T. van Kooten. 2008. Angler numerical 

response across landscapes and the collapse of fresh- water fisheries. Ecololgical 

Applications 18:1038-1049. 



31 

 

 

3
1

 

Powell, R.A. 2000. Animal home ranges and territories and home range estimators. 

Research Techniques in Animal Ecology Controversies and Consequences. Pages 

65–110 in L. Boitani and T.K. Fuller, editors. Columbia University Press, New 

York. 

Provencher, W., K. A. Baerenklau, and R. C. Bishop. 2002. A finite mixture logit model 

of recreational angling with serially correlated random utility. American Journal of 

Agricultural Economics, 84:1066-1075. 

Scrogin, D., K. Boyle., G. Parsons, and A.J. Pantinga. 2004. Effects of regulations on 

expected catch, expected harvest, and site choice of recreational anglers. American 

Journal of Agriculture Economics, 86:963-974. 

Seaman, D., J. Millspaugh, B. Kernohan, G. Brundige, K. Raedeke, and R. Gitzen. 1999. 

Effects of sample size on kernel home range estimates. The Journal of Wildlife 

Management 63:739-747.  

Seaman, D.E. and R.A. Powell. 1996. An evaluation of the accuracy of kernel density 

estimators for home range analysis. Ecology, 77:2075-2085. 

Wang, Y, Z. Sun, L. Pan, T. Wang, and D. Zhang. 2013. The Application of Kernel 

Estimation in Analysis of Crime Hot Spots. Pages 1379-1385 in E. Qi, J. Shen, and 

R. Dou, editors. The 19th International Conference on Industrial Engineering and 

Engineering Management. Springer Berlin. 

Worton, B.J. 1989. Kernel methods for estimating the utilization distribution in home 

range studies. Ecology 70:164-168. 

Xie, Z. and J. Yan. 2008. Kernel density estimation of traffic accidents in a network 

space. Computers, Environment and Urban Systems 32:396-406. 



 

 

 

 

3
2

 3
2
 

Table 2-1. Size in surface area (ha) and location of Nebraska waterbodies, and years anglers were interviewed. 

 

 

 

 

 

 

 

 

 

 

 

Waterbody  Surface Area (ha) Latitude (N) Longitude (W) Years Sampled 

Branched Oak Lake      730 40.908741   -96.865573 2014, 2015, 2016 

Calamus Reservoir   2,104 41.847825°   -99.220833° 2014, 2015, 2016, 2017 

Harlan County Reservoir   5,463 40.057313°   -99.272493° 2014, 2015, 2016, 2017 

Lake McConaughy 12,141 41.248224° -101.683402° 2014, 2015, 2016, 2017 

Lake Wanahoo       379 41.234510°   -96.614971° 2017 

Merritt Reservoir   1,173 42.627675° -100.871769° 2014, 2015, 2016 

Pawnee Lake     299 40.838889   -96.865556 2014, 2015, 2016, 2017 

Sherman Reservoir   1,151 41.302863°   -98.885985° 2014, 2015, 2016, 2017 
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Table 2-2. Summary of anglershed metrics used to quantify dynamics in angler 

participation.  

 

Metric Description Meaning 

Area spatial area of primary (10%), 

median (50%), and total 

(95%) utilization distribution 

(UD) that comprise an 

anglershed  

 

represents the spatial distribution of 

angler parties who were drawn in to 

participate at a waterbody; larger 

area values indicate greater spatial 

representation on the landscape  

Patches  number of patches that make 

up the primary, median, and 

total UD that comprise an 

anglershed  

indicates amount of fragmentation of 

spatial draw of the angler population 

participating at a waterbody; larger 

values indicate a more fragmented 

angler population and smaller values 

indicate less fragmented 

participation on the landscape (i.e., 

more cohesive)   

Compactness calculated as the proportion of 

the primary area within the 

median area (10% UD/50% 

UD) and the proportion of the 

primary area within the total 

area of an anglershed (50% 

UD/95% UD) 

indicates intra-anglershed patterns of 

the relative proportion of high 

participation areas to that of the 

entire range of participation  
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Table 2-3. Number of in-state (Nebraska) and out-of-state (Colorado, Iowa, Kansas, 

Missouri, South Dakota, Wyoming) angler-parties interviewed across eight Nebraska 

Waterbodies during 2014-2017.  

 

Location Number of Parties Percentage  

In-State 19,949 94.88% 

Out-of-State   1,077   5.12% 

     Colorado      778   3.70% 

     Iowa        89   0.42% 

     Kansas        97   0.46% 

     Missouri          9   0.04% 

     South Dakota        56   0.27% 

     Wyoming        48   0.23% 

   

Total 21,026  
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Table 2-4. Mean values of anglershed metrics (P = primary, M = median, T = total) across eight Nebraska waterbodies (see Table 2-1) 

by time scales (month, season, year).  

 
 Area  Patches  Compactness 

Period  P  M  T  P  M  T  M  T 

Month      
 

         

Apr 625,062  3,937,026  21,154,703  1.00  1.13  2.08  16.30  2.69 

May 762,982  4,610,081  23,056,308  1.04  1.15  1.73  16.22  2.59 

Jun 966,168  5,410,960  25,194,990  1.23  1.08  1.85  16.85  2.91 

Jul 820,554  4,749,963  22,135,997  1.03  1.15  1.77  16.46  2.85 

Aug 660,262  4,046,456  19,075,046  1.12  1.31  1.62  16.24  2.86 

Sep 917,774  5,233,795  23,254,505  1.04  1.16  1.56  16.56  3.06 

Oct 833,117  4,721,269  22,186,512  1.08  1.16  1.68  16.60  2.98 

Season                

Spring 522,942  4,085,540  21,201,850  1.04  1.23  1.62  12.99  2.02 

Summer 533,730  4,027,257  19,525,472  1.08  1.23  1.58  13.20  2.14 

Fall  593,839  4,491,411  20,831,825  1.12  1.28  1.64  13.20  2.28 

Year                

2014 461,645  3,690,584  19,154,763  1.14  1.29  1.29  12.67  1.85 

2015 466,569  3,755,528  19,002,039  1.14  1.43  1.00  12.64  1.96 

2016 406,551  3,394,518  16,332,414  1.14  1.29  1.29  12.46  1.92 

2017 360,120  3,001,104  16,629,110  1.00  1.40  1.00  12.13  1.81 
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Table 2-5. Mean values of anglershed metrics (P = primary, M = median, T = total) across eight Nebraska waterbodies by time scales 

(month, seasonal, annual) (BO = Branched Oak, CA = Calamus, HC = Harlan County, MC = McConaughy, WA = Wanahoo, ME = 

Merritt, PA = Pawnee, SH = Sherman). Wanahoo does not have a mean value for year as it was only sampled one year.  

 Area  Patches  Compactness 

Waterbody  P  M  T  P  M  T  M  T 

Month 
     

 
         

BO    29,045    219,752    2,043,073  1.00  1.00  2.67  13.18  1.37 

CA  581,068      4,284,619  19,698,722  1.16  1.36  1.48  13.56  3.01 

HC  352,746  1,997,020  11,755,202  1.00  1.07  1.85  16.85  1.61 

MC 2,700,208   12,810,805  58,307,705  1.11  1.33  1.15  20.97  4.54 

WA    60,463     447,965    2,486,764  1.14  1.86  3.00  13.22  2.43 

ME 1,775,408   12,901,703  58,129,367  1.12  1.31  1.62  16.24  2.86 

PA    62,348    282,281    2,162,289  1.00  1.00  2.57  16.56  3.06 

SH   188,731     1,431,177    9,274,754  1.00  1.04  1.46  16.60  2.98 

Season 
               

BO    21,657    167,040    1,903,893  1.00  1.00  2.33  12.93  1.13 

CA  515,177     3,970.309  18,398,896  1.36  1.55  1.58  12.96  2.81 

HC  240,487     1,811,987  11,414,582  1.00  1.00  1.67  13.28  2.11 

MC 1,553,042   11,734,645  54,549,298  1.67  1.50  1.08  13.17  2.81 

WA    49,441    393,951    2,379,223           

ME 1,584,847   12,206,777  54,923,586  1.11  1.78  1.56  12.97  2.94 

PA      29,691    210,816    1,975,559  1.00  1.00  2.33  13.96  1.42 

SH  151,462     1,209,438    8,531,087  1.00  1.00  1.00  12.53  1.78 
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Table 2-5. Continued.  

 
 Area  Patches  Compactness 

Waterbody  P  M  T  P  M  T  M  T 

Year 
               

BO    15,341    122,211    1,783,222  1.00  1.00  1.67  12.54  0.87 

CA  428,603     3,468,886     16,690,069  1.00  1.00  1.00  13.84  1.17 

HC  201,333  1,569,346  10,575,500  1.00  1.00  1.00  12.82  1.90 

MC 1,045,979  8,244,953  41,555,156  1.25  2.00  1.00  12.59  2.51 

ME 1,275,814    10,865005  48,228,098  1.33  1.67  1.33  11.72  2.65 

PA    22,756    161,180    1,925,614  1.00  1.00  1.00  13.84  1.17 

SH   118,953     1,034,706    7,887,687  1.00  1.00  1.25  11.46  1.51 
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Figure 2-1. Methods diagram illustrating characterization and quantification of 

anglersheds. (A) shows all anglers who were interviewed at a waterbody within our study 

area (Nebraska, South Dakota, Wyoming, Colorado, Missouri, Iowa). (B) illustrates the 

results of the kernel density estimator showing the primary (10%), median (50%), and 

total (95%) anglershed. (C) illustrates the use of landscape metrics such as area (A), 

number of patches (P), and compactness (C) to quantify anglersheds through time. 
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Figure 2-2. Area (mean ± SE) of the primary anglershed (10% UD) for eight Nebraska waterbodies at three temporal scales:  monthly, 

seasonal (spring = April-May, summer = June-August, and fall = September-October), and annual.  Standard error is not reported for 

the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year).  
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Figure 2-3. Area (mean ± SE) of the median anglershed (50% UD) for eight Nebraska waterbodies at three temporal scales:  monthly, 

seasonal (spring = April-May, summer = June-August, and fall = September-October), and annual. Standard error is not reported for 

the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year).  
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Figure 2-4. Area (mean ± SE) of the total anglershed (95% UD) for eight Nebraska waterbodies at three temporal scales:  monthly, 

seasonal (spring = April-May, summer = June-August, and fall = September-October), and annual. Standard error is not reported for 

the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year).   
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Figure 2-5. Patches (mean ± SE) of the primary anglershed (10% UD) for eight Nebraska waterbodies at three temporal scales: 

monthly, seasonal (Spring = April-May, Summer = June-August, and Fall = September-October), and annual.  Standard error is not 

reported for the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year). 
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Figure 2-6. Patches (mean ± SE) of the median anglershed (50% UD) for eight Nebraska waterbodies at three temporal scales: 

monthly, seasonal (Spring = April-May, Summer = June-August, and Fall = September-October), and annual.  Standard error is not 

reported for the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year). 
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Figure 2-7. Patches (mean ± SE) of the total anglershed (95% UD) for eight Nebraska waterbodies at three temporal scales: monthly, 

seasonal (Spring = April-May, Summer = June-August, and Fall = September-October), and annual.  Standard error is not reported for 

the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year). 
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Figure 2-8. Compactness (mean ± SE) of the median (50% UD) for eight Nebraska waterbodies at three temporal scales: monthly, 

seasonal (spring = April-May, summer = June-August, and fall = September-October), and annual.  Standard error is not reported for 

the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year). 
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Figure 2-9. Compactness (mean ± SE) of the total (95% UD) for eight Nebraska waterbodies at three temporal scales: monthly, 

seasonal (spring = April-May, summer = June-August, and fall = September-October), and annual.  Standard error is not reported for 

the annual temporal scale (i.e., single observations) and Lake Wanahoo (i.e., sampled one year).
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Figure 2-10. Box plot of coefficient of variation for area of primary (10% UD) = ..., 

median (50% UD) =     , and total anglershed (95% UD) = ... for seven Nebraska 

waterbodies at three temporal scales: monthly, seasonal (spring = April-May, summer = 

June-August, fall = September-October) and annual. Horizontal black lines represent the 

median, boxes represent the range from the 25th to 75th percentile, and whiskers extend 

from the box to the highest or lowest value within 1.5 times the interquartile range.  
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Figure 2-11. Box plot of coefficient of variation for patches primary (10% UD) = ..., 

median (50% UD) =     , and total anglershed (95% UD) = ... for seven Nebraska 

waterbodies at three temporal scales: monthly, seasonal (spring = April-May, summer = 

June-August, fall = September-October) and annual. Horizontal black lines represent the 

median, boxes represent the range from the 25th to 75th percentile, and whiskers extend 

from the box to the highest or lowest value within 1.5 times the interquartile range. 
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Figure 2-12. Box plot of coefficient of variation for compactness of the median (10% 

UD/50% UD) =     ,and the total anglershed (10% UD/95% UD) = ...  for seven Nebraska 

waterbodies at three temporal scales: monthly, seasonal (spring = April-May, summer = 

June-August, fall = September-October) and annual. Horizontal black lines represent the 

median, boxes represent the range from the 25th to 75th percentile, and whiskers extend 

from the box to the highest or lowest value within 1.5 times the interquartile range. 
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Figure 2-13. Conceptual figure illustrating the patterns exhibited by three anglershed metrics (i.e., area, patches, compactness) in 

relation to waterbody size. The size of the circle illustrates anglershed area, the shades of grey from dark to light indicate decreasing 

compactness, and the number of black lines indicate the number of patches or degree of fragmentation. The primary spatial level was 

not evaluated for compactness.
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CHAPTER 3: EXPLAINING LANDSCAPE PATTERNS IN ANGLER  

 

PARTICIPATION 

 

 

INTRODUCTION  

 

 Fisheries managers face challenges on how best to manage social-ecological 

resources that operate at multiple scales (Sainsbury et al. 2000; Carpenter and Brock 

2004; Post and Parkinson 2012). Ultimately, policies or strategies that work at one scale, 

may not work at other scales (e.g., local vs. regional; Post and Parkinson 2012), leading 

to shortcomings in management strategies that disregard the scale of management (Lester 

et al. 2003). Improved fisheries management strategies require incorporation of 

appropriate spatial and temporal scales that recognize both angler mobility and unequal 

distribution of angler effort on the landscape (Lester et al. 2003). In fact, management 

strategies that have focused solely on the resource (e.g., fish population) alone have been 

blamed for creating “invisible” collapses across a landscape (Post et al. 2002). So then, 

what is the most efficient strategy for managing and maintaining a recreational fishery for 

long-term use (Post et al. 2008; Lester et al. 2003)? What is the appropriate management 

scale? In other words, can on-site or waterbody-specific changes influence resource use 

and participation?  Likewise, will changes in landscape properties or attributes influence 

resource use and participation? To address these challenges we need to move towards a 

more proactive and sustainable management strategy that views angler behavior and 

resources as heterogeneous and dynamic properties on the landscape, operating at 

multiple spatial and temporal scales (Arlinghaus et al. 2017; Cox et al. 2003; Lester et al. 

2003; Sullivan 2003).  
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Resources, such as waterbodies, serve as dynamic attracters for anglers on the 

landscape.  The spatial arrangement and proximity between anglers and waterbodies 

should lead to spatial and temporal interactions given they are not homogenously 

distributed across the landscape, and both waterbody conditions and angler motivations 

change through time.  Therefore waterbodies may vary in their ability to attract anglers to 

participate, but what factors cause disparities in resource selection and use among 

waterbodies? Previous work suggests that anglers should aim to optimize utility (Hunt 

2005, Post and Parkinson 2012; Matsummura et al. 2017).  Anglers likely consider the 

following social-ecological factors in the resource-selection process: (1) costs, (2) fishing 

quality, (3) environmental quality, (4) facility development, (5) social aspects, and (6) 

regulations (Hunt 2005).  These factors broadly encompass the spatial socioeconomic 

structure, on-site attributes, and angler heterogeneity of a fishery.   

 The spatial socioeconomic structure of a fishery is often overlooked among 

managers and researchers, in particular the spatial distribution of where the human 

population lives in relation to the available resource or waterbody (Matsummura et al. 

2017). The spatial socioeconomic structure ultimately affects travel costs for an angler, 

which is a primary factor for determining angler utility, and ultimately affects site choice 

(Hunt 2005; Post et al. 2008; Matsummura et al. 2017). Post et al. (2008) indicated an 

exponential decline in angling effort at waterbodies further from population centers. 

Despite this claim, because of angler heterogeneity, it is difficult to determine how 

anglers perceive travel costs when making site-choice decisions (Arlinghaus 2006; Post 

et al. 2008; Ward et al. 2016; Valdez et al. 2018). Various socioeconomic attributes may 

play a role in predicting angler participation. Therefore, an inventory of the 
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socioeconomic attributes of populations surrounding a waterbody may provide invaluable 

information for managers. For example, previous work has suggested that participation 

frequency was higher for males (Greene et al. 1997; Montgomery & Needleman 1997; 

Morey et al. 2002), those who are older (Morey et al. 1993; Lin et. al 1996; Montgomery 

and Needleman 1997; Shaw and Ozog 1999; Morey et al. 2002), live in rural areas (Jakus 

et al. 1997), are unemployed (Hausman et al. 1995; Montgomery and Needleman 1997), 

have children (Montgomery and Needleman 1997; Shaw and Ozog 1999), and own a boat 

(Lin et al. 1996; Greene et al. 1997).  Linking socioeconomic information to on-site 

participation could provide managers and researchers the ability to predict angler 

behavior across multiple spatial and temporal scales.  

On-site conditions and attributes represent important considerations for anglers in 

the resource-selection process as well (Hunt 2005; Hunt et al. 2007). Resource quality 

can relate to the overall environmental conditions or more specifically, the water quality 

at a waterbody (Hunt 2005). Measures of water quality may include assessments of 

dissolved oxygen, phosphorus (Montgomery and Needleman 1997; Phaneuf et al. 1998), 

and secchi depth (Feather et al. 1995; Lupi and Feather 1998). Resource quality is often 

related to the size of the waterbody (i.e., surface area). Larger waterbodies are typically 

more diverse and have the potential to support more fish species, grow larger fish, and 

often offer more diverse fishing and recreational opportunities (Hunt 2005). Many studies 

that have incorporated waterbody size found that anglers tend to prefer to fish at larger 

waterbodies(e.g., Train 1998; MacNair and Cox 1999; Hauber and Parsons 2000). 

Weather conditions at a waterbody can also alter angler behavior. Berman and Kim 

(1999) studied anglers in Alaska, which indicated positive relationships between angler 



 

 

54 

5
4

 

participation and temperature, and negative relationships between angler participation 

and wind speed. On-site attributes (e.g. catch rates, fish size) at a particular fishing site 

may be of more importance in the resource selection process and ultimately provide an 

angler with the maximum utility (Hunt 2005).  

 Accounting for angler heterogeneity is also crucial for understanding angler 

oriented behavior through space and time (Hahn 1991; Arlinghaus et al. 2008).  Catch-

related motivations are arguably the most important features in the resource selection 

process for anglers (Chen and Cosslett 1998; Jones and Lupi 1999; McConnell and Tseng 

1999). Anglers seek a diverse range of experiences as some anglers are more harvest-

oriented (Arlinghaus and Mehner 2004; Anderson et al. 2007; Beardmore 2014). 

Similarly, anglers also exhibit differing skill levels that are strongly correlated with catch 

rates (Bannerot and Austin 1983; Fisher 1997). Non-catch related motives may not be 

directly related to the process of catching a fish, but have also been recognized as 

important factors for anglers (Fisher 1997; Beardmore et al. 2011). For instance, anglers 

may actually be more interested in the social aspects of a fishing experience such as 

multi-day camping trips or fishing with of family and friends (MacNair and Cox 1999; 

Morey et al. 2002). Non-catch related motivations may also include an anglers desire to 

experience solitude or relaxation (Matinson and Shelby 1992; Banzhaf et al. 2001; Hunt 

2005). Angler heterogeneity, reflected in both catch and non-catch oriented motives, is an 

important component in the resource selection process. 

 It is evident that angler behavior is highly dynamic and depends on the scale of 

reference; this requires a more comprehensive evaluation of cross-scale angler behavior. 

Herein, we use anglersheds (see Chapter 2) as an index to describe landscape dynamics in 
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angler participation and how this relates to resource use. Anglersheds depict the area of 

influence of a waterbody (Martin et al. 2015) or the spatial structure of a fishery.  Our 

objective was to explain variation in anglershed area for multiple waterbodies or 

resources. We explore how the spatial socioeconomic structure, on-site attributes, and 

angler heterogeneity shape the resource selection process for anglers. Knowledge gained 

from this study has broad implications for effective cross-scale resource management; in 

particular, this study provides guidance for selecting the appropriate management scale 

and potential consequences of actions taken at different scales. We can use this 

information to optimize the use of heterogeneous resources, such as the mosaic of 

waterbodies on the landscape available to anglers.   

 

METHODS  

Study design   

We surveyed anglers at seven Nebraska, USA, waterbodies that encompassed 

diverse locations, anglers, fish communities, and amenities (Table 2-1). Lake Wanahoo is 

not included in this analysis due to limited temporal data (i.e., one year). Waterbodies 

varied in distance from large urban centers (i.e., Lincoln and Omaha, Nebraska) and state 

borders, attracted different angler types (e.g., boat and bank) and species-targeting 

groups, and offered a range of on-site amenities (e.g., camping facilities, boat ramps) and 

fish species (Pope et al. 2017). Average total anglershed areas were quantified in Chapter 

2 and ranged from ~2,000,000 ha (Branched Oak) to ~58,000,000 ha (Lake 

McConaughy). Anglers were interviewed at each waterbody during seven months (April-

October) during four years (2014-2017), though not all waterbodies were sampled every 
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year (Table 2-1). Interview days were determined using a stratified multi-stage 

probability sampling regime (Malvestuto 1996). Days were stratified by type, with 10 

week-days and six weekend-days sampled each month. An additional two interview days 

were included for “high use” or holiday periods during May (Memorial Day), July 

(Fourth of July), and September (Labor Day). Each interview day was further stratified 

into two periods, sunrise to 1330 and 1330 to sunset.  

Angler interviews were conducted at the party level, which represented a group of 

individuals traveling together for the purpose of fishing. Clerks roved, with the intent of 

gathering a representative sample proportional to use, among parking areas and moved on 

foot along the shore and in parking lots to contact angler parties. Clerks interviewed one 

individual (i.e., representative of the party) to provide the ZIP code of their home 

residence (putative location from which they traveled). Additional information was 

collected from angler parties including party size, length of fishing trip (i.e., days), 

duration of that day’s fishing effort (i.e., hours), and catch and harvest numbers by 

species caught. We also documented angler effort by counting the number of bank and 

boat anglers for monthly estimates of fishing pressure at each waterbody (Malvestuto et 

al. 1996; Kaemingk et al. 2018). 

Constructing anglersheds  

 We constructed anglersheds for each waterbody using ZIP codes of anglers’ 

residences (Martin et al. 2015); these anglersheds represent the spatiotemporal draw of 

anglers to a waterbody. We excluded anglers outside of a seven-state region (represented 

less than 1% of all interviews) to only include ZIP codes from Nebraska and bordering 

states (i.e., Colorado, Iowa, Kansas, Missouri, South Dakota, Wyoming) to avoid 
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influence from extreme outliers and to facilitate logistics of computational limitations. 

Each retained ZIP code was randomly assigned, using a bootstrapping method, to a 

census block (i.e., finer spatial scale) within the ZIP code. The centroid of a selected 

census block was used to represent the location of a respective angler’s residence (sensu 

Martin et al. 2015). This approach was used to reduce spatial error and to better represent 

the spatial distribution of anglers on the landscape (Martin et al. 2015).  

Kernel-density estimation (Worton 1989; Seaman and Powell 1996) was used to 

delineate anglersheds based on the distribution (i.e., density and proximity to each other) 

of angler residences on the landscape (Figure 2-1). Kernel-density estimation is a 

common wildlife-ecology technique for mapping spatial distributions, and was previously 

used to assess angler participation (Martin et al. 2015). Kernel-density estimation has also 

been broadly applied to determine placement sites for hospitals (Donthu and Rust 1989), 

quantify distribution of traffic accidents (Xie and Yan 2008), and identify crime hot-spots 

(Wang et al. 2013). We used the kernelUD function (or classic kernel method) in the 

adehabitatHR package in R (Calenge 2006) to delineate and quantify the area of each 

anglershed. A bivariate normal kernel was used, which places a bivariate normal kernel 

over each observed point (i.e., angler residence) and uses a smoothing parameter, h, to 

control the width of the bivariate normal kernel (Martin et al. 2015). We calculated 

anglershed area by using the 95% utilization distribution (UD) contour with h set at the 

ad hoc level, “href”. Anglershed area was evaluated at the monthly scale because of the 

high amount of variation compared to the annual and seasonal scale (see Chapter 2). 

Thus, we aimed to explain this high amount of monthly variation in anglershed area 

among the seven waterbodies. 
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Variables of interest  

 We initially selected 40 independent variables that were predicted to capture 

variation in monthly anglershed area (Table 3-1). Variables chosen were intended to 

encompass aspects of the spatial socioeconomic structure, on-site attributes, and angler 

heterogeneity that were previously identified in past studies as being important in the 

resource-selection process (Hunt 2005; Ward et al. 2013; Matsummura et al. 2017). 

Variables were calculated or estimated at the monthly level using means, sums, and 

proportions (to predict monthly anglershed area).  

Data Analysis  

 We explored multicollinearity among our 40 independent variables prior to 

examining the relationship with anglershed area (Table 3-1). We expected high 

collinearity among our variables of interest given their importance in exploring fishery 

dynamics. Variables were removed based on strong correlation  (r > 0.6), incomplete data 

sets, practicality for applied management, and knowledge of particular variables’ 

relationship with angler participation as outlined by previous studies. For example, 

average temperature exhibited a strong correlation coefficient with water quality 

variables such as water temperature and oxygen. We chose to keep average air 

temperature as one of our predictor variables because water quality variables are often 

not collected for all waterbodies, or on a consistent basis. We reduced the initial set of 40 

variables to 11 independent variables (Table 3-2).  

 We fit a linear mixed effects model using the 11 retained independent variables to 

predict monthly anglershed area (Table 3-2) for all seven waterbodies. Seven of the 11 

variables were transformed using log and square root transformation to achieve 
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normality. We evaluated model fit using the “lmer” function in the lme4 package (Bates 

et al. 2015) in R. We chose an alpha value of  0.10 to avoid committing a Type II error, 

since this assessment was largely exploratory. Total anglershed area served as the 

response variable along with 11 predictor variables in our mixed effects model. 

Waterbody code and month were explanatory variables and represented fixed effects and 

waterbody served as a random effect to account for variation among the seven 

waterbodies. Predictor variables were also scaled using the “scale” function in R.  

 

RESULTS  

 Three of the eleven independent variables revealed significant relationships with 

monthly anglershed area across the seven waterbodies. Anglershed area was positively 

related to air temperature ( = 0.15, p < 0.01; Figure 3-1), wind speed ( = 0.11, p = 0.03; 

Figure 3-2), and population density ( = 0.14, p = 0.05; Figure 3-3). Variables that did 

not exhibit a relationship with anglershed area included: angler effort, catch rate, fuel 

price, household income, party size, precipitation, trip days, and waterbody size.   

 

DISCUSSION  

 

 Our study highlights the utility of constructing anglersheds to explain changes in 

angler participation on the landscape, ultimately informing management objectives for a 

particular resource. Angler behavior is ultimately driven by perceived utility which 

manifested at multiple scales (Hunt 2005). For example, anglers are often viewed as 

optimizing on-site utility, but we should also consider the landscape structure and angler 

heterogeneity (Lester et al. 2003; Arlinghaus et al. 2017). Based on our findings, both on-



 

 

60 

6
0

 

site attributes and the socioeconomic structure were helpful for explaining changes in 

anglershed area across the seven waterbodies we examined. Anglershed area increased as 

a function of changes in air temperature, wind speed, and population density. 

Anglershed area was positively related to air temperature across our seven 

Nebraska waterbodies. Thus, as temperature increased we observed more widespread 

angler participation on the landscape. Environmental or on-site conditions are an 

important consideration for anglers when selecting a fishing site (Smith et al. 2000, 

Isermann et al. 2005). For example, Hunt et al. (2007) determined that anglers were 

negatively affected by temperature and preferred cooler temperatures. Hunt et al. (2007) 

indicated that anglers may prefer a certain temperature range and once a threshold is met 

it may discourage participation (i.e., too hot).  Kuehn et al. (2013) noted “poor weather” 

as an important constraint to participating, which not only encompasses temperature, but 

other weather conditions. The positive relationship exhibited with air temperature may 

represent multiple factors that are important for anglers in the resource selection process, 

as indicated by multicollinearity among air temperature and other variables. In particular, 

air temperature was correlated to water quality variables, such as, water temperature and 

dissolved oxygen. Water temperature appears to be the most commonly reported abiotic 

factor affecting overall catch rates (Stoner 2004; Stoner et al. 2006; Damalas et al. 2007; 

Ortega-Garcia et al. 2008), due to its notable influence on movement activity, 

metabolism, and foraging activity for fishes (Brown et al. 2004). Similar to water 

temperature, dissolved oxygen can also affect angler catch rates (Englin et al. 1997).  

Anglershed area also exhibited a positive relationship with wind speed, indicating 

that as wind speed increased we saw an increase in the spatial draw of anglers to our 
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waterbodies. Kuparinen et al. (2010) found that anglers caught more fish at higher wind 

speeds, specifically when it came to catch rates of Northern Pike (Esox Lucius). Wind 

speeds could affect the vulnerability of pike because of more turbid foraging conditions 

(Stoner 2004; Nilsson et al. 2009). However, most studies have identified a negative 

relationship between angler participation and wind speeds (Berman and Kim 1999; 

Provencher et al. 2002; Provencher and Bishop 2004; Barenklau and Provencher 2005). 

Anglers appear to be more influenced by daily fishing conditions rather than past trip 

experiences at a waterbody (Barenklau and Provencher 2005). Wind speed was correlated 

with the proportion of bank anglers participating at a particular reservoir. Lloret et al. 

(2008) expressed wind speeds as a limiting factor for the number of boats participating in 

recreational angling. Thus, wind conditions may cause a shift in angler participation at 

both local and landscape levels.  

Air temperature and wind speed both represent seasonal conditions that can affect 

both angler and fish behavior. We observed the greatest changes in anglershed area 

during June and August (see Chapter 2). In Nebraska, the month of June is generally 

much cooler, therefore more comfortable, with generally high winds as well. the month 

of August is characterized by extreme hot temperatures that make outdoor activities 

uncomfortable, along with generally high winds. Not only are anglers influenced by 

weather conditions, but fish are also influenced by seasonal weather patterns and 

fluctuations. Van Poorten and Post (2005) indicated a significant decrease in angler catch 

per unit of effort beginning in the summer months and continuing until September. 

Variation in catchability is often caused by patterns of habitat use, which typically 

deviates due to reproductive behavior or prey distribution (Cox and Walters 2002). Based 
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on our results, it is clear there may be a seasonal influence in anglershed dynamics that is 

correlated with air temperature and wind speed.  While managers cannot control weather 

conditions such as temperature and wind, the ability to predict landscape patterns in 

angler participation using environmental conditions remains valuable.  

 Few studies have considered how the spatial socioeconomics structure contributes 

to shaping angler behavior (but see Matsummura et al. 2017). Our results indicated a 

positive relationship between anglershed area and population density indicating that we 

saw in increase in the spatial draw of anglers with an increase in population density. 

Matsummura et al. (2017) suggested that angler effort is strongly driven by the residential 

pattern or underlying population density on the landscape (e.g., rural vs. urban) relative to 

that of the resource particularly seen between rural and urban landscapes. For example, 

waterbodies residing in rural landscapes, such as Lake McConaughy, had anglershed 

areas that encompassed urban areas, such as the Denver metropolitan region. We could 

also expect behavioral differences, reflected in socioeconomic variables, between anglers 

residing in metropolitan areas compared to rural areas (Arlinghaus et al. 2008). 

Population density was correlated with many of our socioeconomic variables that were 

included in our initial dataset including: median age, household size, home value, and 

education level. Many studies highlight these factors  as important features to explain 

angler behavior. For example, studies show that participation is higher among individuals 

who are older (Moyer et al. 1993; Lin et al. 1996; Montgomery and Needleman 1997; 

Morey 2002) and have more children (Montgomery and Needleman 1997; Shaw and 

Ozog 1999). Undoubtedly, features which reflect the socioeconomic structure 



 

 

63 

6
3

 

surrounding a reservoir can impact angler behavior, but recognizing the relative role of 

these features in the decision process is more difficult.     

 All of the variables we included in our model to explain anglershed area have 

been previously noted as being important factors for angler participation, but most of 

these variables were unable to explain changes in the spatial structure of these fisheries. 

Variables that offered little explanatory power included: angler effort, catch rate, party 

size, trip days, fuel price, household income, precipitation, and waterbody size. As an 

outcome of chapter 2, we hypothesized that waterbody size could explain anglershed 

dynamics. However, waterbody size does not appear to significantly influence anglershed 

area despite its ability to predict other cross-scale social-ecological dynamics in 

recreational fisheries (Hauber and Parsons 2000). Similarly, we did not see an expected 

relationship between anglershed area and angler effort. Therefore, an increase in angling 

effort may not result in a concomitant increase in anglershed area. 

There was a great deal of variation in anglershed area among and within our study 

waterbodies that may not have been accounted for in our assessment. Angler behavior 

and the associated mechanisms involved in the decision process may differ between 

anglers residing locally and distantly from a waterbody.  Our approach was unable to 

detect changes in angler participation that could be related to geographic location and 

distance. For example, does an increase in the area of an anglershed represent the 

addition of anglers on the perimeter (i.e., adding to the total anglershed but not affecting 

the primary anglershed) or fewer anglers participating in the core area (i.e., reducing the 

primary anglershed but spreading out the total anglershed)?  Therefore, we were able to 

assess changes in the size of the anglershed but this does not account for a potential shift 
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in the spatial distribution of anglers on the landscape.  Detecting a shift in the distribution 

of anglers at multiple scales is a necessary future step to better understand these complex 

social-ecological systems.  Our study presents the need to visualize, quantify, and more 

importantly understand the landscape structure and dynamics of anglers participating in 

recreational fishing.  

 Our study provides more evidence for treating recreational fisheries as complex 

social-ecological systems that are best managed using a cross-scale approach (Post et al. 

2008; Lester et al. 2013).  Managing recreational fisheries at a single scale (i.e., 

waterbody-level or landscape-level) is not recommended.  Specifically, our analysis 

revealed that on-site and spatial socioeconomic factors are important for predicting 

landscape patterns in angler behavior. We propose that management strategies should 

take into account cross-scale attributes of a fishery. The consideration and inclusion of 

multiple spatial and temporal scales of a fishery should ensure long-term sustainability of 

these valuable resources.  
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Table 3-1. Variables included in the initial dataset were chosen to encompass aspects of the spatial socioeconomic structure, on-site 

attributes, and angler heterogeneity. The initial dataset was evaluated for multicollinearity in order to remove variables.  

 

Variable Description Source 

Alpha generation Proportion of alpha generation in total population of zip codes in 

anglershed 

ESRI Live Atlas 

Air temperature  Average monthly air temperature; degrees Celsius Nearest weather station 

Angler effort Month effort of all anglers interviewed at a waterbody; hours Angler survey 

Baby boomers Proportion of baby boomers in total population of zip codes in 

anglershed 

ESRI Live Atlas 

Bachelor’s degree Proportion of population with bachelor’s degree of zip codes in 

anglershed 

ESRI Live Atlas 

Boat anglers  Monthly proportion of boat anglers among all anglers interviewed at 

a waterbody 

Angler survey 

Catch rate Average monthly catch rate of both harvested and released fish by 

anglers during a fishing trip; fish/hour  

Angler survey 

Chlorophyll a  Chlorophyll measured monthly; g/l Nebraska Department of 

Environmental Quality (NDEQ)  

Dissolved oxygen Dissolved oxygen measured monthly; mg/l NDEQ 

Fish harvested Average number of fish harvested by anglers during a fishing trip Angler survey 

 

Fuel price Average monthly fuel prices for the state of Nebraska; U.S. dollars  Nebraska Energy Office (NEO) 
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Table 3-1. Continued. 

 

Variable Description Source 

Graduate degree  Proportion of population with graduate degree of zip codes in 

anglershed 

ESRI Live Atlas 

Growing degree 

days 

Total number of growing degree days 
Nearest weather station 

High school diploma  Proportion of population with high school degree of zip codes in 

anglershed 

ESRI Live Atlas 

Home value  Average home value of zip codes in anglershed; U.S. dollars ESRI Live Atlas 

Household income Average household income of zip codes in anglershed; U.S. dollars ESRI Live Atlas 

Household size  Average household size of zip codes in anglershed; number of 

people 

ESRI Live Atlas 

Less than high 

school 

Proportion of population with less than high school degree of zip 

codes in anglershed 

ESRI Live Atlas 

Maximum air 

temperature  

Average minimum air temperature; degrees Celsius 
Nearest weather station 

Median age Average median age of zip codes in anglershed ESRI Live Atlas 

Millennials Proportion of millennials in total population of zip codes in 

anglershed 

ESRI Live Atlas 

Minimum air 

temperature 

Average minimum air temperature; degrees Celsius 
Nearest weather station 

Older generations Proportion of older generations of zip codes of anglershed  ESRI Live Atlas 

Out of state anglers Monthly proportion of out of state anglers among all anglers 

interviewed at a waterbody 

Angler survey 
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Table 3-1. Continued. 

 

Variable Description Source 

Party size  Average monthly party size of anglers at a waterbody; measured in 

the number of people in an angler party  

Angler survey 

Population density Average population density of zip codes in anglershed; people/sq. 

km.  

ESRI Live Atlas 

Precipitation Total monthly precipitation; centimeters  Nearest weather station 

Relative humidity Average monthly relative humidity; measured as a percentage of 

moisture in the air  Nearest weather station 

Secchi disk Secchi (water transparency) measured monthly; centimeters  NDEQ 

Some college Proportion of population with some college of zip codes in 

anglershed 

ESRI Live Atlas 

Species richness Average number of total species both harvested and released by 

anglers during a fishing trip; number of species 

Angler survey 

Total phosphorus Total phosphorus measured monthly; phosphate-phosphorus; mg/l NDEQ 

Total nitrogen Total nitrogen measured monthly; ammonia-nitrogen; mg/l NDEQ 

Trip length  Average monthly trip length of anglers at a waterbody; measured in 

number of days visiting the waterbody 

Angler survey 

Unemployed  Proportion of unemployed in total population (16+) of zip codes of 

anglershed  

ESRI Live Atlas 

Visible light time Average monthly time of visible; time between the civil sunset and 

sunrise; total hours 
Nearest weather station 

Waterbody Size Surface area of water; hectares Nebraska Game and Parks 
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Table 3-1. Continued.  

 

Variable Description Source 

Water temperature Water temperature measured monthly; degrees Celsius NDEQ 

Wind gust Average monthly wind gust speed; kilometers/hour 
Nearest weather station 

Wind speed Average monthly wind speed; kilometers/hour Nearest weather station 
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Table 3-2. Variables included in final dataset and were evaluated for their influence on total anglershed area using a linear mixed 

effects model.  

 

Variable Description Source 

Air temperature  Average monthly air temperature; degrees Celsius Weather station 

Angler effort Average monthly angler effort; hours Angler survey  

Catch rate Average monthly catch rate of both harvested and released fish 

by anglers during a fishing trip; fish/hour  

Angler survey 

Fuel price Average monthly fuel prices for the state of Nebraska; U.S. 

dollars  

Nebraska Energy Office (NEO) 

Household income Average household income of zip codes in angler anglershed; 

U.S. dollars 

ESRI Live Atlas 

Party size  Average monthly party size of anglers at a waterbody; measured 

in the number of people in an angler party  

Angler survey 

Population density Average population density of zip codes in angler anglershed; 

people/sq. mi.  

ESRI Live Atlas 

Precipitation Total monthly precipitation; inches  Weather station 

Trip length  Average monthly trip length of anglers at a waterbody; measured 

in number of days visiting the waterbody 

Angler survey 

Waterbody Size Surface area of water; hectares Nebraska Game and Parks 

Wind speed Average monthly wind speed; miles/hour Weather station 
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Table 3-3. Results of the linear mixed effects model to predict anglershed area for seven 

Nebraska waterbodies. Significant variables are indicated by an asterisk.  

 

Fixed effects Estimate Standard error df T value Pr (>|t|) 

Air temperature 0.147 0.047 161 3.145   0.002* 

Angler effort 0.021 0.044 161 0.484 0.629 

Catch rate  0.010 0.043 162 0.242 0.809 

Fuel price   -0.031 0.030 161 -1.026 0.307 

Household income   -0.020 0.036 161 -0.557 0.578 

Party size   -0.018 0.044 162 -0.413 0.680 

Population density 0.140 0.071 165 1.965   0.051* 

Precipitation 0.002 0.032 161 0.066 0.947 

Trip days   -0.032 0.052 163 -0.620 0.536 

Waterbody size  0.855 0.566     5 1.510 0.193 

Wind speed   0.108 0.049 161 2.212   0.028* 
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CHAPTER 4: ANGLERSHEDS AS A TOOL AND TECHNIQUE FOR FISHERY 

MANAGEMENT AND FUTURE RESEARCH NEEDS   

 

ANGLERSHEDS AND FISHERY MANAGEMENT 

 The visualization and quantification of anglersheds provides insights to 

spatiotemporal dynamics of anglers on the landscape. In particular, anglersheds reveal a 

critical link and relationship between users (i.e., anglers) and the resources (i.e., 

waterbodies) on the landscape. We have demonstrated that anglersheds are dynamic 

through space and time and that not all resources are viewed and used equally among 

anglers (see Chapter 2). Rather, some resources are locally used whilst others are 

regionally used and this also varies across temporal scales. This variation in use was 

explained by variation in population density, air temperature, and wind speed (see 

Chapter 3). Below, we highlight the utility of anglersheds as a tool and technique to 

address three specific scenarios for fishery management and conservation:  

Scenario A – Quantifying and categorizing landscape  resource use: 

Resources or waterbodies are unequally distributed across the landscape, 

providing a “buffet” of opportunities for a diverse and unequally 

distributed angler population (Post and Parkinson 2012; Matsummura et 

al. 2017; Carruthers et al. 2018). This unequal distribution and diversity 

among resources and anglers on the landscape should lead to complex 

patterns and dynamics in resource use (Post et al. 2008; Post and 

Parkinson 2012; Matsummura et al. 2017).  Anglersheds provide insight 

to this complex relationship, potentially revealing the spatial and 



82 

 

 

8
2

 

temporal structure of a fishery. For example, we can quantify the 

anglershed for a particular resource to describe its area of influence or 

spatial draw. We can use these anglersheds to categorize waterbodies as 

“local” or “regional” fisheries and create an inventory of waterbodies or 

resources that are available to anglers on the landscape. We assert that 

both local and regional fisheries are important and likely attract different 

anglers. Thus, understanding whether a waterbody attracts local vs. 

regional anglers is important and allows insight to potential differences in 

angler behavior (e.g., local – day trips; regional – multi-day trips). We 

use Merritt Reservoir and Pawnee Lake to illustrate our ability to 

quantify and categorize resource use on the landscape (Figure 4-1). 

Merritt Reservoir could be considered a regional fishery, its anglershed is 

widespread spatially, whereas Pawnee Lake is a local fishery, with an 

anglershed restricted in size and localized to surrounding communities. 

Distant anglers travelling to Merritt may not consider local environmental 

conditions (until arrival) as much as local anglers travelling to Pawnee 

Lake. Thus, we should anticipate that management actions applied 

equally at both reservoirs could create an unequal response in landscape-

level angler participation.  

Scenario B – Viewing and managing anglersheds as a network of 

fisheries on the landscape: A waterbody should be viewed as a single 

resource that is nested and connected to a mosaic of other waterbodies 

(Shuter et al. 1998). As such, multiple waterbodies on the landscape 
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represents a network of fisheries whereby mobile anglers select 

waterbodies to participate in fishing (Martin et al. 2017). A scenario 

could exist where two waterbodies exist in close proximity to each other, 

but attract unique anglers from different geographic locations. In contrast, 

these two waterbodies may attract anglers from similar geographic 

locations. These resources may be complimentary or competing for 

anglers on the landscape.  Recognizing the role of resources among a 

network of resources is an important consideration for management and 

conservation. For example, Calamus Reservoir and Sherman Reservoir 

are separated by less than 90 km, but do they attract anglers from similar 

geographic locations? Are they dependent of each other, as anglers may 

consider them to be a joint fishing opportunity? While we did not directly 

quantify the degree of overlap, visually we can see that anglersheds for 

Calamus and Sherman Reservoirs overlap. However, the degree of 

overlap changes through time with the highest level of overlap occurring 

in July and October and the lowest level of overlap in June and August 

(Figure 4-2).  Periods of overlap and non-overlap may represent different 

anglers using these resources, or may be the same anglers using the 

resource at different times. Management strategies may be aimed to 

optimize competing or complementary resources within a network of 

resources instead of focusing on a single waterbody. Anglersheds provide 

a simple yet powerful way to visualize and quantify how management 

efforts on one resource may impact other resources on the landscape.  
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Scenario C – Assessing potential invasion risk on the landscape: There 

is a constant threat of the invasion and spread of invasive species that 

could compromise our use of ecological resources. Anglers are often 

viewed as vectors that transport invasive species from one waterbody to 

another (Minchin et al. 2002; Wacker and Elert 2003). Anglersheds could 

expose which waterbodies are at high risk to invasion to assist with 

prevention efforts.  Waterbodies may range from low to high risk of 

invasion, furthering our ability to prioritize prevention efforts.  The 

ability to capture monthly- or seasonal- variation in anglersheds also 

allows for more targeted control efforts.  We use the anglershed for Lake 

McConaughy to assess the risk of zebra mussel (Dreissena polymorpha) 

invasion from a known infested waterbody (i.e., Lewis and Clark 

Reservoir). We can visually see that the anglershed for Lake 

McConaughy overlaps with Lewis and Clark Reservoir during May, 

September, and October (Figure 4-3).  However, the risk of zebra mussel 

invasion is highest beginning in the spring to early fall (e.g., May-

September; Wacker and Elert 2003) when water temperature is able to 

stay above 12 degrees Celsius (Borcherding 1991). This time frame 

highlights when reproduction begins and larvae or veligers are produced.  

Anglersheds afford the ability to assess the level of invasion risk through 

space and time.  Detecting changes in anglersheds based on attributes 

such as the landscape structure, on-site attributes, and angler 
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heterogeneity can further aid in predicting and planning for potential 

invasion threats. 

 

FUTURE RESEARCH NEEDS 

 We believe that anglersheds can greatly aid in the management of complex social-

ecological systems. This tool and technique offers yet another way for managers to 

effectively optimize important resources and make informed decisions about their spatial 

and temporal use within a landscape context.  Anglersheds have the potential to “unlock” 

a wealth of spatiotemporal information concerning the relationship between resources 

and its users on the landscape.  Our work represents a fraction of that potential and thus 

we envision widespread use of this tool and technique to address challenges and 

questions in other social-ecological systems.  That being said, we propose several 

potential questions for future fisheries research:  

1) Does anglershed heterogeneity (in terms of angler behavior) change 

across primary, median, and total spatial levels? 

2) What other variables could be used to generate hypotheses regarding 

spatial and temporal dynamics of angler behavior at the landscape 

level?   

3) Will our results apply to anglersheds in urban environments?  

4) What could we learn about angler behavior by visualizing and 

quantifying anglersheds based on angler-types (e.g., boat vs. bank, 

species targeting) or other social-ecological attributes (e.g., catch rates, 

party size)? 
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5) Are there feedbacks or reinforcing mechanisms among anglersheds and 

social-ecological variables?  

6) How resilient are anglersheds to social-ecological changes?  

7) Are small or large anglersheds are more sensitive to changes in 

management, such as modifying stocking efforts or harvest regulation 

changes?   

8) How does the spatial location of the anglershed change through time? 
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Figure 4-1. Anglersheds provide opportunity to visualize and quantify diversity of 

resources across the landscape.  (A) illustrates a monthly primary (10%), median 

(50%), and total (95%) anglershed for Merritt Reservoir and Pawnee Lake. (B) 

illustrates the quantification of the area for the primary =     , median =     , and 

total =      anglershed revealing the drastic separation in area of influence by these 

two resources.  
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Figure 4-2. Anglersheds highlight the interaction between two nearby resources as they 

draw in anglers to participate. (A) illustrates the overlap in area that occurs between two 

Nebraska reservoirs, Sherman and Calamus Reservoirs. (B) illustrates the overlap in area 

that occurs through time, which may indicate potential competition for anglers between 

these two reservoirs, but also the potential to complement each other. 
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Figure 4-3. Anglersheds can be instrumental in monitoring and preventing the spread of 

invasive species. (A) illustrates two anglersheds that show an overlap with a known 

invasion (indicated by the red burst with zebra mussel graphic). (B) illustrates the ability 

to track this overlap through time, in particular during times where reproduction is 

occurring among zebra mussels (grey box). 
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Appendix 1. Maps of the primary (10% UD), median (50% UD), and total (95% 

UD) anglersheds on a monthly scale for each reservoir.  
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Appendix 2. Maps of the primary (10% UD), median (50% UD), and total (95% 

UD) anglersheds on a seasonal scale for each reservoir. 
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Appendix 3. Maps of the primary (10% UD), median (50% UD), and total (95% 

UD) anglersheds on an annual scale for each reservoir. 
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Appendix 4.  Anglershed metrics quantified for eight Nebraska waterbodies.
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Appendix 4-1.  Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Branched Oak Lake. Sample size is number of angler parties. 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2014   1031  13,511  1  109,214  1 1  1,762,060  2 12 

  Spring 399  13,431  1  104,925  1 1  1,482,386  3 13 

  Summer 417  22,518  1  174,517  1 1  2,229,315  3 13 

  Fall 215  21,560  1  162,964  1 1  1,744,813  3 13 

 Apr  121  18,612  1  145,011  1 1  1,618,300  4 13 

 May  278  14,894  1  113,835  1 1  1,471,216  1 13 

 Jun  179  21,997  1  162,777  1 1  1,881,558  4 14 

 Jul  126  55,443  1  420,718  1 2  2,725,863  1 13 

 Aug  112  24,275  1  175,589  1 1  2,105,284  3 14 

 Sep  118  43,840  1  335,631  1 2  2,894,547  3 13 

 Oct  97  7,556  1  54,595  1 1  675,050  4 14 

2015   1155  17,405  1  137,312  1 1  1,671,920  1 13 

  Spring 417  15,231  1  114,236  1 1  1,198,936  1 13 

  Summer 521  26,108  1  199,199  1 1  2,221,169  2 13 

  Fall 217  38,745  1  292,806  1 2  2,490,241  1 13 

 Apr  142  38,895  1  283,414  1 2  2,331,506  2 14 

 May  275  9,393  1  70,891  1 1  803,164  2 13 

 Jun  196  39,646  1  289,129  1 2  2,162,182  1 14 

 Jul  183  37,245  1  285,547  1 1  2,969,116  4 13 

 Aug  142  25,596  1  200,253  1 1  1,969,381  4 13 

 Sep  133  54,652  1  409,887  1 2  2,557,696  1 13 

  Oct   84  34,550  1  256,218  1 1  2,511,955  4 13 
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Appendix 4-1.  Continued. 

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2016     1260  15,107  1  120,108  1 1  1,915,685  2 13 

  Spring 533  21,037  1  161,407  1 1  1,840,776  2 13 

  Summer 551  18,701  1  149,308  1 1  2,332,837  2 13 

  Fall 176  17,582  1  143,996  1 1  1,594,569  4 12 

 Apr  202  47,878  1  348,569  1 2  2,533,923  2 14 

 May  331  13,664  1  105,171  1 1  1,558,440  2 13 

 Jun  235  20,950  1  164,303  1 1  2,037,777  2 13 

 Jul  187  29,142  1  224,844  1 1  2,817,369  7 13 

 Aug  129  30,564  1  236,141  1 1  2,209,567  1 13 

 Sep  113  20,484  1  165,693  1 1  1,604,140  2 12 

  Oct   63  20,668  1  166,581  1 1  1,445,490  2 12 
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Appendix 4-2.  Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Calamus Reservoir. Sample size is number of angler parties. 

 

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2014   412 373,142 1 3,070,896 1 2 15,866,681 1 12 

  Spring 124 425,509 1 3,609,714 1 2 17,903,411 1 12 

  Summer 288 424,131 1 3,184,461 1 3 16,242,141 1 13 

 May  124 425,509 1 3,609,714 1 2 17,903,411 1 12 

 Jun  107 669,197 2 4,744,822 2 3 20,403,072 1 14 

 Jul  106 456,095 1 3,316,624 1 3 15,796,702 1 14 

 Aug  75 444,208 1 3,111,932 1 3 15,653,078 1 14 

2015   876 451,747 1 3,528,358 2 3 17,275,668 1 13 

  Spring 327 487,920 1 3,925,651 2 3 18,008,460 1 12 

  Summer 400 591,236 2 4,175,839 2 3 20,527,802 1 13 

  Fall 149 521,372 2 3,734,480 1 3 17,578,630 1 12 

 Apr  88 402,984 1 3,157,240 1 3 14,757,276 1 13 

 May  239 599,374 1 4,673,630 2 3 21,094,492 2 13 

 Jun  183 702,420 2 4,658,156 1 3 23,569,901 2 15 

 Jul  113 743,166 1 5,105,073 2 4 20,540,976 1 15 

 Aug  104 604,636 1 4,512,437 2 3 21,880,163 3 13 

 Sep  115 535,170 1 4,124,339 2 3 18,318,449 1 13 

  Oct   34 468,100 1 3,621,588 1 3 18,167,184 1 13 
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Appendix 4-2.  Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2016     701  487,293  2  3,648,896  2 3  16,997,243  1 13 

  Spring 219  711,926  1  5,249,744  2 3  23,718,268  3 14 

  Summer 405  450,485  2  3,343,715  1 3  15,962,529  2 13 

  Fall 77  601,155  1  4,789,862  2 3  21,412,729  2 13 

 Apr  22  705,715  1  4,881,900  2 3  23,358,189  1 14 

 May  197  402,378  1  3,441,715  2 2  17,119,690  3 12 

 Jun  199  780,530  1  5,894,055  1 3  25,968,437  1 13 

 Jul  130  494,798  1  3,913,313  2 3  17,885,945  1 13 

 Aug  76  476,604  2  3,786,220  1 3  17,993,856  2 13 

 Sep  57  555,650  1  4,129,906  1 4  15,064,119  2 13 

 Oct  20  605,082  1  3,714,264  1 4  13,866,129  1 16 

2017   647  402,231  1  3,627,395  2 2  16,620,686  1 11 

  Spring 211  396,643  1  3,425,467  1 2  17,063,300  1 12 

  Summer 370  531,433  1  4,409,918  2 3  19,860,476  1 12 

  Fall 66  525,138  1  3,824,544  1 4  14,110,113  1 14 

 Apr  29  705,715  1  4,881,900  1 3  23,358,189  2 14 

 May  182  402,378  1  3,441,715  1 2  17,119,690  1 12 

 Jun  196  780,530  1  5,894,055  1 3  25,968,437  2 13 

 Jul  97  494,798  1  3,913,313  1 3  17,885,945  1 13 

 Aug  77  476,604  1  3,786,220  2 3  17,993,856  3 13 

 Sep  56  555,650  1  4,129,906  1 4  15,064,119  1 13 

  Oct   10  605,082  2  3,714,264  1 4  13,866,129  1 16 
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Appendix 4-3. Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Harlan County Reservoir. Sample size is number of angler parties. 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2014   732 188,059 1 1,403,213 1 2 9,990,300 2 13 

  Spring 283 227,557 1 1,626,169 1 2 12,306,719 2 14 

  Summer 392 216,282 1 1,637,836 1 2 10,190,980 2 13 

  Fall 59 231,321 1 1,598,862 1 2 10,120,515 2 14 

 Apr  39 63,331 1 465,439 1 3 2,396,304 2 14 

 May  244 271,472 1 1,917,602 1 2 14,518,415 1 14 

 Jun  158 289,319 1 2,180,129 1 2 12,874,246 1 13 

 Jul  122 262,132 1 1,807,025 1 3 9,404,409 1 15 

 Aug  112 244,931 1 1,800,245 1 2 12,353,959 2 14 

 Sep  30 377,409 1 2,638,536 1 2 16,020,751 2 14 

 Oct  27 158,520 1 1,056,318 1 3 4,866,972 1 15 

2015   1074 185,085 1 1,498,244 1 2 10,203,438 2 12 

  Spring 413 251,993 1 1,889,428 1 2 11,604,248 4 13 

  Summer 511 206,920 1 1,637,156 1 2 12,026,246 1 13 

  Fall 150 215,024 1 1,731,585 1 2 9,140,372 3 12 

 Apr  69 220,146 1 1,593,010 1 2 10,648,230 3 14 

 May  344 281,271 1 2,075,548 1 2 12,091,505 2 14 

 Jun  160 239,002 1 1,844,083 1 2 11,231,324 1 13 

 Jul  149 251,506 1 1,973,940 1 2 11,919,268 2 13 

 Aug  202 281,288 1 2,093,306 1 2 15,086,756 1 13 

 Sep  103 260,237 1 2,070,507 1 2 10,502,543 1 13 

  Oct   47 213,364 1 1,657,982 1 3 8,195,544 1 13 
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Appendix 4-3. Continued. 
 

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2016     862  251,372  1  1,446,532  1 2  9,051,602  1 13 

  Spring 157  223,351  1  1,593,380  1 3  10,783,366  2 14 

  Summer 521  229,768  1  1,791,770  1 3  10,242,602  1 13 

  Fall 184  176,628  1  1,399,808  1 3  8,712,251  1 13 

 Apr  44  649,748  1  2,982,644  1 3  18,883,313  2 22 

 May  113  315,744  1  1,431,482  1 4  8,678,673  1 22 

 Jun  114  387,866  1  1,865,549  1 3  11,232,292  1 21 

 Jul  163  348,247  1  1,640,675  1 3  9,373,645  1 21 

 Aug  244  541,007  1  2,587,014  1 4  12,862,370  1 21 

 Sep  106  369,077  1  1,822,153  1 4  9,876,955  1 20 

 Oct  78  255,334  1  1,265,447  1 3  8,223,099  2 20 

2017   621  251,372  1  1,929,393  1 2  13,056,661  1 13 

  Spring 156  247,855  1  1,896,556  1 2  13,555,048  1 13 

  Summer 361  318,978  1  2,290,845  1 2  14,340,294  1 14 

  Fall 104  340,167  1  2,650,444  1 2  13,952,338  1 13 

 Apr  37  423,617  1  2,017,263  1 4  10,840,194  1 21 

 May  119  439,033  1  2,130,031  1 3  15,338,250  4 21 

 Jun  127  500,140  1  2,319,854  1 3  16,795,241  1 22 

 Jul  101  514,874  1  2,356,614  1 3  15,689,145  2 22 

 Aug  133  672,912  1  3,163,501  2 5  13,690,994  1 21 

 Sep  72  699,251  1  3,459,326  2 4  16,499,431  2 20 

  Oct   32  346,126  1  1,701,323  1 4  9,051,816  1 20 
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Appendix 4-4. Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Lake McConaughy. Sample size is number of angler parties.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2014   580  1,360,759  2  9,770,847  2 3  46,382,841  1 14 

  Spring 63  1,567,219  1  10,531,604  1 3  53,069,515  3 15 

  Summer 375  1,488,285  1  10,440,484  2 3  48,089,190  1 14 

  Fall 142  2,197,904  2  15,510,176  2 3  65,097,115  1 14 

 May  63  2,466,312  1  10,531,604  1 5  53,069,515  3 23 

 Jun  87  3,427,153  2  14,875,283  1 6  60,341,362  1 23 

 Jul  140  2,487,971  1  12,826,237  1 4  62,223,810  1 20 

 Aug  148  1,909,383  1  10,040,929  2 4  49,801,551  1 20 

 Sep  92  4,119,914  1  19,684,036  2 5  75,986,451  1 21 

 Oct  50  2,495,006  2  11,194,195  2 5  51,550,435  1 22 

2015   587  1,042,128  1  8,501,950  2 2  44,931,109  1 12 

  Spring 173  989,568  1  7,989,041  2 2  46,013,109  1 12 

  Summer 307  1,392,713  1  10,949,552  1 3  52,073,011  1 13 

  Fall 107  1,666,442  1  12,770,318  1 3  56,234,526  1 13 

 Apr  61  1,666,604  1  8,434,070  2 4  44,927,149  2 20 

 May  112  1,912,263  1  9,489,511  2 4  50,957,034  1 20 

 Jun  149  2,896,241  2  14,687,760  1 5  64,197,770  1 20 

 Jul  105  3,296,145  1  13,592,676  1 5  63,835,349  1 24 

 Aug  53  1,021,968  1  5,279,031  1 4  29,165,927  1 19 

 Sep  55  1,989,024  1  9,049,641  1 5  41,270,159  2 22 

  Oct   52  3,920,618  1  19,615,843  2 5  73,257,139  1 20 
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Appendix 4-4. Continued. 

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2016     497  749,652  1  6,313,053  2 2  30,487,073  1 12 

  Spring 140  1,606,893  1  12,088,339  1 3  54,121,391  1 13 

  Summer 233  1,735,931  1  13,133,942  1 3  57,904,119  1 13 

  Fall 124  1,268,117  1  10,697,781  2 3  50,675,297  1 12 

 Apr  50  3,322,394  1  15,835,496  1 5  65,828,573  1 21 

 May  90  2,752,083  1  12,507,148  1 5  57,836,964  1 22 

 Jun  100  3,780,768  1  16,957,521  1 5  71,349,811  1 22 

 Jul  73  3,790,470  1  18,096,397  1 5  77,217,254  1 21 

 Aug  60  2,574,282  1  12,187,751  1 5  51,167,814  1 21 

 Sep  74  2,811,706  1  14,044,280  1 5  61,964,866  1 20 

 Oct  50  1,738,855  1  9,175,860  2 4  46,949,980  1 19 

2017   594  1,031,377  1  8,393,961  2 2  44,419,600  1 12 

  Spring 166  1,333,092  1  11,208,189  2 2  53,548,009  1 12 

  Summer 385  1,138,516  1  8,923,341  2 2  47,373,582  1 13 

  Fall 43  2,251,819  1  16,572,973  1 3  70,392,717  1 14 

 Apr  29  1,340,411  1  6,528,298  1 3  41,988,091  1 21 

 May  137  2,635,183  1  13,212,387  1 4  60,242,650  1 20 

 Jun  133  2,819,164  1  12,709,795  1 5  61,221,986  1 22 

 Jul  148  2,357,503  1  11,130,333  2 4  55,943,744  1 21 

 Aug  104  1,710,173  1  8,972,957  2 4  43,924,671  1 20 

 Sep  34  3,612,606  1  17,925,680  1 5  76,462,587  1 20 

  Oct   9  4,051,417  1  17,307,026  1 5  81,625,390  1 23 
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Appendix 4-5. Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Merritt Reservoir. Sample size is number of angler parties.  

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2014   857  1,130,156  1  10,107,239  2 2  1,130,157  1 11 

  Spring 217  1,357,604  1  12,273,913  2 2  72,494,735  2 11 

  Summer 471  1,395,820  1  10,933,412  2 3  47,918,040  2 13 

  Fall 167  1,658,439  1  11,774,003  2 3  48,802,096  1 14 

 Apr  49  1,664,370  1  13,370,439  1 2  86,619,036  3 12 

 May  168  1,524,607  1  13,027,502  2 2  73,054,948  1 12 

 Jun  173  1,989,712  2  13,543,361  2 3  61,446,852  2 15 

 Jul  170  1,230,675  1  11,050,764  2 2  43,221,703  1 11 

 Aug  128  2,038,341  2  13,355,184  2 4  57,666,276  2 15 

 Sep  101  1,898,400  2  12,382,698  2 4  45,590,781  1 15 

 Oct  68  1,751,875  1  13,360,725  2 3  62,983,465  2 13 

2015   752  1,419,627  2  11,413,115  1 3  49,538,138  1 12 

  Spring 218  1,733,604  2  12,862,457  2 3  54,602,216  1 13 

  Summer 387  1,680,125  1  12,915,812  2 3  54,641,762  1 13 

  Fall 147  1,664,415  1  12,113,244  2 2  57,197,461  2 14 

 Apr  57  1,386,718  1  12,061,619  2 2  61,581,612  1 11 

 May  161  1,799,716  1  13,640,060  1 3  55,453,277  1 13 

 Jun  150  2,370,421  2  15,922,465  1 3  70,450,408  2 15 

 Jul  147  1,968,816  1  14,458,978  1 3  58,516,272  1 14 

 Aug  90  1,404,193  1  12,049,035  2 3  50,267,444  1 12 

 Sep  93  1,595,065  1  10,940,588  1 3  54,932,007  1 15 

 Oct  54  2,429,677  1  16,837,376  1 3  77,175,702  2 14 
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Appendix 4-5. Continued. 

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2016     638  1,277,658  1  11,074,660  1 3  45,993,243  2 12 

  Spring 193  1,775,917  1  13,869,426  1 3  61,888,026  1 13 

  Summer 301  1,721,308  1  12,103,456  1 4  44,864,779  2 14 

  Fall 144  1,276,388  1  11,015,270  2 2  51,903,162  2 12 

 Apr  53  1,050,903  1  8,630,026  1 2  45,198,389  2 12 

 May  140  2,456,748  2  16,794,245  1 3  71,179,365  1 15 

 Jun  117  2,443,828  2  15,871,404  1 4  63,306,668  1 15 

 Jul  100  1,586,698  1  11,506,111  1 3  45,371,999  1 13 

 Aug  84  1,641,697  2  10,955,437  1 4  38,377,764  1 15 

 Sep  88  2,424,347  1  16,201,832  1 4  69,118,596  2 15 

  Oct   56  626,763  1  4,975,919  1 2  29,204,137  1 13 
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Appendix 4-6. Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Lake Wanahoo. Sample size is number of angler parties.  

 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2017   1609  41,124  1  347,798  2 2  2,328,840  1 12 

  Spring 510  44,308  1  364,893  2 3  1,759,308  1 13 

  Summer 790  61,246  1  460,026  1 2  3,005,140  4 13 

  Fall 309  42,769  1  356,935  2 2  2,373,221  3 12 

 Apr  192  35,847  1  302,568  3 3  1,404,922  1 12 

 May  318  60,598  1  450,904  1 3  2,174,374  1 13 

 Jun  303  92,637  1  605,530  1 3  3,047,985  1 15 

 Jul  287  60,265  1  471,786  2 2  3,154,480  4 13 

 Aug  200  79,703  2  532,774  1 3  3,002,928  2 15 

 Sep  204  55,663  1  433,196  2 2  2,743,050  9 13 

  Oct   105  38,527  1  338,993  3 2  1,879,611  3 11 
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Appendix 4-7. Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Pawnee Lake. Sample size is number of angler parties.  

 
        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2014   344 20,513 1 148,719 1 1 1,887,200 1 14 

  Spring 113 23,768 1 170,271 1 1 1,818,274 3 14 

  Summer 178 33,049 1 235,900 1 1 2,258,715 3 14 

  Fall 53 10,861 1 76,834 1 1 739,232 3 14 

 Apr  30 35,727 1 175,520 1 2 1,599,007 3 20 

 May  83 44,873 1 201,211 1 3 1,657,428 3 22 

 Jun  78 34,728 1 159,969 1 2 1,586,976 4 22 

 Jul  61 138,832 1 617,855 1 4 3,734,685 1 22 

 Aug  39 26,982 1 133,645 1 2 1,346,380 1 20 

 Sep  32 12,630 1 55,978 1 3 401,576 2 23 

 Oct  31 34,915 1 165,892 1 3 1,259,644 2 21 

2015   476 31,298 1 167,366 1 1 2,196,224 1 14 

  Spring 155 67,362 1 459,468 1 2 2,929,737 1 15 

  Summer 230 31,930 1 239,476 1 1 2,340,986 1 13 

  Fall 91 20,328 1 145,318 1 1 1,448,071 3 14 

 Apr  45 111,791 1 484,772 1 5 2,503,196 1 23 

 May  110 129,697 1 574,084 1 4 3,648,598 1 23 

 Jun  108 65,175 1 307,880 1 2 2,690,955 6 21 

 Jul  87 75,361 1 349,549 1 3 2,777,415 4 22 

 Aug  35 32,908 1 161,721 1 2 1,337,573 2 20 

 Sep  55 53,791 1 248,000 1 3 2,091,369 2 22 

  Oct   36 13,205 1 59,117 1 3 405,528 3 22 



 

  

 

1
3

2
 

1
3
2
 

Appendix 4-7. Continued. 

                    

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2016     1213  23,602  1  167,366  1 1  2,126,409  1 14 

  Spring 372  25,055  1  181,650  1 1  1,988,123  2 14 

  Summer 586  24,986  1  180,778  1 1  2,331,013  2 14 

  Fall 255  61,830  1  430,603  1 2  3,087,094  1 14 

 Apr  82  137,564  1  612,338  1 3  4,160,090  1 22 

 May  290  28,063  1  129,919  1 2  1,577,740  3 22 

 Jun  200  68,478  1  312,151  1 2  3,286,923  2 22 

 Jul  246  30,629  1  140,172  1 2  1,844,222  2 22 

 Aug  140  83,773  1  373,826  1 3  2,508,687  2 22 

 Sep  170  71,251  1  322,884  1 3  2,445,080  1 22 

 Oct  85  227,447  1  1,004,741  1 4  5,756,833  1 23 

2017   817  15,610  1  114,678  1 1  1,492,622  1 14 

  Spring 336  5,596  1  40,521  1 1  545,872  3 14 

  Summer 351  39,177  1  278,291  1 1  3,062,547  2 14 

  Fall 130  12,358  1  90,682  1 1  1,157,043  4 14 

 Apr  149  7,681  1  34,885  1 2  383,774  7 22 

 May  187  12,253  1  57,018  1 2  618,519  2 21 

 Jun  137  128,498  1  569,560  1 3  3,826,297  1 23 

 Jul  121  61,348  1  288,200  1 2  3,384,783  5 21 

 Aug  93  35,831  1  164,953  1 2  1,714,094  3 22 

 Sep  90  24,022  1  113,199  1 2  1,329,800  4 21 

  Oct   40  18,307  1  84,849  1 3  666,906  3 22 
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Appendix 4-8. Area (A; ha), number of patches (P), and compactness (C; %) of primary (10% UD), median (50% UD), and 

total (95% UD) anglersheds for Sherman Reservoir. Sample size is number of angler parties.  

 

 
 
 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2014   661  145,374  1  1,223,958  1 2  9,041,346  2 12 

  Spring 223  173,036  1  1,502,463  1 2  11,065,896  1 12 

  Summer 290  184,453  1  1,480,317  1 2  10,399,736  1 12 

  Fall 148  161,453  1  1,101,080  1 2  6,765,233  1 15 

 Apr  64  388,712  1  145,011  1 2  16,322,526  2 13 

 May  159  144,713  1  2,919,705  1 2  9,324,859  1 12 

 Jun  128  264,175  1  1,205,755  1 2  13,386,944  1 13 

 Jul  88  145,480  1  1,983,656  1 2  7,232,816  2 13 

 Aug  74  319,682  1  1,099,672  1 2  13,319,336  1 12 

 Sep  84  165,904  1  2,704,944  2 3  6,566,977  2 15 

 Oct  64  207,307  1  1,138,393  1 3  7,920,837  1 16 

2015   608  118,696  1  1,336,516  1 2  7,197,776  1 12 

  Spring 225  117,341  1  895,550  1 2  6,664,992  1 13 

  Summer 187  171,671  1  1,265,184  1 2  8,478,077  1 14 

  Fall 196  182,985  1  1,437,001  1 2  9,077,301  1 13 

 Apr  92  166,093  1  1,148,320  1 2  7,802,170  4 14 

 May  133  117,121  1  916,262  1 2  6,348,011  1 13 

 Jun  68  185,629  1  1,368,357  1 2  7,583,836  1 13 

 Jul  46  160,027  1  1,197,081  1 2  8,695,970  1 13 

 Aug  73  273,015  1  1,914,671  1 2  11,485,350  1 14 

 Sep  115  235,019  1  1,732,726  1 2  10,453,595  1 14 

  Oct   81  181,056  1  1,461,953  1 2  9,113,130  1 12 



 

  

 

1
3

4
 

1
3
4
 

Appendix 4-8. Continued. 
 

        Primary  Median Total 

Year Month Season Sample Size A P A P C A P C 

2016     1019  111,731  1  991,012  1 1  7,755,645  1 11 

  Spring 393  165,168  1  1,316,492  1 2  9,565,215  1 13 

  Summer 406  147,954  1  1,150,101  1 2  8,366,346  1 13 

  Fall 220  101,001  1  891,444  1 1  6,747,716  1 11 

 Apr  131  192,010  1  1,394,315  1 2  10,165,761  2 14 

 May  262  195,328  1  1,534,212  1 1  10,157,051  2 13 

 Jun  147  230,809  1  1,704,438  1 1  10,883,549  2 14 

 Jul  154  164,741  1  1,206,236  1 1  9,275,730  2 14 

 Aug  105  155,190  1  1,145,965  1 1  6,928,460  2 14 

 Sep  119  124,096  1  1,034,082  1 1  6,862,704  2 12 

 Oct  101  119,814  1  999,615  1 1  7,605,612  2 12 

2017   969  100,009  1  940,092  1 1  7,555,982  1 11 

  Spring 336  111,467  1  958,623  1 1  8,264,619  1 12 

  Summer 417  126,996  1  1,051,314  1 2  7,904,320  1 12 

  Fall 216  174,016  1  1,463,682  1 2  9,073,592  1 12 

 Apr  112  125,134  1  984,313  1 2  6,983,773  1 13 

 May  224  132,046  1  1,100,958  1 1  9,381,583  2 12 

 Jun  170  176,117  1  1,308,900  1 2  11,427,269  5 13 

 Jul  153  131,195  1  1,061,569  1 2  7,243,297  1 12 

 Aug  94  191,853  1  1,461,329  1 2  8,249,159  1 13 

 Sep  130  225,250  1  1,796,698  1 2  10,766,057  1 13 

  Oct   86  166,955  1  1,380,304  1 2  8,206,757  1 12 
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Appendix 5. Dynamics of area (ha) of the primary (10%), median (50%), total 

(95%) anglersheds across three time scales: monthly, seasonal (Spring = April-May, 

Summer = June-August, Fall = September-October), and annual.
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Appendix 6. Dynamics of patches of the primary (10% UD), median (50% UD), total 

(95% UD) anglersheds across three time scales: monthly, seasonal (Spring = April-

May, Summer = June-August, Fall = September-October), and annual. 
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Appendix 7. Dynamics of compactness of the median (50% UD) anglershed 

represented by primary (10% UD)/median (50% UD) and compactness of the total 

(95% UD) anglershed represented by primary (10% UD)/total (95% UD) across 

three time scales: monthly, seasonal (Spring = April-May, Summer = June-August, 

and Fall = September-October).  
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