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This dissertation is focused on scaling and resilience of complex adaptive 

systems, including ecological and economic systems.  In particular it is concerned 

with the textural discontinuity hypothesis (hereafter called the discontinuity 

hypothesis), which describes how the distinct spatial and temporal scales of processes 

that shape systems in turn generates distinct spatial and temporal scales in system 

structure and entities interacting with that structure; the cross-scale resilience model, 

which uses the discontinuity hypothesis as the foundation of a theory about specific 

system features that drive ecological resilience; panarchy and adaptive cycles, which 

articulate how system dynamics at the above-mentioned scales change over time and 

how feedbacks across those scales informs system behavior; and the notion of spatial 

regimes in ecological structure.  I both expand existing frameworks to accommodate 

non-ecological complex systems, and test my hypotheses in a variety of economic and 

ecological systems.   

Some general findings of my analyses are that the objective identification of 

scale domains in many types of complex systems can be useful for understanding how 

pattern and process shape structure and impact system-level resilience.  Economic 

systems, for example, as expressed by Gross Domestic Product, fall into distinct, non-

random size classes that suggest there are scale-specific processes generating basins 

of attraction.  I expand the cross-scale resilience model to incorporate abundance, a 



species and community attribute that is mechanistically related to the provision of 

function and resilience.  The coral reef fish communities of the Hawaiian archipelago 

were analysed to see if their cross-scale resilience differed amongst coral dominated 

and macroalgal and turf dominated reefs, with the surprising result that the 

macroalgal-turf communities were more resilient.  In a twist on classic regime shift 

theory, which typically focuses on temporal shifts within a single ecosystem, I used a 

novel information theory method to successfully detect spatial boundaries and 

transition zones between types of ecological systems by using animal community 

data.  Finally, I argue why the adaptive cycle may be a result of endogenous processes 

in complex adaptive systems, and is not just a convenient metaphor for cycling 

behavior and dynamics.   
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PREFACE 

“Nature is an endless combination and repetition of a very few laws” 

(Ralph Waldo Emerson, Essay, Lectures and Orations.  London, 

William S. Orr and Co. 1851). 

 

It is increasingly recognized that the systems of most interest to humans, 

including ecosystems, are complex adaptive systems and need to be investigated and 

understood as such.  A well known physics professor once told me that if we can 

make an airplane fly through the air then we can remedy climate change.  It is easy to 

see now the problems with conflating two categorically different kinds of systems and 

having the same expectation regarding their behavior, but at the time I could only 

walk away frustrated by the logical flaw I could feel but not articulate.  An airplane is 

a complicated but non-complex mechanical system where part A + part B + part C = 

an airplane, and its functioning as such is predictable and reliable.  The climate is a 

complex adaptive system, and by definition is neither predictable nor ‘reliable’ in its 

long-term behavior.   

There is no singular definition of a complex adaptive system (CAS), and given 

the breadth of system types encompassed by this term this is only appropriate. Within 

this dissertation, my definition of a CAS changes in emphasis as I navigate from 

ecological to economic and back again to ecological systems.  My primary motivation 

in this dissertation was to explore some concepts that have as their starting 
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assumptions the lens of complex adaptive systems.  These concepts are part of a 

collective of ideas that fall under the umbrella of ecological resilience.  They are all 

the brainchild of C.S. Holling and his colleagues, and when viewed as a package 

operate as a relatively comprehensive framework currently existing for understanding 

systems as complex adaptive systems.  This is not to say that ecological resilience 

encompasses all concepts useful for investigating CAS’s—far from it.  But it is an 

appealing framework because of the richness of interconnected ideas that allows a 

researcher to systematically examine concepts central to ecology, such as scales, 

stability, and thresholds, with the assumptions of complex adaptive systems theory. 

In short, because these concepts will be elaborated at length (and perhaps ad 

nauseum) in the following chapters this dissertation focused on the following: the 

textural discontinuity hypothesis (hereafter called the discontinuity hypothesis), which 

describes how the distinct spatial and temporal scales of processes that shape systems 

in turn generates distinct spatial and temporal scales in system structure and entities 

interacting with that structure; the cross-scale resilience model, which uses the 

discontinuity hypothesis as the foundation of a theory about specific system features 

that drive ecological resilience; panarchy and adaptive cycles, which articulate how 

system dynamics at the above-mentioned scales change over time and how feedbacks 

across those scales informs system behavior; and the notion of spatial regimes in 

ecological structure (Figure 1).



 

 
 

3  Figure 1  Relationship of dissertation chapters to extended theory of ecological resilience 
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In Chapter 1, “Transdisciplinary application of cross-scale resilience”, I 

articulate how the objective identification of scale domains in complex adaptive 

systems via the discontinuity hypothesis could be utilized in other fields, such as 

social-ecological resilience, economics, and anthropology.  In Chapter 2, 

“Discontinuity and convergence in global economies”, I apply the discontinuity 

hypothesis to global cross-national economic systems, using Gross Domestic Product 

(GDP) to test whether there are scale domains, which can also be understood as basins 

of attraction, in GDP.  In Chapter 3, “Processes that structure size classes in GDP”, I 

test whether a suite of socio-political-cultural traits associated within economics with 

GDP are possible explanatory variables/processes for the scale domains found in 

GDP.  In Chapter 4, “Cross-scale resilience in the Hawaiian archipelago”, I compare 

the cross-scale resilience of coral reef fish communities in the Hawaiian archipelago.  

In Chapter 5, “The role of abundance in the cross-scale resilience model”,  I discuss 

the implications of expanding the cross-scale resilience model to incorporate 

abundance.  In Chapter 6, “Detecting spatial regimes in ecosystems”, I use Fisher 

Information to test the location of ecological boundaries (spatial regimes) between 

ecosystems based on bird community structure, and compare it to the location of 

boundaries given static eco-region maps traditionally used by agencies, managers, and 

researchers.  In Chapter 7, “The adaptive cycle: More than a metaphor”, I argue that 

the adaptive cycle and nested adaptive cycles (called a panarchy) may represent 

endogenous system dynamics of complex adaptive systems as opposed to a useful 

metaphor for system behavior, and I provide a variety of metrics by which this could 

be tested.  And finally, in the Conclusion, I provide a brief summary of the 

implications of this body of research. 
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CHAPTER 1 TRANSDISCIPLINARY APPLICATION OF THE CROSS-
SCALE RESILIENCE MODEL 

Introduction 

Scientists often have a poor understanding of the system-level behavior and 

dynamics of complex systems, such as ecosystems, economies, or integrated social-

ecological-economic systems, whereas they are more likely to have a highly refined 

understanding of the components of complex systems, such as species or the behavior 

of individuals in an economy.  The essence of a complex system, however, is that its 

behavior cannot be deduced from simply aggregating knowledge of the components.  

This fundamental constraint compels the need for tools that allow us to track the 

impact and consequences of localized changes or disturbances on system-level 

behavior and dynamics over time and space.  The field of resilience science in 

ecology has studied resilience as an emergent system-level feature of complex 

ecological and social-ecological systems, and has developed a tool for quantitatively 

assessing ecosystem resilience, called the cross-scale resilience model.  We argue that 

the cross-scale resilience model can be applied to other types of complex systems. 

Once the provenance of ecology (Lovelock 1992), artificial life (Langton 

1986), and genetics (Kauffman 1995; Serra et al. 2007), the application of complex 

adaptive systems theory to new fields has broadened considerably, from health care 

(data flows and human interactions) (Tan et al. 2005), food and water security (Villa 

et al. 2014), software development (Batra et al. 2011), business (Mason 2007), legal 
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systems (Ruhl 2014), medical research (Greek & Hansen 2013), engineered systems 

such as electrical grids and traffic management (Zhang et al. 2008; Haghnevis & 

Askin 2012), urban water systems (Kanta & Zechman 2014) and many more.  

Scientists are embracing a more complex view of system dynamics, and moving 

beyond long-held assumptions of linear equilibrium behavior for many different types 

of systems.  Understanding universal, or at least broadly applicable, rules of complex 

systems behavior would assist the challenging task of understanding the ‘wicked 

problems’ society faces, such as rapid environmental and social change including 

climate change, economic and socio-cultural challenges, biodiversity loss, and the 

degradation of social-ecological systems (Vitousek et al. 1997; Millenium Ecosystem 

Assessment 2005). 

Comparative analyses of complex systems have, in fact, demonstrated 

commonalities among distinctly different types of systems (Schneider & Kay 1994; 

Holling 2001; Lansing 2003; Foster 2005; Bullmore et al. 2009).  Both biological and 

non-biological complex systems appear to evolve and be structured by similar 

principles, leading to a limited set of possible topological structures, organization, 

dynamics and behavior that are to some extent universal across system types (Watts & 

Strogatz 1998; Gunderson & Holling 2002; Barabási 2009; Bullmore et al. 2009).  

Levin (1998) proposed that the essential elements of a complex adaptive system 

(CAS) can be reduced to three elements: “sustained diversity and individuality of 

components; localized interactions among the components; and an autonomous 

process, where based on the results of local interactions, a subset of the components is 

selected for replication or enhancement (p. 432).”  From these essential elements flow 

the other key features of a CAS: adaptation and introduction of novelty (Allen & 
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Holling 2010), non-equilibrium dynamics as a result of the dispersed and local nature 

of selection, the absence of top-down global control, and the emergence of 

hierarchical organization and other emergent phenomena (Levin 1998).  Of these 

features, hierarchical organization and the emergence of resilience is our focus.  

Resilience is the ability of a system to remain organized around the same set of 

processes, structures, and functions (Holling 1973).   

Within ecology, two parallel avenues of research have examined properties of 

CASs and their implications for system stability and resilience.  The first, network 

theory, has uncovered rules of topological structure regarding the ways nodes are 

connected to each other using graph theory (Barabási 2009; Cumming et al. 2010), 

and examined the extent to which different topologies are resilient to random or 

targeted node loss (Srinivasan et al. 2007; Dunne & Williams 2009; Uden et al. 2014).  

In ecosystems, nodes are frequently modelled as species, connected to each other in 

food webs that generate emergent properties of information storage (such as genetic 

material), material and energy flow, resilience, and adaptive capacity (Montoya & 

Solé 2003; Jørgensen & Fath 2004; Pascual & Dunne 2005; Barabási 2009).  Network 

theory has been widely applied to understand the effect of topological properties like 

connectance on the function and resilience of a broad array of CASs, from the 

internet, to social systems, and the brain (Barabási 2003, 2007; Pascual & Dunne 

2005).  However, network theory does not yet account for hierarchy and scaling in a 

non-arbitrary way when it considers scaling at all.  Any scales identified are typically 

user-defined levels, as in when food-webs are stratified by trophic level (Bascompte 

et al. 2005).   
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The second research avenue, that of ecological resilience (Holling 1973), was 

inspired by the multi-scalar and hierarchical organization of ecological systems.  In 

particular, the discontinuity hypothesis was developed as a mechanistic explanation 

for the way species’ interactions with the hierarchical, scaled nature of their 

environment structures communities (Holling 1992).  The cross-scale resilience model 

extended the discontinuity hypothesis by providing a testable hypothesis for how 

system-level resilience can emerge from species’ interactions with environmental 

structures and processes that vary with scale (Peterson et al. 1998).  This model has 

provided one of the few quantitative measures of resilience available to date (Allen et 

al. 2005; Stow et al. 2007; Angeler et al. 2013a), despite the widespread uptake of the 

resilience concept.  We propose that the cross-scale resilience model may describe 

fundamental patterns in CASs resulting from dynamics that are general to other types 

of hierarchical CASs.  Here we discuss some of the relevant theory underpinning 

ecological resilience, the discontinuity hypothesis, and the cross-scale resilience 

model, discuss recent examples from non-ecological systems, and then propose some 

systems for which we believe a cross-scale resilience analysis would be fruitful.  We 

expect that a broader application of the cross-scale resilience model to different types 

of CASs will not only offer possibilities to increase our mechanistic understanding of 

the organization of ecological, social, and economic systems, but also help provide 

insight into management and policy challenges under fast-changing environmental 

and social baselines.  Shared principles amongst systems has the pleasing 

consequence that theory, modeling and tools developed within one field for a 

particular type of CAS may be pertinent to another field, creating powerful 

opportunities for shared learning and collaboration. 
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Resilience 

The development of resilience theory has received considerable attention in 

recent years (Gunderson & Holling 2002; Carpenter & Brock 2004; Folke et al. 2004; 

Allen et al. 2005; Cumming 2011; Walker & Salt 2012).  Ecological resilience is the 

ability of a system to remain organized around the same set of processes, structures, 

and functions (Holling 1973).  The degree of resilience in a system is a measure of 

how much disturbance the system can buffer without moving into an alternative 

regime (Peterson et al. 1998).  This is a distinctly different view of resilience than the 

more traditional engineering resilience, which defines resilience as the return time to 

equilibrium after a system has experienced a disturbance (Holling & Meffe 1996).  

Engineering resilience presumes a single steady state, which is at odds with our 

current understanding of the dynamics of CASs.  In practice, this means that once a 

CAS has shifted from Regime A to Regime B, an engineering view of resilience 

would incorrectly assume that the system would eventually rebound to Regime A 

without substantial intervention.  Resilience theory has demonstrated that breaking the 

feedbacks that maintain the system in Regime B can be very difficult (Scheffer et al. 

2001).   

Resilience theory is built on an understanding of social-ecological systems as 

CASs, thus it assumes non-linear dynamics, and multiple possible basins of attraction 

governed by different regimes (i.e., different sets of processes).  The ability to identify 

regime thresholds and provide early warnings of regime shifts is a vigorous area of 

current research (Folke et al. 2004; Biggs et al. 2009; Scheffer et al. 2012).  Regime 

shifts are often abrupt, non-linear transitions between basins of attraction that occur 

when the threshold for a critical system driver is exceeded.  When the resilience of a 
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system is reduced, systems are more vulnerable to a potential regime shift.  Fold-

bifurcation threshold dynamics are common in ecological systems, where even a 

small change in conditions can trigger an abrupt regime shift if a bifurcation threshold 

is passed, and hysteresis, or the inability of a system to move backward and return to a 

previous regime, is possible (Scheffer et al. 2001; Scheffer & Carpenter 2003).  

Regime shifts in ecosystems epitomize the practical relevance of resilience research 

because the outcomes of regime shifts are uncertain, and frequently have negative 

consequences in the form of reduced ecosystem provisioning or increased poverty 

(Moberg & Folke 1999; Crépin et al. 2012).   

The relevance of resilience theory to other types of CASs is possible in part 

because order and pattern can emerge from the dynamics of self-organization in the 

absence of natural selection, merely from local interactions between agents 

(Kauffman 1995).  Thus, although natural selection and evolution have corollaries in 

other fields--businesses as the objects of natural selection, or the evolution of CASs 

such as civilization, economies, or cities (see (Tainter 1988; Beinhocker 2006), the 

emergence of higher-order phenomena such as resilience from lower-order localized 

interactions is not dependent on genetic-based natural selection (van den Bergh 2007).  

It is increasingly clear that economies and other types of social systems have 

dynamics more appropriately described by the science of CASs than that of simple, 

linear dynamics, and tools like the discontinuity hypothesis and the cross-scale 

resilience model can be used to explore commonalities and differences in the basic 

dynamics of different types of CASs (Tainter 1988; Beinhocker 2006).   
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The discontinuity hypothesis 

The discontinuity hypothesis describes hierarchy and scaling in ecological 

systems as a result of structuring processes that occur over limited ranges of spatial 

and temporal scales.  In ecological systems, some processes occur with high 

frequency and at small spatial scales, while others are slow and operate at large spatial 

extents, creating hierarchy and heterogeneity.  Because the characteristic rate and 

extent of key structuring processes differ sufficiently, they create scale domains or 

ranges of scale over which patterns change monotonically or not at all.  For example, 

Wiens (1989) describes the scaling of transpiration, which is regulated by stomatal 

mechanisms at the scale of a leaf, but by climate at the scale of vegetation regions.  

Likewise, the processes that regulate the turnover of a pine needle differ fully from 

those that determine the location and extent of the boreal forest (Holling 1992).  Scale 

domains are separated from each other by a non-linear transition (a discontinuity) to 

the next set of structuring processes (Wiens 1989; Holling 1992).   

The discontinuity hypothesis is based on our understanding that species 

perceive and interact with their environment at scales that are relative to their body 

size, and persistence depends in part on how well a species’ body mass allows it to 

take advantage of the resources available at a specific scale (Peters 1983; Holling 

1992; Fisher et al. 2011).  Animal body mass distributions for a given ecosystem 

consist of groups of similarly-sized species that exploit resources at similar scales.  

That is, each body mass group mirrors a specific scale of structure and resource 

availability in the ecosystem, such that the number of body mass groups indicates the 

number of scale domains present.  These body mass groups are separated by gaps, 

which reflect a scale break (discontinuity), or transition to a new scale domain.  
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Countless animal communities have been tested for discontinuities with affirming 

results (Holling 1992; Havlicek & Carpenter 2001; Lambert 2006; Allen et al. 2006; 

Nash et al. 2013b).   

The discontinuity hypothesis relates to a general problem in ecology and other 

scientific disciplines regarding the quantification of scale in complex systems in non-

arbitrary ways (Gibson et al. 2000; Nash et al. 2014a).  There have been few tools 

available for identifying the fundamental scales present in a system rather than 

defining levels of organization based on observer bias.  Wiens (1989) wrote, “we need 

non-arbitrary, operational ways of defining and detecting scales” and went on to ask, 

“How may we recognize domains of scale in a way that avoids arbitrary imposition of 

preconceived scales or hierarchical levels on natural variation?”  The strength of the 

discontinuity analysis is that it is a tool for identifying the available scales of structure 

in a system without imposing human preconceptions.  There are a variety of methods 

for detecting discontinuities, such as Bayesian classification and regression trees 

(BCART), Monte Carlo approaches (such as the Gap Rarity Index), and hierarchical 

cluster analysis (Allen & Holling 2002; Allen et al. 2005).  These methods are used 

on rank-ordered body mass data for all the species in an ecological community (such 

as all the birds, mammals, or herpetofauna).  Body mass can be obtained from general 

handbooks, as the patterns of aggregations and discontinuities in a system are highly 

robust to geographic variation and gender differences in body size (Sundstrom 2009).  

Alternatively, discontinuities have been found by identifying where the fractal 

dimension of ecological structure changed abruptly, indicating that different 

structuring processes are dominant (Li 2000; Nash et al. 2013b).  Time series 

modeling has also been used to identify temporal frequency patterns of groups of 
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species at multiple scales within aquatic communities, as well as to evaluate aspects 

of cross-scale resilience , allowing for a more dynamic assessment of the 

discontinuity hypothesis (Angeler et al. 2010, 2011).  All these tools are well 

established in the ecological literature and are readily applicable to other types of 

CASs.  Once the pattern of aggregations and discontinuities has been identified, then 

the distribution of key elements thought to generate resilience can be evaluated, as per 

the cross-scale resilience model (Peterson et al. 1998; Allen et al. 2005; Sundstrom et 

al. 2012; Angeler & Johnson 2013). 

The cross-scale resilience model in ecology 

The cross-scale resilience model emphasizes the compartmentalization by 

scale of the functional traits relevant for the maintenance of ecosystem processes.  It 

posits that the distribution of functional traits within and across spatial and temporal 

scales in an ecological system is non-random, arises from processes of self-

organization (positive interactions between structure, biota and process), and results in 

system-level resilience.  Functional diversity, more so than species diversity, has 

proven crucial for the persistence and resilience of ecosystems and ecological 

functions such as primary productivity and pollination over time (Winfree & Kremen 

2009; Schmitz 2010; Chillo et al. 2011).  Species perform functions such as seed 

dispersal, pollination, decomposition, and nutrient cycling, and create feedbacks that 

maintain the ecosystem in a particular regime.  The cross-scale resilience model posits 

that resilience derives from the overlapping but diverse functions within a particular 

scale domain, and the replication of function across the scales of a system (Peterson et 

al. 1998).  Since disturbances do not affect all scales of a system equally, this pattern 

of functional distribution buffers the system against disrupted or lost functionality 
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even if species are lost or reduced in abundance (Peterson et al. 1998; Wardwell et al. 

2008; Winfree & Kremen 2009; Sundstrom et al. 2012; Nash et al. 2013b).   

Local interactions such as competition should drive species to differentiate in 

key ways to allow for co-existence (Holt 2009).  Species that use similar resources are 

more likely to co-exist if they take advantage of different scales of resource 

distribution because this weakens their competitive interaction (Peterson et al. 1998; 

Ritchie 2009).  Species that interact with ecosystem structure at the same scales 

because of similar body sizes should tend to have a greater fitness if they utilize 

different resource types.  A non-random distribution of species functions is thus a 

result of species interactions within a discontinuous template.  Functional response 

diversity is also a component of resilience (Elmqvist et al. 2003; Laliberté et al. 

2010).  Response diversity is the degree to which species respond differently to a 

shared disturbance (Bellwood et al. 2004).  If all species belonging to the same 

functional group also respond similarly to environmental disturbance, then the 

response diversity is essentially one.  If, however, species in the same functional 

group are differentially affected by a disturbance, then species less adversely affected 

can compensate for those species more severely impacted by the disturbance.  The 

distribution of members of the same functional group across the scale domains of a 

system adds another layer of buffering against disturbances, because disturbances do 

not affect all scales of a system equally.  The cross-scale resilience model proposes 

that resilience is enhanced when there is a diversity of functional groups within a 

scale domain, and a redundancy of functional groups across the scale domains, 

because this pattern will allow the system to absorb and buffer disturbances at a 

variety of scales due to compensatory dynamics (Wardwell et al. 2008; Sundstrom et 
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al. 2012).  Resilience is thus a consequence, and an emergent property of, complex 

discontinuous systems. 

An example of the cross-scale model in non-ecological systems 

Only a small body of work has explicitly extended either the concept of 

discontinuous scaling in complex systems or the cross-scale model of resilience to 

non-ecological CASs (Garmestani et al. 2006, 2007, 2008).  Researchers applying the 

discontinuity analysis to city sizes found that the distribution was discontinuous, as 

city sizes fall into discrete size classes with growth rates that differ at different scales 

(Garmestani et al. 2007).  Discontinuities appear as gaps in rank-size distributions of 

city size within a region.  Even though cities grew or shrunk over time, the overall 

distribution pattern remained discontinuous, suggesting that the size classes reflect the 

scales of opportunity available in a given system  and the processes that structure city 

size operate at discrete spatial and temporal scales (Garmestani et al. 2007).  In a 

follow-up to this work, Garcia et al. (2011) analyzed the evolution of this city size 

distribution calculating Markov transition matrices that show the probability of a city 

moving up or down a size class or ‘state’.  They found that while short-term 

movements between size classes appears chaotic for the small to mid-sized cities, 

long-term transition probabilities across all size classes reveals relatively conservative 

system structure.  Furthermore, the most persistent cities were the largest cities in the 

analysis, which lends further strength to the proposition that urban systems partition 

into levels in a dynamic hierarchy (Eason & Garmestani 2012).  

In another example, Garmestani et al. (2006) examined firm size distributions 

for manufacturing firms for the state of South Carolina, USA.  They demonstrated 

that industrial sectors are comprised of firms that are clustered in size classes.  They 
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characterized resilience in industrial sectors (Garmestani et al. 2006) by following the 

cross-scale resilience model of Peterson et al. (1998) and analyzed whether the 

coefficient of variation in employment trends (a proxy for resilience), was correlated 

to functional richness within an industrial sector.  Functional richness was the number 

of size classes within an industrial sector, and the distribution of functional groups 

across the size classes, with functional groups represented by sub-sectors within an 

industrial sector.  They expected that a more resilient industry would have more stable 

employment trends, and that this resilience would be correlated to having a higher 

functional diversity  spread across more size classes within that industry.  They found 

that manufacturing industries with greater functional richness spread across size 

classes exhibited less volatility in employment.  The ability of small and large firms to 

adapt to variability in their “environment” without adding or shedding members 

suggests that economic resilience is enhanced when firms of different sizes emerge or 

are encouraged to emerge within industries. 

Applying the cross-scale resilience model to other complex adaptive 
systems 

There are four assumptions underlying the cross scale resilience model that are 

germane to other complex systems.  We describe those assumptions and their 

implications using a well-established ecological example (Figure 1).  The first 

assumption is that there are key processes in a complex system (A) that generate scale 

domains of structure (B) in a system.  These scale domains are the “deep structure” of 

a system.  Because the deep structure is scale specific and discontinuous, so too is the 

distribution of the components (e.g. the organisms in ecological systems, or cities in 

regional systems) interacting with that structure (C).  Resilience (D) emerges from the 
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way critical functional attributes of these components are distributed across the 

discontinuous scale domains.  Ideally, all these assumptions would be tested to 

understand CAS dynamics mechanistically, but assessing the processes that create the 

deep structure is often limited because some processes act over such broad spatial and 

temporal extents that they are challenging to measure.  These limitations make an 

assessment of (A) difficult.  However, determining (B) through (D) allows for the 

detection of patterns relevant for inferring resilience without the need to understand 

causal mechanisms.  For example, Garmestani et al. (2005, 2006) found that both firm 

size and city size were reasonable analogues of animal body size, as firms and cities 

fell into distinct aggregations of similarly-sized firms with scale breaks between size 

classes, but they did not identify the scale-specific processes that generated the deep 

structure.  Nevertheless, their identification of discontinuities and aggregations in 

system features such as firm size and city size provided insight into the dynamics of 

those urban and social systems, and their implications for resilience.  This is useful for 

researchers applying tools across CAS types, because the distribution of key 

functional elements within and across the system scales should be a signature of 

emergent resilience (e.g. (Angeler et al. 2012).   
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Because CASs are capable of existing in multiple different basins of attraction, 

defined by alternate regimes (Biggs et al. 2009; Scheffer et al. 2012) it is important to 

understand the resilience attributes associated with each regime (Angeler et al. 

2013b).  For instance, a lake can exist in a clear-water, oligotrophic regime, and a 

turbid-water, eutrophic regime.  The turbid regime results from excessive nutrient 

loading and is undesirable because of reduced ecosystem service provisioning.  The 

turbid state can also be resilient, making it extremely difficult to manage back into an 

oligotrophic regime (Scheffer & Carpenter 2003).  Terrorist networks, comprised of 

Figure 1.1  Four layers of a cross-scale resilience model using simplified grassland.  
First, the key processes occur at discrete spatial and temporal scales, creating the 
heterogeneous and hierarchical scales of deep structure present in the system.  
Animals interact with the deep structure allometrically with their body size and are 
more likely to persist if their body mass is congruent with the scales of deep structure 
present.  Resilience emerges from the non-random distribution of functions as 
performed by species within and across the scales of the system. 
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small cells that operate at discrete spatial and temporal scales and with limited cross-

scale interactions,  are also highly resilient to disruption because of the discontinuous 

structure of their organization.  In both cases, this is not a resilience that is desirable 

(Bousquet 2012).  Understanding what generates resilience, how to quantify it and 

therefore manage it, is of interest for any CAS upon which humans depend.  

Examples include social-ecological systems upon which we depend for food, water, 

recreation, and other values; our economic systems upon which much human well-

being is dependent; socio-political systems which provide the stability to pursue a 

high-quality life; and the human body, including neurological and other biophysical 

human sub-systems.  We describe the application of the cross-scale resilience model 

to several types of complex systems below (see also Table 1). 
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Table 1.1  Examples of types of complex adaptive systems and variables that may be 
conducive to a cross-scale resilience analysis. 

 

 

Social-ecological 

The development of resilience theory in the last two decades has occurred 

almost exclusively within the realm of ecology.  Much of the research conducted on 

ecosystems has treated humans as external to the system, but has developed 

quantitative methods to assess resilience (such as the cross-scale model) and the 

 

Systems Variable Functional Attribute 

Social-
ecological/Urban 
Systems 
 

Population size Emergency services 
Production 
Transportation options 
Employment diversification and 
evenness 
Energy grid 
Food network 
Types of open spaces 
Ecosystem services 

Socio-cultural 
Systems 

Population size 
Government size/type 
 

Cultural diversity 
Educational opportunities (e.g. years 
of schooling) 
Socio-economic diversity 
Political upheaval 
Size of governed area 

Economic Systems GDP  
Size classes of industry 
types within an 
economy 
GINI coefficient 
Stock market indexes 

Industry types (product diversity, 
export diversity) 
Natural resource dependence 
Employment (qualifications, 
redundancy) 
Standard-of-living measures 
Market sectors 

Socio-historical 
Systems 

Population size Access to environmental resources 
Social connectivity within and 
across scales 
Type of governance  
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probability of regime shifts (Allen & Holling 2008; Scheffer et al. 2009), while 

another large body of work dealing explicitly with social-ecological systems has 

tended to focus on conceptual frameworks and assessments of resilience proxies 

(Walker et al. 2002; Cumming et al. 2005; Adger et al. 2011).  Work focused on 

social-ecological resilience, could, in some instances, benefit from the quantitative 

identification of domains of scale, instead of relying on more arbitrary levels of 

organization within the system of interest.  This allows for the specific identification 

of key processes structuring critical scales, or the distribution of functions or services 

deemed critical for maintaining social-ecological resilience.  For example, Janssen et 

al. (2007) provide a detailed case study assessment focused on configurations of 

social-ecological systems that have been resilient on century-time scales, but while 

they use scales to describe ecological/biological processes, they use ‘levels’ to 

describe human organization structures.  The implication is that scales in human 

systems are observer-dependent.  We argue that while the key processes that constrain 

and structure human organizational structures are often different from those that 

structure ecological systems, they are nonetheless likely to be few and operate at 

discrete spatial and temporal scales.   

Work on ecosystem services such as crop pollination (Winfree & Kremen 

2009) has shown that the stability of crop pollination is dependent on the response 

diversity and cross-scale distribution of the regional bee population, but the authors 

pre-selected 7 scales of analysis, rather than using raw data to determine the scales at 

which bees interacted with the landscape.  Ecosystem services is a highly pertinent 

research topic given the rates of global land conversion, risks associated with climate 

change, and trends towards urbanization (Costanza et al. 1997; Millenium Ecosystem 



22 
 

 

Assessment 2005; Rockström et al. 2009; Ernstson et al. 2010).  Objectively 

identifying the characteristic scales at which particular ecosystem services are 

distributed and the key processes or variables structuring those services would be of 

value.  Furthermore, almost all ecological work focused on scales only considers 

spatial scales, by drawing buffers of arbitrary size around the focal phenomenon.  

This fails to identify the actual scales present, and does not account for a significant 

portion of the influence of scale—the temporal domain. 

Urban systems can be considered a subset of social-ecological systems, as 

both cities and linked networks of cities are considered CASs (Ernstson et al. 2010).  

Landscape ecologists have recently tackled regularities and deviations in patterns of 

development in urban systems, using metrics from hierarchical patch dynamics (Wu 

et al. 2011).  Using the cross-scale resilience model as an alternative method to 

identify key scales within urban systems would be an interesting validation of the 

landscape ecology approach.  If similar scale domains were identified, the benefit of 

the cross-scale model is that it allows an evaluation of resilience by assessing how the 

distribution of key elements within and across those scales may impact urban 

resilience.  Another body of work on urban systems has focused on uncovering 

universal urban scaling laws that demonstrate how the size of a city scales with 

demographic, socio-economic and behavioral urban features such as crime rates, rate 

of innovation, and energy use (Bettencourt et al. 2007, 2010).  It is likely that the 

power-law fit for many of these urban features masks deviations and discontinuities 

that reflect structuring processes that are not scale-invariant, and would allow 

researchers to determine why some cities are resilient and persistent over time, as 

compared with others (Garmestani et al. 2007, 2008).  Bettencourt et al. (2010) write,  
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Scaling laws provide the average baseline behavior and the null-model 

for addressing how to rank cities meaningfully and assess the effects of 

local events, historical contingency and policy, independently of 

population size. . . we show how deviations from scaling laws can be 

used to construct truly local measures of a city’s organization and 

dynamics. 

Ernstson et al. (2010) argue that urban-ecological processes operate at multiple 

spatial-temporal scales and that cross-scale interactions are key to understanding 

system-level resilience.  We suggest that deviations from scaling laws may not be 

confined to local contingency, but reflect structuring processes that are scale-specific 

and general across social-ecological systems, as in the work on human cognition that 

suggests that people can only meaningfully interact with roughly 150 other people, 

thus structuring social networks at that scale domain (Aiello & Dunbar 1993; Kosse 

2001).  Just as the key processes that structure ecological systems are few and occur at 

characteristic spatio-temporal scales, the processes that structure human social 

organization appear to be as well (Kosse 1990; Aiello & Dunbar 1993; Dunbar 2008). 

An analysis of the rank-ordered distribution of the population of 179 U.S. 

Bureau of Economic Analysis -defined economic areas within the United States of 

America shows that there are six distinct size classes within the data set, which ranged 

from 80,415 to 23,285,781 people (Figure 2).  An Economic Area reflects regional 

markets surrounding metropolitan or micropolitan statistical areas, which are defined 

based on commuting and newspaper readership data (Johnson & Kort 2004).  Size 

classes were identified using standard methods (Gunderson & Holling 2002; 

Garmestani et al. 2008), and the number of classes was consistent with regional 
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distributions analyzed by Garmestani et al. (2005).  Time series analysis on this 

nation-wide BEA data set would allow researchers to examine robustness of size 

classes over time and the key processes generating the size classes, transitions of 

regions between size classes, and features of regions that promoted resilience and 

stability or were destabilizing over time.   

 

 

 

Archaeology/Anthropology 

Human social organization has been explored by archaeologists, 

anthropologists and social historians from two primary viewpoints: the growth and 

development of human social organizations at all levels of organization over time, and 

the collapse of said organizations (Tainter 1988; Diamond 2004).  Despite the fact 

that human social organizations as CASs is widely accepted, few archaeologists have 

pursued complex systems theory as an avenue for exploring these dynamics of 

Figure 1.2  Discontinuous distribution of 2011 Bureau of Economic Analysis (BEA)-
defined economic regions for the United States of America.  Bars represent size 
classes, while shading indicates what percentage of the 179 BEA regions fall into 
each size class.  Bars are separated from adjacent size classes by significant gaps, or 
discontinuities. 
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development and collapse over time (though see (Bettencourt et al. 2007, 2010; Adger 

et al. 2011).  Interestingly, archaeology has recently embraced many of the basic 

concepts associated with resilience theory, especially that of the adaptive cycle 

(Redman 2005; Nelson et al. 2007; Hegmon et al. 2008; Dunning et al. 2012). The 

adaptive cycle provides a conceptual framework for understanding the dynamics of a 

system that moves through cycles of accumulation, collapse, and renewal, which were 

already a central focus in archaeological research.  Much of this work, however, is 

largely descriptive and fails to objectively identify underlying scales of deep structure 

that might drive system dynamics over time (Uden et al. 2014).  Rather, it relies on 

human organizational levels and uses resilience theory and the adaptive cycle as an 

extended metaphor for explaining development and collapse dynamics in 

archaeological data (Dunning et al. 2012; Ekblom 2012).  Holling’s discontinuity 

hypothesis was developed as a way to empirically test the adaptive cycle (Holling, 

personal communication), as it presumes hierarchal, nested, discrete scale domains, 

much as the cross-scale model was developed as way to empirically test resilience 

within and across ecological communities.  Part of the failure to embrace the adaptive 

cycle and resilience more rigorously might be a function of the inherently qualitative 

nature of the concept—without the cross-scale model as a means of testing whether 

key functional elements and the pattern of their distribution contributes to resilience, 

there is no recourse but description.  One exception has been the work by Nelson et al. 

(2011), which assessed whether diversity in household-level variables was correlated 

to resilience.  The mixed results of those studies provide an important caveat to the 

use of the cross-scale model: first, the authors explored only diversity (and not 

redundancy) and its relationship to resilience, and at only 2 levels of subjectively-
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selected human organization (household and village).  Second, all variables are not 

created equally.  In other words, although animal body mass and the functions a 

species provides appear to incorporate many of the most critical elements of system 

structuring and system resilience, it is unknown what archaeological variables reflect 

the core processes and functions present in human social systems, and whether the 

archaeological material culture available to researchers, such as pottery styles, 

sufficiently represents the key scaling processes structuring human societies.  How the 

basic concepts of diversity and redundancy within and across system scales translate 

into human material culture is an open question, but the cross-scale model would 

provide a quantitative platform with which to explore these not insignificant 

questions.    

Scaling in human population size has been treated by archaeology in a variety 

of ways and at various levels of organization.  For the level of early villages, 

Rappaport (Bandy 2004) developed what he called the ‘Irritation Coefficient’, which 

described the non-linear scaling relationship between an increase in population size 

and an increase in sources of irritation, or frequency of disputes.  Johnson (1982) 

dubbed the phenomenon scalar stress, and argued from a social evolution perspective 

that due to the ‘Irritation Coefficient’, expanding populations will either be forced to 

fission, and split into smaller and more manageable groups, or a higher-level 

governing layer capable of mitigating scalar stress will emerge.  Though 

archaeological evidence for fissioning in early villages and/or the emergence of a 

higher-level of institutional complexity is scarce due to the difficulties of data, scalar 

stress and its role in structuring scale domains of human population sizes remains a 

widely accepted theory (Friesen 1999; Bandy 2004; Parkinson 2006).  The degree of 
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acceptance despite the scarcity of hard evidence stems from work done by a wide 

array of theorists who have demonstrated that a) the location of population size ‘hinge 

points’, or thresholds, are common across human populations situated in very 

different environmental and cultural contexts, and b) human cognitive factors such as 

short-term and long-term memory and limitations in information processing 

capabilities provide mechanisms for population hinge points (Ember 1963; Kosse 

1990, 2001; Dunbar 2008).  Subsequent work has shown that while the relationship 

between size and complexity is in general true, it can break down at narrow 

demographic ranges, as local context becomes more critical in structuring populations 

and their complexity (Feinman 2011) and this is congruent with the discontinuity 

hypothesis.  A discontinuity analysis on archaeological data would be revealing of the 

key scale domains within which human populations fall, particularly as it uses raw 

data while previous work on archaeological data has used binned data, which can 

muddy the ability to find break points or clusters in rank-ordered data (Kosse 1990; 

Feinman 2011).  If human population sizes are structured by key processes operating 

at discrete spatial and temporal scales as Kosse (2001) and others have suggested 

(Dunbar 2008), then a resilience assessment could be conducted using the complexity 

variables already well established in the archaeological literature (Feinman 2011).  

Resilience could be synonymous, for example, with locational persistence at a 

comparable complexity, and its correlation with diversity and redundancy of 

environmental resources or social networks, or any other factors deemed critical for 

long-term persistence could be tested.  If a discontinuity analysis detected similar 

aggregations of population sizes across disparate environments and cultures, this 

would indicate that the processes scaling populations are general to all humans, which 
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would suggest that they are based on conservative patterns in primate evolution.  An 

alternative is that some scales of aggregation are structured by primate evolution, 

while others may be more contingent on regional context, be it environmental or 

social, that nonetheless ought to be persistent and characteristic across types of 

environmental constraints or human political organization (e.g. collective leadership 

versus autocratic leadership) (Feinman 2011).  If basic scaling processes can be 

associated with human population size classes, then comparative studies can begin 

assessing the degrees of resilience of various communities. 

Economic 

Since the Great Depression of the 1930s and the subsequent Keynesian 

Revolution, economics as a profession has been divided into two separate disciplines, 

microeconomics and macroeconomics.  While the former studies micro fundamentals 

such as the specific market interactions of individuals and firms, the latter focuses on 

aggregates such as employment, interest rates, gross domestic product (GDP) and 

their fluctuations. Both the failure of macroeconomics to incorporate micro behavior, 

and conversely, the assumptions made when macro models do incorporate micro 

fundamentals has resulted in heated debates over the years (e.g. (Hoover 2012).  The 

micro-macro divide persists, to the point that most economists define themselves as 

one or the other. The inability of economics as a science to bridge the two distinct but 

interacting scales of behavior and dynamics underlines a need for alternative 

approaches.  

Complex systems science has been slow to permeate economics, and despite 

recent progress (Krugman 1996; Foster 2005, 2006; Beinhocker 2006; Foxon et al. 

2013), the study of economies as CASs has remained at the fringes of economics.  
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Joseph Schumpeter (1934) was one of the few economists in the early 20th century 

who tried to understand the economy through a complex systems lens, but his ideas, 

emphasizing the dynamic nature of capitalist societies and business and economic 

cycles as endogenous behavior, have never been considered part of the mainstream.  

Schelling (1978) contributed to our understanding of self-organization in space, but 

less is known about temporal self-organization, such as the causes of the business 

cycles.  Neoclassical economics, the predominant school of thought in economics for 

over a century, emphasizes economies as equilibrium systems with linear dynamics 

(Foster 2006), which is an inappropriate characterization for economic systems over 

meaningful time scales (Arthur 1999; Foster 2005; Beinhocker 2006).  That 

economies are examples of CASs has been convincingly argued (Foster 2005, 2006; 

Foxon et al. 2013); we extend that characterization by arguing that socio-economic 

systems can be usefully analyzed from the perspective of discontinuous, hierarchical 

scales of structure, and the emergence of resilience from the distribution of key 

elements within and across the scales of a system.   

Growth dynamics in economies appears to parallel those of ecosystems, 

suggesting that the evolutionary processes at work in both CASs are similar.  

Ecosystems and economies tend to increase in complexity over time, as they evolve 

increasingly complex structures to dissipate greater amounts of  energy (Schneider & 

Kay 1994; Beinhocker 2006).  Stability or persistence over time occurs because of 

positive and negative feedback loops that reinforce processes of self-organization.  A 

primary feature of stability in CASs comes from the trade-off between diversity and 

redundancy, rather than from the maximization or optimization of efficiency by 

maximizing diversity (Loreau 2010; Page 2010a).  Increased diversity provides 
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adaptive capacity because for evolution to occur systems must be able to change 

structurally in response to selective pressures (Foster 2005), while redundancies 

provide a greater ability to withstand the loss of any one entity in the system (Peterson 

et al. 1998; Page 2010a).  Maximizing efficiency is destabilizing at the system level, 

as redundancies are critical in order to buffer disturbances.  Lee et al. (1998) found 

that though larger economies tended to be more diversified and thus have smaller 

relative fluctuations in growth, they were less diversified than would be expected if 

diversity increased linearly with size.   

If size of economy is a key variable reflecting the scaling processes in 

economies, then the size distribution of economies should be discontinuous, reflecting 

the key scales of structuring processes.  A cross-scale analysis of economies is 

predicted to confirm that the distribution of diversity within and across the scales of 

the system should be non-random, and those economies with increased diversity 

within scales and greater redundancies across scales ought to have greater resilience 

than less diversified economies.  Guilmi et al. (2003) found GDP per capita for 

countries between the 30th and 85th percentile fit a power law, suggesting that there 

are multiple scales of structuring processes in order to explain the tails of the 

distribution.  Hidalgo and Haussman (2009) examined the economic complexity of 

nations from a network perspective, moving away from traditional geographic or 

institutional explanations of economic growth.  They focused on how the diversity of 

a country’s labor inputs and the degree to which their exports are non-ubiquitous 

positively correlates with higher GDP, as well as being a good predictor of future 

GDP growth, demonstrating the importance of analyses that depart from a singular 

focus on system growth measures towards approaches that consider indicators of 
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system resilience, and challenging classical theories on comparative advantage in 

economic development (e.g. (Leamer 1984).   

Ormerod (2010) examined  the resilience of capitalist economies to recessions, 

defining resilience as the duration of a recession, and found that capitalist economies 

were surprisingly resilient.  Though this definition of resilience falls into the 

engineering category, presuming a single equilibrium state, it is one of the few to 

explicitly analyze how rapidly an economy is able to reorganize and rebound.  He 

found that more than two-thirds of all recessions in the last 140 years lasted only a 

single year, regardless of the initial size of the recession.  As there were a wide range 

of policy reactions to the 255 recessions, Ormerod (2010) postulated that resilience to 

recessions is an inherent feature of economies, though without offering suggestions as 

to what structural features or mechanisms of a capitalist economy buffer the 

disturbance effects of a recession.  The data did not fit a power-law, allowing us to 

reject the possibility that the probability of recessions is scale-invariant, and inviting 

the possibility that the cross-scale model could provide a method for probing the 

cross-scale characteristics contributing to economic resilience.   

Tests of the cross-scale model 

Applying the cross-scale model to non-ecological systems requires data that 

can be rank-ordered and is assumed to reflect key scaling processes, such as animal 

body masses in ecological systems, city sizes in a region, or firm sizes in an industrial 

sector (see Table 1 for examples).  The data can be analyzed for discontinuities using 

one of several methods previously discussed (i.e. BCART, GRI, cluster analysis, 

fractal dimension, or time series analysis).  The distribution of functionality within 

and across the scale domains identified in the discontinuity analysis is proposed to 
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directly affect system-level resilience, so the data also needs to have a functional 

attribute associated with it.  In ecological systems, this is represented by species’ 

functional traits, while in economies it might be the diversification of sectors 

contributing to GDP, or in anthropological studies the diversity of food resources 

available to populations.  The next step is to analyze the distribution of functional 

attributes within and across the scale domains identified (Wardwell et al. 2008; 

Sundstrom et al. 2012; Angeler et al. 2013a).  Are the functions non-randomly 

distributed?  Finally, the distribution pattern of function needs to be related to some 

measure of resilience, such as employment volatility (Garmestani et al. 2006), regime 

shifts in ecological systems (Scheffer et al. 2001), or socio-political upheavals 

(Karunanithi et al. 2011).  We have outline some systems that could be explored in 

this way, with examples of variables that can be rank-ordered, and functional 

attributes associated with those variables that can be analyzed for a measure of 

resilience (Table 1). 

Conclusions 

Biota, including humans, interact with the environment at distinct scales and 

create self-reinforcing patterns resistant to disturbance (Peterson 2002).  The multiple 

but distinct scales of self-organization and the distribution of function within and 

across scales generates system-level resilience (Peterson et al. 1998). Thus, a system’s 

resilience is dependent upon the interactions between structure and dynamics at 

multiple scales. 

Science has historically assessed complex systems in a reductionist fashion, 

decomposing the system into its constituent parts and attempting to understand and 

define the mechanisms driving each part.  While the knowledge gained about the 
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individual parts of the system has been invaluable, it has not led to the hoped-for 

insights into managing the system as a whole.  Complex systems science has sought 

to address this by uncovering the general rules of behavior governing complex 

systems, rules that are not adducible from examining the constituents of the system.  

If resilience to disturbances is an emergent phenomenon of complex systems beyond 

ecosystems, then research into the key variables driving resilience provides an avenue 

for research tracking changes in resilience over time, conducting comparative 

analyses of resilience between systems, or as means of identifying critical variables 

on which policy and management actions should focus.  The cross-scale resilience 

model provides a method for non-normative, quantitative assessments of resilience, 

and is, to our knowledge, one of the only methods available for doing so.  

Our ability to identify and measure the key cross-scale variables that 

contribute to resilience provides society more options for choosing what system state 

is most desirable, and to successfully manage the system to remain in that particular 

regime.  The increasing risk of concatenated crises suggests an urgency for doing so 

(Biggs et al. 2011).  Just as network theory has contributed to our understanding of 

how network structure shapes a networks’ resilience to loss of nodes (Dunne et al. 

2002), so does the cross-scale resilience model contribute to our understanding of 

how the spatial and temporal distribution of key system variables buffers a system 

against disturbance and loss of species (Peterson et al. 1998).  It is critical that we 

allocate our management resources towards system components and dynamics that 

underpin the fundamental resilience or behavior of the system, as opposed to 

identifying management targets based on subjective or reductionist views of what 

‘matters’ in the system. 
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The application of these concepts to other types of systems is in its infancy, 

though work on the distribution of firm sizes and their ‘functional’ role strongly 

suggests that similar processes are at work in structuring key patterns in economic 

systems.  Many systems not discussed here would be conducive to a cross-scale 

resilience analysis, such as those found in neurology, immunology, physiology, 

microbiology (virology and bacteriology, as well as relationships with human health), 

paleo-ecology (e.g. diatoms), evolution, and political science. Many questions remain, 

but testing the cross-scale resilience model on these varied systems could lead to 

significant breakthroughs. 
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CHAPTER 2 DISCONTINUITY AND CONVERGENCE IN GLOBAL 
ECONOMIES 

Introduction 

The application of complex systems theory to economics has been a recent 

endeavour relative to uptake by other fields.  Most economists have not embraced a 

complex systems approach despite a push from within the field arguing that 

economies are complex adaptive  systems and ought to be studied as such (Anderson 

et al. 1988; Arthur 1999; Foster 2005, 2006; Beinhocker 2006; Kirman 2010; Foxon 

et al. 2013).  J. Doyne Farmer (2012) commented on the irony given that “the goal of 

a complex systems focus is to characterize emergent phenomena . . . and Adam Smith 

is widely regarded as the first to clearly articulate the concept of an emergent 

phenomena”.  Durlauf (2005) justified this slow uptake by arguing that the complex 

systems models often do not embody “fundamental features of financial markets”, fail 

to produce economic insights, and do not make a sensible mechanistic connection to 

economic processes. These are legitimate arguments, but do not negate the need for 

basic research into the fundamental patterns and processes shaping economic systems 

as complex systems, rather than continuing to assume variations of linear, equilibrium 

behaviour.   

A premise of complex systems science is that different types of systems can 

share basic principles of dynamics and behaviour (Foster 2005), which allows for the 

possibility of interdisciplinary cross-fertilization (Sundstrom et al. 2014).  We take 
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advantage of research and theory originating primarily from ecology to search for 

patterns in global economies over time. Complex systems are multi-scaled and 

hierarchical, and the scales in a particular system can be objectively identified 

(Angeler et al. 2015a). They are fundamental to the system and not arbitrarily defined 

levels of organization (Wiens 1989; Holling 1992).  The scales present in a given 

system result from both system and scale-specific processes that persistently operate 

at limited spatial and temporal scales, creating scale domains, or ‘regions where 

pattern does not change or changes monotonically with changes in scale’ (Wiens 

1989), and they provide the basic structure around which other organization develops.  

They also dictate interaction strengths among system elements, as elements operating 

at widely disparate scales are likely to have weaker interaction strengths than those 

operating at similar scales.  Some processes, such as competition, niche market 

exploitation, or cognitive factors that structure short- and long-term memory and limit 

information processing capabilities (Ember 1963; Kosse 1990; Dunbar 2008), may 

operate across all scales, but may not operate in the same way across all scales, 

further contributing to the creation of persistent scale domains.  Evidence of multi-

scaled structure in economies has implications for system-level behaviour and 

dynamics that are of value to economics because it has direct bearing on our ability to 

understand the key processes structuring scale domains (analogous to size classes) in 

Gross Domestic Product (GDP), and therefore the ability of countries to transition 

between scale domains. 

This paper tests whether there are multiple scales in the global economy, or 

more precisely, whether cross-national economies are discontinuously distributed.  

We also determine if the discontinuous distributions identified are conservative over 
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time.  As there is considerable overlap between this and the literature on convergence 

clubs (Barro & Sala-i-Martin 1992; Quah 1996a; Durlauf et al. 2005; Phillips & Sul 

2007), we begin with a review in Section 2 of the convergence club literature, which 

evaluates countries or regions to determine if they share a similar rate of a particular 

econometric such as growth, or appear to be converging toward a similar rate.  

Although our research is complementary to the convergence club literature, it is 

grounded in different assumptions about system dynamics and behavior, so in Section 

3 we review the theoretical assumptions of complex systems theory and 

discontinuities as it applies to our analysis.  In Section 4 we describe the methods 

used to identify discontinuities as well as the multivariate analyses we used to expand 

our interpretation of the results.  In Section 5 we describe the results, and in Section 6 

we discuss the implications of the results as they pertain to global patterns in GDP, 

the convergence club literature, and processes that may structure GDP over time.  We 

conclude in Section 7 with a summary of the relevance of the analyses. 

Economic convergence clubs     

Disparities in wealth and growth between rich and poor countries has been an 

area of intense research, and is the focus of a vast literature on convergence clubs (see 

Durlauf et al., 2005 for review).  Early work on convergence clubs focused on a null 

hypothesis of β- convergence amongst all economies in their per capita income due to 

differing growth rates (Barro & Sala-i-Martin 1992) and was evaluated using linear 

non-stochastic growth models based on Solow (1956).  Convergence to a steady state 

could be absolute, or conditional on controlling for differences in ‘conditioning’ 

variables (Mankiw et al. 1992).  Since then, research has focused on identifying 

convergence clubs, or subgroups of economies or regions with similar initial 
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conditions that seem to converge to a similar growth rate, and then trying to identify 

univariate factors correlated with club formation, such as human capital, technology, 

openness, and fixed capital investment.  New methods now include convergence in 

non-growth variables such as financial metrics (Phillips & Sul 2007; Apergis et al. 

2012), as well as the consideration of multivariate analyses of factors correlated with 

club formation and membership (Battisti & Parmeter 2013).  Despite substantial 

methodological developments, El-Gamal and Ryu (2013) state, “the primary 

conclusion of this massive literature has been rejection of the global convergence 

hypothesis, based on evidence of multi-modality or other measures of polarization”.   

Our interest in convergence clubs lies in identifying the intersections between 

convergence clubs and that of complex systems science and the discontinuity 

hypothesis.  Kurakin (2009) wrote of molecular biology, a field undergoing a similar 

paradigm shift to that of economics, “the transition from the old image of biological 

organization to a new one resembles a gestalt switch in perception, meaning that the 

vast majority of existing data is not challenged or discarded but rather reinterpreted 

and rearranged into an alternate systemic perception of reality”.  Although much of 

the convergence club literature interprets its findings primarily through variations of a 

neoclassical lens, we focus on the convergence research that has moved beyond 

expectations of equilibrium and linear dynamics to more varied, non-linear, 

stochastic, and non-equilibrium dynamics.  In fact, the consistent finding of more than 

one convergence club is itself suggestive of these more complex dynamics.  The 

evolution of the convergence literature away from the linear equilibrium dynamics of 

neoclassical economics has occurred in multiple ways detailed in the following list.   
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1.  Initial conditions 

The importance of initial conditions, history, and path dependence has been 

explicitly incorporated into models to varying degrees, and its importance to long-run 

economic behaviour is generally acknowledged (Nunn 2009), but often has simply 

manifested in confining groupings of countries to those with similar initial conditions 

in accordance with the definition of convergence clubs by Durlauf and Johnson 

(1995) (as in (Baumol 1986), but see (Owen et al. 2009)).  This becomes problematic 

when researchers consider clubs to be interchangeable with multiple steady states, 

multiple equilibria, and basins of attraction.  The literature appears to have adopted 

terminology but not content from dynamical systems research, as there are no such 

definitional restrictions regarding the dynamics of attractors and basins of attraction. 

A fixed point attractor can pull in systems from widely varying initial positions, a 

strange attractor can push apart two systems that begin close together, and a single 

steady state system has no basin of attraction because all points begin and end at the 

same place (Kauffman 1993).  It is unclear why researchers have constrained their 

modelling assumptions in such a way when the type of attractors operating in 

economic systems is largely unknown.  Likewise, acknowledging that initial 

conditions are relevant to the current state of economies, but then assuming that the 

arbitrary start year of their data set contains the necessary initial condition, casts doubt 

on the fundamental (non-observer defined) nature of the clubs thus identified.  

Finally, path dependence via history are important to dynamics over time for reasons 

beyond initial conditions, and these are rarely if ever incorporated into growth models 

(Beinhocker 2006) (though see Nunn, 2009). 
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2.  Constraints on results resulting from theoretical and methodological 
assumptions 

More studies are allowing for the possibility of multiple clubs, and some are 

allowing the number of convergence clubs to emerge from the data, rather than being 

a priori selected (Desdoigts 1999; Huang 2005; Owen et al. 2009; Di Vaio & Enflo 

2011).  However, the sample size varies widely and ranges from the teens to close to 

the full complement of countries, so the ability to detect clubs and the number of 

clubs represented by the data varies widely, making generalized conclusions difficult 

(Alfo et al. 2008).  Despite the finding of multiple clubs, most methods cannot 

distinguish between multiple equilibria that are transient states reflecting different 

initial starting positions along a singular trajectory towards one long-run equilibrium, 

or actual alternative states (Durlauf et al. 2009; Owen et al. 2009; Galor 2010a).  It is 

not uncommon for researchers to describe these multiple equilibria as being stationary 

(Azariadis & Drazen 1990), which suggests an expectation for long-term growth 

behaviour akin to a fixed point attractor and single point equilibrium dynamics 

(though see El-Gamal and Ryu, 2013).  Although there has also been a partial shift 

within economics from expectations of non-stochastic equilibrium to alternative ideas 

of stochasticity, deterministic chaos, non-linearity, and non-equilibrium dynamics, it 

has been sporadic.  For example, in Phillips and Sul (2009), neoclassical expectations 

of homogenous technology and global convergence are relaxed to allow for 

heterogeneous technological progress and the possibility of global convergence to a 

steady state (among other possibilities), but the definition of global convergence is 

one in which ‘all countries are growing’, which is a rather different proposition than 

one which requires that all countries converge on a similar growth rate.  In a review of 
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the literature, Apergi et al. (2012) write, “The actual data confront researchers with 

the fact that real income per capita diverges across all countries.  What remains 

unclear is what factors prevent incomes from converging”, which assumes that there 

is one underlying fixed-point attractor.  We suggest that multiple convergence clubs 

may be an inherent and fundamental feature of complex adaptive systems (CAS’s).  

Some researchers have moved away from testing convergence clubs per se, and are 

asking more fundamental questions about the existence of multiple regimes in 

economies (Di Vaio & Enflo 2011; Cao et al. 2014).  This is a promising development 

as it denotes basic theory building about fundamental assumptions.   

3.  Treatment of growth 

Growth is increasingly treated as heterogeneous in both rate and time to 

convergence (Maddala & Wu 2000), and is usually treated as endogenously generated 

rather than the result of exogenous technical progress.  Some modelling techniques 

can capture heterogeneities in control variables, and not just the growth term (Di Vaio 

& Enflo 2011).  We suggest that the separation of endogenous and exogenous drivers 

is a matter of observer scale and the boundary of the system in question rather than a 

true distinction between external and internal drivers.  As economist John Sterman 

wrote, “(Almost) nothing is exogenous” (2002).  The consequences from the 

perspective of theory, modelling, and implications of results is far from a matter of 

semantics, because Solowian growth models which view growth as exogenously 

driven are constrained in how far they can be adapted to internalize what were once 

considered externalities (Beinhocker 2006).  Endogenous growth models allow 

growth to be generated from processes of self-organization and internal system 

features, thus are more appropriate for modelling CAS’s.  Whether or not shared 
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growth rates are a key process forming the multiple equilibria/basins of 

attraction/scale domains of the global system is a highly non-trivial question. 

4.  Assumptions around modality and basins of attraction 

Where researchers allow for multiple modes, they are finding more than 

bimodality for a wide variety of econometrics (Durlauf & Johnson 1995; Apergis et 

al. 2012), including relatively stable and persistent clusters of rich and poor countries 

but also an intermediate group of countries which are less stable and more dynamic 

(Battisti & Parmeter 2013; El-Gamal & Ryu 2013).  If the clusters identified represent 

basins of attraction as is often assumed in the convergence literature, then dynamical 

systems theory suggests that basins in the messy middle range are not of equal size or 

stability relative to those in the tails.  Basins can be transient and/or shallow, blipping 

in and out of existence as the terrain of the state space changes shape (Kauffman 

1993).  This is not recognized by the convergence club literature, however, which 

tends to assume that a basin must be static to qualify as a basin (Galor 2010a; Pittau et 

al. 2010).  A system can move from one basin of attraction to another due to a small 

disturbance given the right conditions, and does not necessarily require large shocks 

as many researchers suppose (Nunn 2009; Pittau et al. 2010) (though see Bloom et al., 

2003).  Galor (2010a), like others, presumes that large exogenous shocks are required 

to overcome thresholds in poor convergence clubs and therefore discounts the very 

notion of thresholds because it does not account for how once poor countries that are 

now rich overcame the threshold in the absence of a large shock.  This is a strawman 

argument, as endogenous dynamics can move a system near to a threshold, reducing 

the size of shock necessary to surmount it.  Likewise, the height of the threshold 

between basins is dynamic in response to drivers that can change both the state space 
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within which the basin is embedded, or the dimensions of the basin itself.  This is not 

to say that movement directly from any one attractor to any other is possible; 

movement is thought to be limited to a few neighbouring attractors, from which 

further perturbations can push the system to yet others (Kauffman 1995).  But 

presuming that movement between basins requires a large exogenous shock is not 

supported by theory or data from systems research (Scheffer et al. 2001).  In a 

particularly egregious miscomprehension of CAS dynamics, Nunn (2009) argues 

against the presence of multiple equilibria in economic systems because of examples 

such as cities that experience severe disturbances such as the bombings of WWII, but 

quickly return to their pre-bombing populations, when it is system resilience, or the 

size of the basin of attraction, that denotes the size of shock necessary or capable of 

moving a system into another basin (Holling 1973; Scheffer & Carpenter 2003; 

Fletcher & Hilbert 2007).  Finally, assuming that economies fall into only two or three 

clubs defined by immobility closes the door to the implications of the dynamism 

inherent to a state space and basins of attraction. 

5.  Univariate versus multivariate explanatory models 

Correlates of growth are beginning to be evaluated using multivariate models 

which more closely resemble economic reality than do univariate models (Desdoigts 

1999; Alfo et al. 2008; Battisti & Parmeter 2013).  Multivariate models allow the 

possibility of assessing the role of multiple variables and their interactions on club 

formation and membership.  It is likely that there are a few key variables for each 

convergence club that are crucial (Pittau et al. 2010).  Battisti and Parmeter  (2013) 

argue, “Given the multivariate nature of the clusters these results suggest something 

more complex than solely income divergence.  The key implication is that the clusters 
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are diverging across their entire constitution: output, human capital accumulation, 

physical capital accumulation, and total factor productivity”.    

6.  Growth rate and threshold behavior 

More researchers are considering the possibility of threshold behaviour, which 

is a characteristic of non-linear dynamics and alternative regimes.  Researchers have 

found that thresholds in human capital accumulation, technology, initial per capita 

GDP, and literacy, among others, are correlated to multiple equilibria in growth rates 

(Azariadis & Drazen 1990; Hansen 2000; Huang 2005).  For many of the reasons 

already articulated (widely varying methods, definitions, and data sets) 

generalizations of results are difficult, beyond the basic conclusion that countries are 

not all following the same growth path, and there appear to be thresholds in the 

correlative relationship between various econometrics and growth regime.  These 

studies assume that growth is an appropriate process by which to define convergence 

clubs, and that may be so, given the goals of the convergence club research.  

However, if one asks a more fundamental question regarding the presence of multiple 

basins of attraction and the key processes governing them, growth may or may not be 

a defining characteristic of any or all basins, and a threshold response does not 

necessarily denote an alternative basin of attraction as a system can respond sharply to 

a varying factor without having alternative basins (or multiple equilibria) (Scheffer 

2009a).  Adjustable rates of processes are a primary mechanism by which complex 

adaptive systems self-organize to remain in the same basin and adapt to the dynamism 

inherent in any CAS (Kurakin 2009).  For example, businesses do not manufacture 

their products at one fixed rate, but must adjust to accommodate the changing 

landscape of the economy they operate within.   
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The premise of much of the convergence club literature has been that rate of 

growth acts as an attractor, and that countries with similar initial conditions will 

converge to a similar rate of growth within a shared basin of attraction.  When dealing 

with an emergent phenomena such as growth rate, Harper (2012) argues that “the goal 

is to find a set of rules sufficient to generate robustly and replicably the emergent 

phenomena of interest”.  The convergence club literature has failed to find robust or 

replicable patterns in the number or membership of clubs (for example, see Feve & 

Pen, 2000), given differences in the timespan of the data, the sample size, and 

analytical method, aside from consistent evidence that the rich and poor are governed 

by different processes and different rates of growth.  This result is also consistent with 

the extensive literature on growth in city sizes, which has shown that growth rate can 

vary based on city size (Garmestani et al. 2007).  This suggests that there are scaling 

processes at work among economies, but that growth rate may not be the best metric 

by which to identify those fundamental scales. 

Growth rates may have more to do with movement from one aggregation or 

basin to another, either via a threshold effect, past which an economy can transition 

into a new regime or convergence club, or as a process acting in conjunction with 

others that allow the transition to another aggregation/club/basin.  Whether those 

groupings are defined by a shared or converging growth rate, or other factors such as 

openness, technology, human capital, or a country’s product space (Hidalgo et al. 

2007) remains to be seen.  Galor (2010a) makes the point that for countries that 

switched to a mode of sustained growth, they did so despite having varying levels of 

per capita income---rather, it was a critical rate that allowed them to transition 

(technological progress, population growth, human capital formation).  Work on 
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growth rates and discontinuities in city sizes found that the smallest cities had higher 

than average growth rates and the largest cities had lower than average growth, so 

while growth rate was correlated to a city’s location on the size spectrum, a similar 

growth rate was not shared by all cities in the same aggregation so was unlikely to be 

a central process defining each aggregation (Garmestani et al. 2007).  Finally, the use 

of growth should be carefully evaluated as a defining characteristic is that there are 

different kinds of growth.  There is finite physical growth in the amount of 

thermodynamic energy mobilized by an economy; theoretically infinite economic 

growth in money flows, incomes, value added, and expenditure; and growth in human 

welfare (Ekins 2009).  From which derive stability, persistence, and resilience?  

Convergence in growth concurrently with globalization is a fairly recent phenomenon 

and seems to be restricted to industrialized countries, whereas poorer countries have 

witnessed divergence in growth (Epstein et al. 2003; Huang 2005; Di Vaio & Enflo 

2011), which suggests, at a minimum, that different basins of attraction are governed 

by different key processes (Cao et al. 2014).   

Complex adaptive systems 

There is no singular definition of a complex system, nor should there be.  

There are, however, working definitions that are sufficiently general to apply to most 

types of complex systems, as well as sufficiently detailed to be useful.  Foster defines 

a complex economic system in two layers, which serves our purposes and does not 

fundamentally differ from the definitions proposed by Foxon (Foxon et al. 2013) or 

Beinhocker (2006).  In their most basic sense, complex systems are “dissipative 

structures that import free energy and export entropy in a way that enables them to 

self-organize their structural content and configuration, subject to boundary limits.  At 
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the same time, they are open systems irrevocably connected to an environment that 

contains other systems” (Foster 2005).  He proceeds to define complex adaptive 

systems (CAS) in terms of human agency and learning, arguing that an economic 

CAS would have the following four properties: 1.  It contains dissipative structures 

that transform energy into work and converts information into knowledge; 2. Each 

CAS is a whole unto itself, as well as a part of some systems and oppositional to 

others, allowing the emergence of organized complexity at multiple scales; 3. It has a 

degree of structural irreversibility owing to the inherent hierarchical structure which 

results in inflexibility and maladaptiveness; and 4.  Evolution is temporal, therefore 

history matters.  Phases of emergence, growth, stationarity, and transition result in the 

generation of variety, innovation, selection, and maintenance (Foster 2005).  He 

argues that a network approach is an ideal way to analyse economic CAS’s because it 

obviates the substantial problems with constrained optimization, which lies at the 

heart of modern economic analysis, because network theory is focused on the 

connections between elements, not the elements themselves (Foster 2005).  While we 

do not disagree with the immense value of network approaches in understanding 

flows and dynamics in CAS’s as a function of topology and connections, network 

theory is often focused on scale-free system features, and cannot explicitly account 

for the multi-scalar, hierarchical structure that intermediates the strength of the 

connections between components of a CAS, and between other CAS’s.    

Complex systems are by definition hierarchical and modular, but there have 

been few tools available for the objective identification of the fundamental scales of 

structure.  Typically researchers define arbitrary levels of observation based on 

observer bias.  In this paper, we borrow from theory developed in ecology to 



48 
 

 

understand how scaling impacts the structural features of complex systems.  These 

ideas are formally grounded in complex systems theory, which postulates that system 

structure consists of multi-scaled hierarchies emerging from processes of self-

organization which emerge to dissipate energy gradients (Schneider & Kay 1994; 

Beinhocker 2006).  Other critical assumptions besides emergent phenomena are that 

economies, as CAS’s, operate far from equilibrium; history and initial conditions 

matter; there are multiple alternative regimes that an economy can reside in and 

membership in a particular regime is not immutable; many, if not all processes and 

patterns are defined by non-linearities; and whether or not a process is viewed as 

endogenous or exogenous largely depends on the scale of observation.  These 

assumptions stand in contrast to that of much of economic theory and literature, 

including that of convergence clubs.   

The ecological perspective 

Scaling issues have long been a thorny issue in ecology, yet are of central 

importance (Levin 1992).  It has been tackled by some of ecology’s most eminent 

researchers for more than a century, yet one such researcher lamented relatively 

recently that, “we need non-arbitrary, operational ways of defining and detecting 

scales . . . how may we recognize scales in a way that avoids arbitrary imposition of 

preconceived scales or hierarchical levels?” (Wiens 1989).  For the same reason that 

economists are concerned with explaining how the behaviour of individuals explains 

that of the economy, so have ecologists tried to understand how the behaviour of 

individuals explains or predicts that of an ecosystem.  The short answer is that it does 

not, nor cannot.  Aggregate behaviour at one level of organization, such as that of an 

individual, does not typically explain behaviour at a higher level of organization.  The 
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non-linearities in complex system dynamics is both a fundamental challenge of 

understanding scaling in complex systems, and a gift, because it is not always 

necessary to understand the behaviour of individuals in exquisite detail in order to 

model the behaviour of the system.  System-level behaviour emerges from an 

incalculable number of individual interactions and is more than the aggregate of those 

interactions, yet it is constrained by biophysical limits; it will never be fully knowable 

or predictable over long time spans, but the probable behaviour can be modelled 

based on an understanding of the scales at which key interactions, processes, and non-

linearities occur. 

Scaling is of central importance to the understanding of any complex system.  

The processes that structure any given system do not operate equally across all spatial 

and temporal scales, and the entities that operate within the system do not interact 

with each other, structure, or processes equally.  For example, small-scale produce 

farmers who sell their crops at local farmers markets are unlikely to directly interact 

with food conglomerates that do billions of dollars annually.  The local farmer 

operates at spatial and temporal scales that are magnitudes of order smaller than that 

of the conglomerate.  Explicitly recognizing that scales are inherent to complex 

systems, that behaviour witnessed at one scale may be less relevant at another, and 

that patterns observed at one scale domain may disappear when viewed from smaller 

or larger scales, is critical.  Unfortunately, the identification of relevant scales tends to 

be observer-biased, selected a priori, and confounded with levels of organization or 

aggregation.  We recognize the necessity of constraining the scope and scale of any 

study, as no singular study can encompass all spatial and temporal scales.  However, 

if the choice of scales is arbitrary, then researchers should recognize that any observed 
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patterns may be random or a function of the scale selection, rather than reflecting 

actual system patterns and behaviour. 

In recent decades, seminal work (O’Neill et al. 1986; Allen & Starr 1988; 

Wiens 1989) has demonstrated that many ecological processes occur over a limited 

range of spatial and temporal scales (termed a scale domain) and that even within 

smooth gradients of process there can be tipping points or non-linearities in the 

response of structure to thresholds in process (Diez & Pulliam 2007; Yarrow & Salthe 

2008).  Holling (1992) proposed that if key processes operate over discrete ranges of 

scale with sufficient persistence over time, then ecological structure should reflect 

those scalar patterns.  Structure that occurs at limited but persistent ranges of spatial 

and temporal scales should comprise spatial and temporal domains of opportunity for 

the species that interact with that structure, and be reflected in animal physiology and 

behavior (Peters 1983; Wiens 1989; Holling 1992).  In short, processes that 

persistently operate at discrete ranges of spatial and temporal scales generate basins of 

attraction that shape both ecological structure (e.g. vegetation) and animal species.  In 

other words, there are size classes in both ecological structure and animal physiology 

because key processes that structure ecosystems are not scale invariant. 

Researchers have confirmed that animal body mass distributions and 

ecological structure have a non-random discontinuous structure (Krummel et al. 1987; 

Holling 1992; Allen et al. 2006; Nash et al. 2013b, 2014a).  When rank-ordered body 

mass data is analysed, animal body mass falls into groups of similarly-sized species, 

separated by gaps.  There are ranges of body mass over which animal species are 

present, and gaps that reflect the non-linear transition to the next scale domain of 

pattern and process.  This aggregation/gap structure is therefore discontinuous.  
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Within the gaps, structuring processes are so variable as to not generate any pattern; 

therefore having a body mass that operates at those scales would not be evolutionarily 

advantageous.  Thus the structure of a complex adaptive system can be understood in 

large part as an interaction with pattern and process at discrete spatial and temporal 

scales.   

The discontinuity hypothesis has been formally extended to other complex 

systems, such as cities and firms.  Regional city size distributions and firm size 

distributions were found to be discontinuous, consisting of aggregations of similarly 

sized cities and firms, separated by gaps (Garmestani et al. 2005, 2006, 2008).  The 

pattern of clusters and gaps for city sizes was conservative across 100 years of data.  

Although this is compelling evidence in favour of the theory of multi-scaled 

hierarchies of structure in complex systems, there is also a body of evidence 

demonstrating that city size, firm size, growth rates, and animal size distributions fit a 

power law distribution (Zipf 1949; Brown & Nicoletto 1991; Stanley et al. 1996, 

2000; Canning et al. 1998; Axtell 2001; Marquet et al. 2005; Luttmer 2007; Batty 

2008).  Scale invariance is a hallmark of self-organized complexity (Kurakin 2009).  

However, evidence for scaling laws that represent a process that operates the same 

way across a wide range of scales and for which the mechanism is well understood is 

small.  Many power laws describing economic and ecological variables often fail to 

be compelling for a variety of reasons.  There is often a poor fit in the tails of the data 

(Stanley et al. 2000; Durlauf 2005; Luttmer 2007; Batty 2008; Gabaix 2009), and this 

suggests that different processes are at work in the tails.  For example, one of the best 

known scaling laws is Zipf’s law, which predicts that city size distributions will be 

continuous and fit a linear power law because growth rates are independent of size 
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and vary randomly (Zipf 1949; Gibrat 1957).  Garmestani et al. (2008) showed that 

the power-law fit masks ranges of scale over which different power laws fit—in other 

words, the data is discontinuous, and power laws fit over a cluster of similarly-sized 

cities, as opposed to over the entire distribution (see also Cao et al., 2014).   

Discontinuities not only fit the data better but are more relevant for 

understanding why some cities grow faster than others (Garmestani et al. 2007).  

Claims of a power law fit are often made for data that only represents a limited range 

of scales, whereas scale invariance presumes that processes are invariant across a 

wide range of scales (Avnir et al. 1998; Cristelli et al. 2012).  There is often no link to 

a mechanism or even plausible reasons as to why a power law fit makes sense.  

Durlauf (2005) cogently makes this argument for many of the power laws found in 

socio-economic variables.  It is likely that many of the power laws detected in  

economic and other data types are artefactual rather than reflecting a meaningful 

process, because power laws can be generated from purely stochastic processes, as 

well as dimensional relationships between variables (Avnir et al. 1998; LeBaron 

2001; Lux 2001; Brown et al. 2002; Stumpf & Porter 2012) (though see Kurakin, 

2009 for example of stochastically-generated power law behaviour with biologically 

sound mechanism).  Finally, we suggest that too often the real point is missed in the 

power-law debate—if a power law or fractal dimension fits the data, then what does 

that tell us about the mechanism generating scale invariance, the impact on system 

structure and dynamics, and the policy implications?  Does the power law hold over 

time, or is it a feature of a system in a critical state (Bak & Paczuski 1985)?  

Alternatively, what are the implications if data does not fit a power law?  Avnir 

(1998) argues that even though many purported discoveries of fractals hold over such 
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a limited range of scales (on average about one order of magnitude) as to render their 

fractality questionable, researchers still derive benefits from framing the research in 

terms of a power law, because it “allows one to correlate in a simple way properties 

and performances of a system to its structure and to the dynamics of its formation”.  

This is precisely what we would argue for the method we present here: identifying the 

fundamental scales of structure in a system allows us to analyse the processes 

pertinent to their formation, and how emergent phenomena of interest can arise from 

that structure.  In our experience, it is where data deviates from scaling laws that the 

interesting dynamics occur (Avnir et al. 1998; Bettencourt et al. 2007, 2010).   

The question therefore becomes, are economies discontinuous with regards to 

their size, as represented by GDP?  If economies fall into discontinuous size classes, 

and furthermore, if those size classes are robust over time, then it suggests that 1.  the 

processes that structure GDP  vary across spatial and temporal scales (i.e. are not 

scale invariant); and 2. the perspective offered by the discontinuity hypothesis on 

scaling in the global economy could drive novel insights into disparities between poor 

and wealthy countries. 

Discontinuity analysis as methodological choice has benefits, including that 

the methods are not sensitive to either measurement error or missing data (Nash et al. 

2014a), unlike the convergence literature where measurement error can have a 

significant impact on results (Durlauf et al. 2009).  Nor are there issues of initial 

position, whereby the selection of the year used as the initial baseline for calculation 

of convergence can change results, all common issues in the convergence literature 

(Bloom et al. 2003; Canova 2004).  Because we used a metric (GDP) available for all 

countries, data limitations do not constrain or bias pattern expression or restrict the 
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implications of our results.  The method does not require averaging or aggregating 

data across years, an approach which risks losing interesting deviations as it can only 

represent average behaviour (Quah 1996b).  Nor does data require binning, which can 

blur the number of aggregations that can be detected (as in Bianchi, 1997; Paap & 

Van Dijk, 1998).  There is no need to manipulate the data extensively, as is common 

to many convergence analyses.   

Furthermore, discontinuity analysis has no a priori subjective constraint on the 

number of possible groups or the membership within groups based on assumptions of 

shared initial conditions. There are no assumptions regarding the identity of the 

processes structuring the scale domains (analogous to clubs), so there is no risk that 

the choice of metric misses the mark entirely or is a stand-in for something else.  Our 

approach makes no assumptions about the identity of the countries in each 

aggregation from year-to-year, so makes no assumptions about behaviour over time—

it is concerned with whether or not there are aggregations and gaps in similar 

locations over time, which is indicative of scale domains independent of the identity 

of the countries within those aggregations.  This means there are also no assumptions 

about mobility, as Pittau (2010) and others make.  We make no assumptions about 

equilibrium or any other dynamics.  Perhaps most importantly, our method is 

embedded within a well-developed theoretical framework.  This theory includes 

multi-scaled hierarchical system architecture, multiple alternative regimes governed 

by different structuring processes, and thresholds that control movement between 

regimes, so provides a robust framework within which to discuss the results (Dakos et 

al. 2011; Lenton et al. 2012; Nash et al. 2014a; Allen et al. 2014). 
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Methods 

We used real GDP (GDP in 2005 constant dollars) and country population 

data from the United Nations Statistics Division (United Nations Statistics Division 

2012) to calculate a constant GDP per capita for all the countries of the world, for 

each year from 1970 to 2012; this was the maximum temporal extent of data 

availability for all countries.  The number of countries changed as countries were 

formed or dissolved, so both the sample size and the identity of the countries from 

year-to-year is dynamic.  All data were log-transformed, and each rank-ordered 

distribution was analysed for discontinuities using two methods, Monte-Carlo 

simulations using a uni-modal null (e.g., Restrepo et al., 1997), and Bayesian 

classification and regression trees (BCART) (Chipman et al. 1998), as is 

recommended (Stow et al. 2007).  Our Monte Carlo approach compares the observed 

size distribution with a continuous unimodal null distribution generated by smoothing 

the observed data with a kernel density estimator (Silverman 1981).  The null 

distribution is sampled 4000 times and the probability that the observed 

discontinuities in the size distribution occur by chance is calculated as a Gap Rarity 

Index (GRI) statistic and tested for significance.  The BCART is a Bayesian 

implementation of a classification and regression tree which performs a stochastic 

search over the space of all possible trees, using prior probabilities of a split occurring 

at any given node. The log integrated likelihood is used to select the best tree.  

Previous experiments with the sensitivity of the BCART to selection of prior 

probability determined that the number of iterations was more important, so standard 

procedure is to use a fixed prior of 0.5 and run 1 million iterations, 25 times.  The 

results of the Monte Carlo approach were confirmed with the BCART results.  
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Countries that bounded the distribution were permitted to be a group of one if they 

met the simulation significance threshold, while groups elsewhere in the data needed 

a minimum of two countries to be classed as a group.   

Once we identified the groups and discontinuities, if present, we generated a 

dissimilarity matrix for the purpose of comparing the dissimilarity of the distributions 

using non-metric multidimensional scaling (nMDS), a non-parametric ordination 

technique (Clarke 1993).  The nMDS uses only rank information and makes no 

assumptions about linearity or non-linearity (Zuur et al. 2007; Oksanen 2013).  We 

were primarily concerned with capturing broad changes in distribution structure over 

time, so created the nMDS matrix to represent that group/gap structure.  The rows of 

the matrix spanned the range of GDP values in the entire data set from smallest to 

largest, but were expanded to three decimals (GDP was rounded to two decimals) in 

order to account for the discontinuities, or gaps. Columns represented each year of 

data.  The matrix cells were filled in with 1’s and 0’s, whereby a 1 indicated the 

presence of a country at that particular GDP value in that year, and a 0 represented an 

absence of a country for that particular GDP in that year.  The entire aggregation from 

smallest to largest GDP was coded as a continuous 1, or presence, and the 

discontinuities between aggregations were coded as 0’s, or absences.  The nMDS uses 

this matrix to calculate all pairwise distances among samples, or each year of data.  

Once the number of dimensions was selected, the distance between each sample is 

plotted in ordination space, allowing for the visual assessment of the degree to which 

the distributions have similar structure from year to year.  If the location of the 

discontinuities and the extent and location of each aggregation was completely 
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random, then this would be apparent in the distance and placement of each year’s 

distribution to the others in ordination space.   

The nMDS was conducted using metaMDS in package vegan in R 3.1.2 (R 

Development Core Team 2016).  The dissimilarity matrix was created using 

Euclidean distance for binary data (Nash et al. 2014b).  Multiple dimensions were 

plotted in a scree diagram to find the lowest dimensionality with an adequate 

ordination fit as expressed by a stress value (<0.2, Clarke, 1993).  A cluster analysis 

using function agnes from package cluster and method = average was performed to 

detect groupings of years with similar structure. The cluster dendrogram was 

arbitrarily pruned to show 6 clusters.  This was considered a reasonable compromise 

between the two extremes of all years in 1 cluster, and all years in individual clusters. 

As the number of clusters increases from three, which consists of one outlier and two 

large groups, the two large clusters break into increasingly smaller sub-groupings 

without ever mixing in years from the other large cluster.  There is no data to suggest 

how many clusters is ‘best’.  The nMDS was overlaid with the cluster results, in order 

to show groupings in ordination space.   

An ANOSIM (Analysis Of Similarities) compared two timespans of the data.  

Group 1 encompassed 1970-1989, and Group 2 1991-2012.  These groupings 

captured the substantial increase in countries that occurred between 1989 and 1991, 

mainly due to the dissolution of the USSR, in order to assess whether the change in n 

was partially responsible for the large distance that occurred between 1989 and 1991 

in multivariate space.  We removed 1990 for the ANOSIM, as it is not possible to 

have a group of 1 country in an ANOSIM, and the number of countries increased 

from 186 in 1989, to 197 in 1990, and to 208 in 1991.  We ran 999 permutations.  The 
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ANOSIM generates an R statistic and a significance value for that statistic and 

denotes the degree to which the difference between the two groups is higher than the 

within group differences.  The axis scores from the nMDS were used in a spearman 

rank correlation analysis to see if the differences in structure between the distributions 

of countries in multivariate space explained movement along one or both of the axes 

in the nMDS.  The structure of each distribution was assessed in the ANOSIM using 6 

metrics: the total logGDP difference in wealth between the richest and poorest 

country; the number of countries; the number of aggregations; the average size of the 

gaps in logGDP; the average number of countries within each aggregation; and the 

average span of each aggregation in logGDP.  These metrics described the basic 

discontinuous structure of each distribution. 

Results 

The number of countries ranges from 186 in 1970, to 210 in 2012.  We found 

that in all years the distributions of per capita constant GDP are discontinuous, with 

groups of similarly sized economies separated by discontinuities, or gaps (Figure 1).  

Furthermore, many of the gaps are conservative and persist across the 43 years of 

data, particularly in the bottom and top thirds of the distributions.  The middle of the 

distribution tends to be more variable, with gaps persisting in the same location for 

fewer than half of the years.  The overall picture is one of conservative discontinuous 

structure, with some variability in the persistence and location of gaps between years, 

and more variability in the middle of the distributions.  If the discontinuities are 

artifactual, then we expect more randomness and variability in the tails of the data, 

rather than the centers.  However, even in the center of the distributions there are gaps 

that are present in 25-50% of the years. 
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In general, the total difference in wealth between the poorest and richest 

country narrowed over the span of the data.  Similarly, the number of  aggregations 

declined over time, as did the average size of the gap between aggregations.  The 

average number of countries per aggregation increased, as did the average span of an 

aggregation (Figures 1-4 in Appendix A).  The number of aggregations varied from 3 

to 10, but more than 50% of the years had either 4, 5, or 6 aggregations (Table 1 in 

Appendix A). 



 

 

60  Figure 2.1  Yearly discontinuous distribution of constant (2005) per capita GDP for 43 years.  Shading represents the 
proportion of countries falling in each cluster.  (Figure 2.1.pdf, 27kb) 
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The result of the nMDS on the per capita constant GDP show that in general, 

the distribution for each year is more similar in structure to the years that come before 

and after it than to years from which it is temporally separated, implying a 

conservativeness to the group/gap structure over time (Figure 2).  However, the 

cluster analysis overlaid on the nMDS reveals that there are groupings of years that 

are more similar to each other than to other clusters (Figure 2).  Interestingly, the two 

largest clusters capture broad movement along the y-axis, which correlates with 

unknown factors (see spearman rank correlation analysis below).  Two dimensions 

were sufficient to capture the complexity of the data with an acceptable stress value 

(0.1937).  The ANOSIM results, which compared two groupings of years (1970:1989 

and 1991:2012) were significant (R = 0.54; p < 0.001), suggesting that the difference 

between the two groups is greater than the differences in multivariate structure within 

each group (Figure 3).  This confirms our expectations that the abrupt change in the 

number of countries which occurred in 1990 and 1991 played a role in the large 

distance in ordination space between 1989 and 1991. 
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Figure 2.2  Ordination results for the two-dimensional non-metric multidimensional 
scaling (nMDS), showing the dissimilarity between years in terms of their structure of 
aggregations and gaps.  The clusters represent years which are most similar to each 
other. 



63 
 

 

 

Figure 2.3  An ANOSIM (Analysis Of Similarities) between 1970-1989, and 1991-
2012, to test whether the change in n between 1989 (n = 186) and 1991 (n = 208) was 
responsible for the large distance between these two years in the nMDS.  Both the R 
and p-value indicate that the difference between the 2 groups is higher than the 
within-group differences. 
 

 

The spearman rank correlation analysis, which evaluated the degree of 

correlation between the nMDS axis scores and the metrics capturing the structure of 

each distribution shows that the spread of the years along the x-axis (axis 1) is highly 

correlated with the structure of the distributions (Table 1), as all of the metrics are 

strongly correlated to the axis 1 scores.  That is, the movement of years along axis 1 

was explained by a decrease in the overall span of wealth (range in logGDP from 

poorest country to richest country), an increase in the number of countries, a decrease 

in the number of aggregations (Figure 4), a decrease in the average gap size, an 

increase in the number of countries per aggregation, and an increase in the average 
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logGDP span of an aggregation.  The location of the distributions along the y-axis 

(axis 2) are not correlated to these structural metrics, with the exception of a moderate 

positive relationship with total span of wealth encompassed by the distribution 

(Spearman´s rho = 0.38, p = 0.01).  This means that these metrics only partly explain 

the relationship of these distributions to each other in ordination space, as they are 

strongly correlated to only axis 1.   

 

 

  

Figure 2.4  Change in number of aggregations over time. 
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Discussion 

We analysed 43 years of GDP data representing all countries, and found that 

the rank-ordered size distribution for each year had a pattern of aggregations and 

gaps, where aggregations of similarly-sized economies were separated by 

discontinuities, or gaps in the distribution.  These discontinuous distributions suggest 

that as with ecosystems, city sizes, and firm sizes, there are scale-specific structuring 

processes that create persistent scale domains (Garmestani et al. 2005; Allen & 

Holling 2008; Nash et al. 2014a), as the pattern of the aggregations and gaps is largely 

conservative over time.  That economies fall into distinct size classes which are 

conservative over time has fundamental implications for understanding the processes 

that shape a country’s GDP, and could help to resolve some of the inconsistencies in 

the convergence club literature.  This analysis provides a foundational first step in 

understanding the multi-scaled structure of the global economic system, and the 

economies of which it is comprised, as a complex adaptive system. 

The persistence of the pattern of aggregations and gaps was particularly strong 

in the lower and upper thirds of the distributions, and aligns with the most consistent 

results from the convergence club literature, namely, that the poorest and wealthiest 

nations belong to distinct convergence clubs (Quah 1996a; Bloom et al. 2003; Apergis 

et al. 2012).  The muddying of the pattern of aggregations and gaps in the mid-ranges 

of the data is also supported by the convergence club literature, as analyses which 

allowed for more than two clubs found a strong pattern of poor and rich clubs, with 

transient clubs in the middle that have been proposed as regions that facilitate 

movement from the poor to wealthy end of the spectrum (Battisti & Parmeter 2013; 

El-Gamal & Ryu 2013).   
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The multivariate analysis highlighted that the persistence of pattern over the 

years was not random.  The nMDS treats each year as a ‘community’, and measures 

the pairwise distance of each community in terms of dissimilarity in structure 

(location of aggregations and gaps on a continuum of logGDP).  We represented 

structure via the pattern of aggregations and gaps, so the nMDS compares how similar 

the aggregation/gap structure is between years and then plots it in ordination space—

in this case, in two dimensions.  This visual representation reveals that as we move 

through the years the pattern of structure is largely retained, but also changes over 

time.  So 1970 is furthest from 2012, but also distant from 1991-1993.  If we traced a 

line through the years in chronological order, it would zigzag.  This suggests that the 

number of aggregations and the location of gaps is patterned but not static, nor does it 

change smoothly from one year to the next.  This is what we would expect in a highly 

dynamic state space governed by non-linear or rapidly changing processes.  The 

spearman correlation analysis showed that the location of each distribution along axis 

1 (the x-axis) is highly correlated to the structure of each distribution.  However, 

movement along axis 2 was not related to the structural metrics, indicating that there 

are other factors driving the differences between distributions.  Further work should 

test if axis 2 is correlated to econometrics such as those commonly assessed in the 

convergence club literature for their relationship to club formation; or to major 

disturbance events, such as wars or recessions. 

Basins of attraction and resilience 

Concomitant with the shift in the focus from convergence for all to 

convergence clubs for subgroups has been a shift in the neoclassical perspective that 

viewed economies as equilibrium systems, to one somewhat more in line with the 
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theory of complex systems, which posits economies as non-linear, non-equilibrium 

systems that reside within basins of attraction.  If indeed economies operate in a state 

space such that system variables will dynamically move towards a system attractor, 

then there are repercussions of such dynamics and behaviour that impinge on many 

other assumptions with regard to the short- and long-term structure, behaviour, and 

dynamics of economies, and these have not been effectively dealt with in the 

economics literature. 

Similar to the convergence literature, our approach cannot analytically 

demonstrate that the scale domains identified are actual basins of attraction.  We can, 

however, frame our findings in the context of complex systems theory and basins of 

attraction, ensure that we do not violate the assumptions of that theory in doing so, 

and evaluate whether our results are consistent with theory.  Our analyses support a 

conceptualization of economies as complex adaptive systems, operating within a 

global economic state space.  Basins of attraction are the regions within a state space 

for which a set of initial conditions will converge towards the same attractor.  A state 

space can have more than one basin of attraction, and both the state space and the 

basins are dynamic over time and space (Mumby et al. 2014; Bozec & Mumby 2015).  

Basins can change shape as a result of endogenous and exogenous forcing, and they 

can be temporally transient, as the state space can be altered to either allow or 

disallow the development of new attractors (Scheffer 2009a).   

If the set of national economies are the entities operating in the global 

economic state space, then our results suggest that there are some deep basins of 

attraction operating in the upper and lower portions of the country distribution, while 
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the middle ranges of the distribution may be a more dynamic region with shallower 

basins potentially winking in and out of existence (Figure 5).   

 

 

 

 

 

 

 

Implications of aggregation/gap structure for economics 

The finding of discontinuous structure in economies suggests that economists 

can utilize the extensive literature pioneered in other fields to explain dynamics in 

complex economic systems.  Identifying discontinuous structure is only the first step; 

one cannot infer from the discontinuous structure what creates it, but detecting said 

structure without any observer bias is an important first step for objectively 

identifying patterns of complex systems.  This provides the basis for the next step, 

which would be to identify the key processes responsible for structuring the scale 

domains, and determine the extent to which they are coincident with the processes 

Figure 2.5  The ball and cup heuristic represents a simplified state space with multiple 
basins of attraction.  The x-axis is the discontinuous distribution of GDP.  Each valley 
is a basin of attraction, analogous to an aggregation of similarly-sized countries, as 
identified in the discontinuity analysis.  The threshold which must be surmounted for 
a country (represented by the ball) to move into a wealthier basin tends to increase 
along the x-axis.  The lower and upper thirds of the distribution have larger and 
deeper basins, while the central basins are shallow, close together, and easier to move 
between. 
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already found to be critical in the economics literature (e.g. Alfonso-Gil et al., 2014).  

Doing so in the context of the discontinuous structure identified explicitly 

incorporates scaling into analyses, and may help resolve the often inconsistent results 

found in the economics literature, where a process highly relevant to one convergence 

club or one analysis is less so in another.  Although there are processes such as 

competition and market niche exploitation which are scale-invariant, we would expect 

that many processes operate over a limited range of scales, or operate differently at 

different scale domains.    

There are similarities but also clear differences between economies and 

ecosystems (Garmestani et al. 2009a, 2009b).  The processes known to be critical in 

economies are typically human in origin (such as governance, technological 

development, or investment in education), whereas many of the key processes in 

ecosystems are biotic or abiotic in origin and often less directly controlled by humans 

(such as precipitation, fire, and herbivory).  Although both are open systems, 

ecosystems tend to be more loosely coupled to each other than economies, which have 

more direct, strong, and dynamic relationships and feedbacks between each other.  

Whereas species evolve body sizes in an evolutionary theatre that is only slowly 

changing in the dimensionality of ecological structure, economies are comprised of 

slowly-changing people embedded in relatively fast changing societies.  The extent to 

which human agency introduces dynamism in the state space of economies is 

unknown, but we recognize that there is likely to be more variability than we see in 

the scale domains present within and across ecosystems (though see Barabasi, 2010).  

That said, our results suggest that there are, nonetheless, fundamental scaling 

processes in the economic state space that are sufficiently persistent to create discrete 
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scale domains of economic opportunity, particularly in the upper and lower ranges of 

the distribution.  The key processes structuring these scale domains may well be the 

same processes already widely analysed by economists for their role in wealth 

creation, more recent advances such as metrics of diversity in product space (Hidalgo 

et al. 2007; Hidalgo & Hausmann 2009; Hausmann & Hidalgo 2017), or may be more 

fundamental to the biology of humankind, such as competition, neurological hard-

wiring that structures population sizes (Kosse 1990; Dunbar 2008), the tension 

between self-interest and the ‘we’ (Lynne 2006), or the tension between 

diversity/redundancy that appears to characterize all complex adaptive systems (Zipf 

1949; Lee et al. 1998; Page 2010a).  More generally, our results suggest that 

economies adhere to similar structuring processes observed for a series of complex 

systems, including ecological and social (Allen et al. 2014).  

Testing these hypotheses in economic systems could focus on whether the 

aggregations of economies identified by the discontinuity analysis are correlated with 

economic processes, just as the convergence literature has analysed the relationship 

between processes/economic metrics and club formation.  A fundamental difference is 

that the aggregations detected are not subjective groupings constrained in the number 

of groups that can be detected, assumptions of shared initial conditions, or binning or 

other data manipulations (as in Paap and Van Dijk, 1998).  The pattern present in the 

aggregation/gap structure is more likely to reflect underlying processes and patterns 

representing scaling forces in the global economy than patterns derived from 

arbitrarily selecting levels of observation and equating them with fundamental scaling 

processes.  Another possibility is to focus on the movement of countries into and out 

of aggregations.  While Pittau and Zelli (2010) and Galor (2010a) and others assume 
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that immobility is a defining feature of convergence clubs and of basins of attraction, 

it may be that the basins of attraction for the poorest and wealthiest countries are 

particularly deep, with a high threshold which must be surmounted to depart the 

basin.  Our evidence supports this speculation, as the pattern of aggregations and gaps 

in the tails of the data are the most similar over time, and this would also account for 

the relative immobility of countries within those basins (Canova 2004; Battisti & 

Parmeter 2013).  The variability of the mid-ranges suggests shallower and more 

transient basins of attraction, where the processes structuring them are more dynamic 

over the years.   

Whether the discontinuous distribution of economies represents a series of 

basins of attraction remains an outstanding question, and perhaps dependent on our 

choice of GDP metric.  We also performed a discontinuities analysis on constant GDP 

without adjusting for population size, and the pattern of aggregations and gaps was 

similar to that of per capita GDP, but the gaps were more consistently present over 

time (Supplement Figure 6).   Economies are constrained in their size by factors such 

as geography and the material resources present within the system, as well as history 

and the events which have played a role in their structuring.  Adjusting for population 

size accounts for some of these inherent differences between countries, which may be 

why the aggregation and gap structure was clearer in the real GDP data than in the 

real per capita data.  Using real GDP may also conflate two things (size of population 

and size of economy) which interact, but are structured by different process.  

Regardless, using real GDP masks critical qualitative differences between economies 

in the same size aggregation, as some of the countries may be in a poverty trap, 

whereas others may be quite wealthy for their size.  Having both kinds of countries in 
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the same basin of attraction is not sensible, as they are clearly being structured by 

different processes.  Adjusting for population size accounts for this difference, 

making it more likely that the aggregations reflect countries in the same basin of 

attraction. 

Reduction in number of aggregations 

We interpret the decrease over time in the number of aggregations as a loss of 

a particular kind of complexity.  There was a steady reduction in the number of 

aggregations over the years, with a sharp reduction beginning in 1996 and persisting 

through 2011.  This suggests that there are fewer scale domains and fewer key 

processes structuring the size of economies.  These findings are consistent with 

graphs in Pittau et al. (2010), which show a reduction in the number of modes over 

similar timeframes using a kernel density approach, and other convergence work 

showing increasing distance between the wealthy and the poor (Quah 1996a; Pittau et 

al. 2010).  A simplification of cross-scale structure, as manifested in a reduction of 

scale domains, is a loss of levels in the hierarchy of the global economy.  In short, 

there are fewer basins of attraction.  This has no normative connotation, but the non-

random trend over time speaks to a simplification in the number of key processes that 

structure economies.  This is relevant because over time, CAS’s tend to grow in their 

complexity in order to capture and dissipate more energy and retain more material 

within the system (Schneider & Kay 1994; Beinhocker 2006; Hidalgo & Hausmann 

2009).  The complexity of a system derives from a multiplicity of features, including 

the heterogeneity of its parts, the number of them, the degree of connectivity between  

them, and the  diversity and number of hierarchical levels, among others.  For 

example, had we data from previous centuries, we would expect to see an increasing 
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number of aggregations over time as economies and the world have increased in 

complexity across all these features (Schneider & Kay 1994; Ulanowicz & Abarca-

Arenas 1997; Beinhocker 2006).  A reduction in the number of aggregations suggests 

a particular kind of simplification, in which fewer processes are responsible for 

generating scale domains (basins of attraction). This is not contradictory to the 

ongoing increase in economic complexity with regards to  the increase in output 

diversity and complexity in production (Klimek et al. 2012).  The reduction we 

observed may reflect the following, which are not mutually exclusive: a) a world with 

increasing connectedness between national economies and therefore a reduction in the 

number of key processes structuring the relative wealth of countries; b) a partial 

collapse of complexity, where resilience to disturbance is reduced and the ability of 

economies to capture and dissipate energy is diminished (Schneider & Kay 1994; 

Hidalgo & Hausmann 2009);  c) the network of economies is over-connected, 

rendering the global network vulnerable to cascading disturbances (Gunderson & 

Holling 2002; Pascual & Dunne 2005; Havlin et al. 2012); d) a reduction in resilience, 

as quantified by the contraction in the number of scale domains and thus a loss of 

heterogeneity.  These possibilities were demonstrated in the 2008 recession, but the 

sharp reduction in the number of aggregations occurred well before that in 1996, 

perhaps suggesting a reduction in the resilience of the global economy prior to the 

onset of the recession. 

Conclusion 

The relevance of both our work and that of convergence clubs lies in 

uncovering groupings of countries that may represent fundamental structuring 

processes in economic systems.  The difference between the two approaches is that 
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our method does not violate assumptions of complex systems theory, can objectively 

identify system scales, and makes few assumptions about the data.  The robust pattern 

of discontinuities in cross-national GDP over 40+ years strongly supports 

assumptions of complex adaptive systems theory regarding scaling and non-linearities 

in pattern and process, and warrant further explorations with regard to specific 

processes which may structure the identified scale domains.  An understanding of  the 

key processes governing each scale domain might improve our ability to manage 

those processes to achieve two fundamentally distinct things: facilitate the movement 

of an economy from a smaller scale domain to a larger by moving the economy 

towards the threshold defining the basin of attraction so as to facilitate a shift to 

another scale domain (synonymous with basin of attraction); or work to maintain the 

resilience (shape of the basin of attraction) of a desirable basin so as to more readily 

stay within a particular GDP aggregation.  Both ecology and economics have much to 

offer on these goals. There is a burgeoning literature in ecology on basins of 

attraction, regime shifts, and thresholds, while economics has much to offer on 

understanding the processes that drive growth and wealth creation.   

The movement away from linear equilibrium models in economics is marked, 

but has not manifested in a rigorous uptake of complex systems theory.  In many 

cases, neoclassical ideas of global convergence have merely been expanded to include 

multiple such equilibriums without altering fundamental assumptions about long-term 

dynamics and behaviour.  When an attempt to incorporate pieces of alternative 

theories has occurred, few researchers incorporate all of these changed assumptions 

and dynamics into their models at the same time, nor have they defined their new 

terms and assumptions in a robust manner.  If the base model is still equilibrium in 
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nature, than only one or two assumptions can be relaxed at a time (Beinhocker 2006), 

and even if the model is not predicated on equilibrium, it can be challenging to 

incorporate all the assumptions of complex systems dynamics due to methodological 

or data limitations.  The implications of a bimodal world bifurcated between rich and 

poor is a simpler and more tractable model than that of a multi-modal, multi-scalar 

world with different processes driving the creation and maintenance of each mode or 

basin.  As Ricardo Hausman (2012) wrote, “In trying to understand the nature of 

economic reality we have been much less willing to let the world tell us what it is 

made of and more willing to believe our theoretical contraptions”.  
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CHAPTER 3 PROCESSES THAT STRUCTURE SIZE CLASSES IN GDP 

Introduction: From ecosystems to economies 

Ecosystems are physically structured by processes that occur at spatial and 

temporal scales that are often separated by magnitudes of order.  Theory suggests that 

there are only a small number of processes that generate a size class, and they are not 

the same across all scales of a system.  Photosynthesis occurs at small and rapid 

spatial and temporal scales, while geomorphological processes drive the location of 

biomes over thousands of kilometres and century to millennial timescales.  The 

relationship of these scaled processes to species occurs through the medium of the 

physical structure of ecosystems; where and when resources occur in time and space.  

Animal body masses are strongly discontinuous in ways that correlate to the scales of 

physical structure available to them as resources (Nash et al. 2013b).  A mouse can 

forage on the seeds of a singular plant that would not even be perceived as a resource 

opportunity by a much larger animal.  This relationship is also bi-directional, in that 

both plant and animal species modify their surroundings and physical structure to 

promote the persistence of the resource structure on which they depend (i.e., there are 

strong positive feedbacks)(Kareiva & Bertness 1997).   

The extent to which this process-structure-species construct applies to 

economies is uncertain, but the fundamental architecture of complex adaptive 

systems, including economies, is multi-scaled and hierarchical as a result of self-

organizing processes that convert as much information, or thermodynamic energy, as 
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possible (Schneider & Kay 1994; Beinhocker 2006), and this suggests that economies 

will be impacted by similar process-structure organizing principles.  Furthermore, 

previous research (see Chapter 2) has demonstrated that economies fall into distinct 

size classes indicative of scale-specific processes creating basins of attraction.  

However, whether economic processes occur at distinct spatial and temporal scales 

sufficient to create scaled basins of attraction that represent economic opportunity at 

that range of scales is an open question.  Individual economies are clearly multi-

scaled and hierarchical with many levels of organization, but the processes that would 

potentially structure a network of economies are less obvious.  Are smaller economies 

structured by processes that occur at smaller and more rapid spatial and temporal 

scales than larger economies, or, as in work on city sizes, is growth rate variable 

among different scales/size classes (Garmestani et al. 2007)?  Conversely, it may be 

more appropriate to think of economies as a spectrum of poverty to wealth processes, 

where scaling is disconnected from space and time, and economies are instead a 

function of scale-invariant or scale-neutral processes that structure relative wealth, as 

expressed by per capita Gross Domestic Product (GDP).   

It is well established that individual countries are not on identical growth 

trajectories, and do not share a common path to wealth (Durlauf & Johnson 1995; 

Quah 1996a; Phillips & Sul 2009; Apergis et al. 2012).  Regardless of the economic 

metric evaluated investigations have found a minimum of two groupings of countries, 

the rich and the poor, where countries within a group either share a similar rate or are 

converging towards a similar rate for the metric under evaluation.  When 

methodologies allow for it, researchers have found more than two groupings (Durlauf 

& Johnson 1995; Apergis et al. 2012; Battisti & Parmeter 2013; El-Gamal & Ryu 
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2013), implying that multiple processes may differentially govern wealth and generate 

groupings of countries that are more complex than suggested by simple division into 

rich and poor countries.   

These groupings are generally referred to in the literature as convergence 

clubs (Baumol 1986), and are part of a body of work motivated to understand 

disparities in wealth between rich and poor countries.  For the most part, this literature 

does not stray far from the assumptions of neoclassical economics, which assumes a 

single linear equilibrium state for all cross-national economies, and seeks to 

understand how and why countries deviate from this equilibrium.  More recently, 

there has been a push to consider alternative assumptions for economic behavior, 

which include the possibility of multiple stable states, or multiple groupings of 

countries with shared econometric(s).  These studies explicitly allow for the 

possibility of multiple convergence clubs, and they consistently find them (Durlauf & 

Johnson 1995; Apergis et al. 2012; Battisti & Parmeter 2013; El-Gamal & Ryu 2013).   

The discovery of multiple clubs, also conceptualized as basins of attraction, 

necessarily drives inquiry into the processes that structure the basins.  Barro and 

McClearly (2003) wrote, “Previous research has used the experience of a broad panel 

of countries to assess the determinants of economic growth.  One general conclusion 

is that successful explanations have to go beyond narrow measures of economic 

variables to encompass political and social forces”.  A variety of studies have assessed 

social, cultural, political and financial metrics for their correlation with club 

membership, growth rate and wealth, with frequently conflicting results.  For 

example, Yang (2008) found that democracy reduced growth volatility in countries 

with a high degree of ethnic heterogeneity, but had little effect in countries with a low 



79 
 

 

degree of heterogeneity.  Tavares and Wacziarg (2001) concluded that democracy had 

both positive and negative effects of growth, similarly to Narayan et al. (2011) who 

found mixed results when exploring economic growth and political freedom, whereas 

Rock (2009) found that democracy caused growth and investment to rise in Asia.  

Alfonso-Gil et al. (2014) found that for the period 1850-2010, civil liberties and 

economic growth rate were positively correlated.  Differences between 

methodologies, objectives, and the countries under investigation have made it difficult 

to arrive at broad generalizations regarding the relationship between the various 

cultural and financial metrics and convergence clubs.  This has been exacerbated by 

differences in the assumptions of the various methodologies used to find clubs, as 

some methods a priori constrain the number of possible clubs, while others operate 

from differing assumptions regarding the realistic nature of a global growth rate and a 

single equilibrium point. 

Similarly to the convergence club research, we evaluated cross-national per 

capita GDP, using a method from ecology that objectively identifies discontinuities in 

rank-ordered data, and identified persistent discontinuities and multiple size classes 

(i.e., convergence clubs) in 43 years of cross-national per capita GDP (Chapter 2).  

The method identifies gaps in the distribution that are larger than expected by chance, 

and thus breaks the distribution into groupings of similarly-sized countries based on 

their per capita GDP.  The generic method can be used to identify discontinuities in 

any rank-ordered data.  Canova (2004) argues that clustering is more prevalent than 

convergence, even within groups, as there is a significant dispersion of steady states 

around each basin of attraction, making perfect convergence rare.  Discontinuity 

analysis presumes that survival at the boundaries of a basin of attraction is difficult, 
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resulting in gaps in a distribution, whereas convergence assumes an attractor which 

draws in trajectories.  The two are not mutually exclusive, but assessing gaps makes 

fewer assumptions as a weak attractor may yield a wide dispersion in trajectories 

within a basin Canova (2004).  More importantly, discontinuity analysis avoids 

pitfalls common to the convergence club literature (see Chapter 2).  Too often, 

methods to identify convergence clubs in economies constrain or a priori select the 

number of possible clubs, or constrain the groupings to countries with a shared initial 

condition in an assumption that shared initial conditions is required to end up on the 

same attractor.  Discontinuity analysis does not require the a priori selection of the 

number of possible clubs, makes no assumptions about shared initial conditions or the 

processes that might generate groupings of countries, and uses a metric available for 

all countries, thus is less vulnerable to methodological assumptions changing the 

patterns observed.   

The groupings identified by a discontinuity analysis are, however, analogous 

to those identified by the convergence club literature.  The convergence club literature 

tends to refer to the groupings as multiple stable states, or multiple equilibria, and 

occasionally as basins of attraction, though generally the attractor is presumed to be a 

fixed point equilibrium attractor.  The term ‘stable state’ implies a rigidity that is 

inappropriate for complex systems such as economies or ecosystems, and using that 

term requires the caveat that stability can include high levels of natural variation and 

stochasticity, so it is only the state at the system-level that stays in a persistent 

recognizable configuration.  As per Scheffer (2009b), we prefer the terms attractor 

and regimes, because they do not infer a stability that is unrealistic for complex 

adaptive systems such as economies.  Our working assumption is that groupings 
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identified by a discontinuity analysis consist of countries operating in the same basin 

of attraction, with a regime defined by the key processes that structure the basin.  

Regimes imply that the system stays in a recognizable ‘state’, without inferring  

stationarity or a lack of variability within the system.  Some economic researchers 

have claimed that movement between basins of attraction is evidence that the basins 

do not actually exist, as if stationarity within a basin is a definitional prerequisite 

(Galor 2010b; Pittau et al. 2010).  We argue that movement between basins of 

attraction is not only possible, but highly probable if changes in key variables within a 

system or in the state space itself move a system close to a bifurcation, where even 

small parameter changes can cause the system to cross a threshold and  move to an 

alternative attractor.  Backwards movement along this trajectory to the previous 

attractor can be difficult and sometimes impossible due to hysteresis, if the bifurcation 

is what is known as a catastrophic bifurcation.  To that end, identifying attractors in 

economic systems, as well as the key processes responsible for structuring a regime 

within an attractor is of interest, because it should facilitate an improved 

understanding of the key leverage points with which to either move a system 

(country) out of an undesirable basin, or maintain a system within a desirable basin.   

Purpose 

Our purpose is to test whether basic socio-cultural-historical differences 

among countries could be responsible for structuring discontinuous size classes in 

cross-national GDP.  The novelty of our analysis lies in the assumptions of our 

research question and the objectivity of our method for testing for groupings.  Our 

research question is grounded in assumptions regarding system behavior and 

dynamics derived directly from complex systems theory and ecological theory 
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regarding scaling processes in complex adaptive systems, and presumes that there is 

structure and hierarchy in the global economy, as well as non-linearity and non-

equilibrium processes.  Equally important, our methods make no data assumptions 

beyond the very general assumption that per capita GDP reflects something 

fundamental about the structure of global economies, and that size classes in wealth 

are non-random.   

We focus our analysis on variables reflecting basic socio-cultural-historical 

differences among countries, but we recognize that these variables are often correlated 

to each other, and we also recognize that financial metrics such as aggregate factors of 

production, technology, or Hidalgo and Hausman’s product space network complexity 

(2007; 2009) are also likely potential structuring processes in discontinuous cross-

national economic distributions.  We focus on socio-cultural metrics in part because 

they have received less attention in the economic literature as noted by Barro and 

McClearly (2003), but also because we are interested in whether the processes that 

structure economies are embedded in socio-cultural-political differences, are extant or 

neutral to those cultural differences, or are some combination thereof.  Tantalizing 

studies on size classes in human populations suggest that there are ‘panhuman’ 

thresholds that structure population size classes, based on basic human hard-wiring 

that regulates individual information-processing limitations (Kosse 1990, 2001; 

Dunbar 2008).  Some economic processes may be similarly scale-invariant, and 

operate in the same way across all economies regardless of size or socio-cultural-

historical-political-geographic differences because they are inherent to being human.  

However, scale-invariant processes with realistic mechanisms are relatively rare in 

complex systems (Avnir et al. 1998; Durlauf 2005).  What is more common are 
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processes that operate over a limited range of spatial and temporal scales, or have a 

different relationship at different scales, and generate discontinuities in the entities 

interacting with those processes. 

Our hypothesis is that socio-cultural variables may play a role in structuring 

basins of attraction of countries with similar GDP, and we test whether social-cultural 

variables appear to strongly delineate size classes.  Our choice of variables, therefore, 

is focused on socio-cultural variables for which the economics literature provides the 

strongest support for playing a role in economic growth, and for which there was 

sufficient data availability.  We selected four variables: democracy, or degree of 

political and civil liberty, life expectancy at birth, religion, and colonial status.  

Previous research suggests that these are correlated with economic growth and/or 

relative wealth.  Democracy appears to have a complex relationship with economic 

growth, as discussed earlier.  However, it is not the fact of the relationship that is 

contentious, but the nature of the relationship—does democracy drive growth, or does 

growth increase democracy (Alfonso-Gil et al. 2014)?  Investments in human capital, 

which include education and health care, as reflected in life expectancy, are similarly 

complex—does a longer life expectancy enhance economic growth, and/or does 

economic growth stimulate investments in health (Acemoglu & Johnson 2006; 

Berthélemy 2011; Cervellati & Sunde 2011; Barro 2013; Bloom et al. 2014)?  As with 

democracy, the relationships between the components of human capital and growth 

appear to be non-linear and relative to current wealth.  Religion is thought to 

influence economic outcomes because it is associated with personal traits of honesty 

and work ethics (Weber 2002); Barro and Mccleary (2003) found that economic 

growth is positively correlated with a belief in heaven and hell.  Finally, colonialism 
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is a driver of path dependency, in that a country’s economic development over time 

may be a function of significant historical events, such as whether or not a country 

was ever a colony.  Such a historical legacy may be significant enough to 

fundamentally alter a country’s trajectory over time, and thus be a key driver in 

structuring the size of the economy.  Much of the work on this issue has assessed 

different colonization policies or tenures, while we are more interested in the binary 

question of whether or not a country was a colony (Grier 1999; Acemoglu et al. 2001; 

Nunn 2009; Easterly & Levine 2012). 

We begin with the simple premise that the distributions of GDP will be 

discontinuous, and that these four variables may have a role in structuring the 

distributions.  The processes that structure ecosystems tend to occur at limited ranges 

of spatial and temporal scales and generate highly robust discontinuities in both 

ecological structure and the species that interact with both that structure and those 

processes; in other words, these key structuring processes create basins of attraction 

within the scale ranges over which they operate (Allen & Holling 2008; Nash et al. 

2013b, 2014a).  It is difficult to know a priori whether processes that structure 

economies follow a similar pattern or not.  A variable such as life expectancy could 

structure economies of all sizes (across all scales) and have the same relationship at 

all scales, in which case we would expect that no gaps in the distribution align across 

each level of the variable because there would be no basins of attraction (i.e. gaps 

would not occur in the same location along the GDP axis for the ‘High’, ‘Medium’, 

and ‘Low’ datasets, or might not occur at all—gaps may still be present because 

processes unaccounted for in this analysis could be structuring size classes in GDP).  

Alternatively, life expectancy could structure economies across all scales but have a 
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different relationship at different scales, in which case we would expect to see gaps 

align across the levels of the variable (i.e. gaps would occur in the same location 

along the entire GDP axis for the ‘High’, ‘Medium’, and ‘Low’ datasets for life 

expectancy.  Or finally, a variable may structure GPD but only at one or a few scales, 

in which case we would expect to see gaps occur in the same location at a limited 

range of scales across the datasets belonging to the same variable.  If gaps are 

congruent in the latter two cases, we cannot claim a mechanistic relationship between 

the variable and the lump/gap structure, but neither can we exclude the variable as a 

possible driver.  For example, life expectancy may play a critical role in structuring 

poor countries, but not wealthier.  This scenario of variables affecting one or a few 

size classes would in total give rise to a globally discontinuous distribution.  Finally, 

if the variables have no direct role in structuring size classes in economies, then we 

would expect no gaps to occur at similar locations across the levels of a variable.   

We also performed a reverse analysis that asked whether an unsupervised 

multivariate method could group the countries into groups similar to those identified 

by the discontinuity analysis, given only each country’s classifications for the socio-

cultural variables.  We first ran a discontinuity analysis on the full complement of 190 

countries to identify the lump/gap structure of the distribution using rank-ordered log 

GDP.  Then we used Multiple Correspondence Analysis (MCA), a dimension-

reduction technique that uses as input only each country’s classifications for the four 

socio-cultural variables.  The MCA is not provided either GDP or group membership 

(groups having been identified in the discontinuity analysis).  The question here is 

whether or not, given only the socio-cultural variables, the MCA could ‘correctly’ 

place each country on an ordination graph such that they were proximate to other 
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countries in the same size class grouping identified in the discontinuity analysis.  If 

the MCA could successfully group countries, then the implication is that these socio-

cultural variables explain the clusters of countries with a similar GDP value.  In other 

words, membership in a wealth size class can be explained or partially explained by 

these 4 socio-cultural variables. 

Methods 

We used real per capita GDP (constant 2005 dollars) for 190 countries from 

2010.  Countries were classified by their status for each of the 4 socio-cultural 

variables previously shown to be correlated with membership in convergence clubs, 

and then for each variable were divided into sub-groupings based on having the same 

status for that variable.  The variables are life expectancy at birth (3 levels), religion 

(3 levels), democratic status (3 levels), and colonial status (2 levels), for a total of 11 

different data sets.  We conducted a discontinuity analysis on each of the 11 data sets.  

Although other socio-cultural variables are also correlated with convergence club 

membership, there was insufficient country coverage; a minimum sample size is 

needed to run a discontinuity analysis (n ≥ 30 recommended).  Life expectancy data 

were from the United Nations (United Nations Statistics Division 2012), and we used 

the United Nations classifications of High, Medium, or Low life expectancy.  

Religion data were from the CIA World Factbook (Central Intelligence Agency 

2010), which provides a percentage breakdown of the religions the population 

identifies with.  We used the percentages to classify countries into 1 of 3 categories; 

countries were considered Christian or Muslim if ≥ 60% of the population was so, or 

Other if < 60% of the population identified with one dominant religion.  Democracy 

data came from Freedom House ‘Freedom in the World’ reports (2010) because they 
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provided the ‘thickest’ definition of democracy (included political rights and civil 

liberties) (Landman 2007), and covered the most countries.  We used the Freedom 

House classifications of ‘Free’, ‘Partially Free’, or ‘Not Free’.  Colonial status was 

binary (Yes or No) and came from Acemoglu et al. (2001).   

GDP and country population data was from the United Nations Statistics 

Division (United Nations Statistics Division 2012) to calculate a per capita constant 

GDP for each of the 190 countries, which was log-transformed.  The 190 countries 

were then broken into eleven separate datasets according to the socio-cultural 

variables.  Specifically, the 190 countries were broken into 3 life expectancy groups 

(n = 79 ‘High’, n = 49 ‘Medium’, and n= 62 ‘Low’); 3 religious groups (n = 104 

‘Christian’, n =45 ‘Other’, and n = 41 ‘Muslim’); 3 democracy groups (n = 85 ‘Free’, 

n = 59 ‘Partially Free’, and n =46 ‘Not Free’); and 2 colonialism groups (n = 128 

‘Yes’, n =62 ‘No’).  Each of the eleven datasets was then individually analysed for 

discontinuities.   

Two methods were used to detect discontinuities, as is recommended (Stow et 

al. 2007); a Monte-Carlo simulation using a unimodal null (e.g., Restrepo et al., 

1997), and Bayesian classification and regression tree (BCART) (Chipman et al. 

1998).  The Monte Carlo approach compares the observed size distribution with a 

continuous unimodal null distribution generated by smoothing the observed data with 

a kernel density estimator (Silverman 1981).  The null distribution is sampled 4000 

times and the probability that the observed discontinuities in the size distribution 

occur by chance is calculated as a GRI statistic and tested for significance.  The 

BCART is a Bayesian implementation of a classification and regression tree which 

performs a stochastic search over the space of all possible trees, using prior 
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probabilities of a split occurring at any given node. The log integrated likelihood is 

used to select the best tree.  Previous experiments with the sensitivity of the BCART 

to the selection of prior probability determined that the number of iterations was more 

important, so standard procedure is to use a fixed prior of 0.5 and run 1 million 

iterations, 25 times.  The results of the Monte Carlo approach were confirmed with 

the BCART results.  A country was allowed to be a solo ‘group’ if it was at either 

extreme of the data, but otherwise a minimum of 3 countries was required to be a 

group .  The eleven datasets were graphed on the same scale, so that the lump/gap 

distributions could be compared and assessed for congruence in the location of the 

lumps and gaps. 

The Multiple Correspondence Analysis (MCA) was done in R v. 3.3.0 (R 

Development Core Team 2016) using package FactoMineR.  MCA is an unsupervised 

dimension-reduction multivariate technique akin to Principle Correspondence 

Analysis that uses qualitative rather than quantitative data.  Ellipses were calculated 

using the default type in stat_ellipse in ggplot2.  Group membership was identified by 

using the discontinuity analysis on the entire complement of 190 countries.   

Results 

All eleven datasets had discontinuous distributions, which consisted of groups 

(lumps, or clusters) of countries with similar GDP, separated by gaps where there 

were no countries present for that range of GDP (Figure 1).  The number of groups 

varied from 5 to 11 across the eleven datasets, with an average of 8.5 groups.  A 

visual assessment of the distributions along the GDP axis (x-axis) shows some clear 

patterns in the data having to do with the correlation between these variables and 

wealth (Figure 1).  For example, former colonies fall in the middle of the GDP 
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spectrum with the exception of the Democratic Republic of Congo, which is in a solo 

group and is the poorest country of all 190 countries.  Conversely, not-colonies span 

the full range of GDP.  Similarly, Christian countries span the entire GDP range, 

while Muslim countries and countries that are Other (a non-Christian/Muslim-

dominated country) do not have countries in the tails of the data.  Countries that are 

Free and have a High life expectancy fall on the wealthy end of the GDP spectrum, 

whereas countries that are Not Free and have a Low life expectancy fall on the poor 

end of the GDP spectrum, and countries with a Medium life expectancy are 

constrained to the mid-ranges of the GDP spectrum.  Of the 4 variables, Life 

Expectancy is the most stratified by wealth.  Many of the distributions do not span the 

entire breadth of possible GDP, so the extreme tails of the data cannot be 

meaningfully evaluated for congruence in gaps. 
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 Figure 3.1  Discontinuous structure of the distributions partitioned by cultural variables.  Vertical red lines represent 
gaps that occur across all or almost all of the distributions.  (Figure 3.1.pdf, 6KB) 
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When assessing the distributions specific to each variable, it is clear that the 

gaps rarely align across all the levels for each variable.  In fact, in almost all instances 

where gaps align across two or more levels of a variable, they are also congruent 

across all levels of all variables; these master gaps are marked with red vertical lines 

(Figure 1).  Neither colonial status nor religion have any congruent gaps beyond the 

master gaps, while democracy has 6 gaps that are congruent for 2 of the 3 levels.  For 

life expectancy, the chance for congruent gaps is constrained by the fact that the 

distributions only overlap for a limited range of GDP, from 6.75 to 9.7 GDP.  There 

are several places where 2 levels have gaps in the same location beyond the master 

gaps (log X GDP and log Y GDP, but never for all 3 levels.  It is telling that there as 

many gaps that span all the distributions as there is congruence in gaps between levels 

of the same variable.  The master gaps that span the eleven distributions appear to 

originate from structure in the complete data set.  In other words, when we run a 

discontinuity analysis on the complete data set of all 190 countries, it identifies 5 

groups and 4 gaps (Figure 2), and the location of the gaps along the GDP axis 

matches the gaps marked with vertical red lines.   

Multiple Correspondence Analysis analyses systematic patterns of variation in 

categorical data and displays the results graphically in ordination space.  Both the 

individual observations (countries) and the categories (3 levels of religion, 3 levels of 

freedom, 3 levels of democracy and 2 levels of colonialism) are displayed (Figure 3).  

Individual observations are color coded by group.  The discontinuity analysis of the 

complete data set (no longer broken into groups by variable levels) found 5 groups of 

countries.  The ellipses are drawn using group membership in order to visualize how 

proximate countries in the same size class are to each other. 
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Free, Christian countries with a High Lifespan cluster closely (left hand side  

of graph), and are close to Not Colonies with a Medium Lifespan.  In the upper right 

quadrant, Former Colonies and Partially Free countries are close together, and those 

two variables are also near to two other closely clustered variables, Low Lifespan and 

Other religion.  In the bottom right quadrant, farthest from Free, Christian countries 

with a High Lifespan, lie Muslim and Not Free countries.  However, the ellipses, 

drawn using the density distribution of countries belonging to the same size class 

(Group 1, Group 2, etc.), tell a slightly different story.  First, it is clear that Group 5, 

which is the wealthiest grouping of countries, is comprised of countries that are highly 

similar to each other with regards to their classifications for all 4 variables, as 

evidenced by the very small ellipse.  On the other end of the wealth spectrum is 

Group 1, and while its ellipse does not overlap that of Group 5 at all, it is much larger, 

indicating that the countries in that group are more dispersed with higher variance in 

Figure 3.2  Discontinuous structure of the complete distribution of 190 countries.  
Note how the gaps occur at same location as gaps marked by red vertical lines in 
Figure 1.  Color coding reflects percentage of countries found in each size class. 
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their classifications.  Nonetheless, the poorest countries fall exclusively on the right 

side of the graph, associated with less freedom, non-Christian religion, and a lower 

lifespan.  They also tend to be former colonies.  The distribution of Group 2, the 

second-poorest group, also does not overlap with Group 5, has less variance then 

Group 1, and in fact largely falls inside the density distribution of Group 1, indicating 

that the countries in that group are more tightly defined by a lower lifespan, less 

freedom, non-Christian religion, and being a former colony.  Group 4, the second-

wealthiest group, is almost fully orthogonal to Group 2, and resides strongly on the 

left side of the graph, dominated by freedom, a high lifespan, not being a colony, and 

Christianity.  Group 3, which falls in the mid-ranges of the wealth spectrum,  has the 

broadest ellipse, encapsulating almost the entire ordination space.  

We calculated the percentage of each variable level that fell within each group 

identified by the discontinuity analysis (Figures 4-7).  Democratic freedom is strongly 

correlated to wealth, as no free countries fall in the poorest group, and only 2% of 

Free countries fall in Group 2, the second poorest group (Figure 4).  Similarly, only 

5% of the Not Free countries fall in the wealthiest group, and only 5% of the Partly 

Free countries fall in the wealthiest two groups. 

Religion is similarly stratified (Figure 5).  Christian countries tend to fall in 

the middle of the distribution, skewed toward the wealthy end.   
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 Figure 3.3  Multiple Correspondence Analysis with observations (countries) shown as points and levels of categories as text labels.  
Ellipses are drawn around each GDP size class to show the relative density of countries within a size class.  Group 1 is the poorest, 
and Group 5 is the wealthiest size class.  (Figure 3.3.pdf, 8.8KB) 
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The non-Christian or Muslim-dominated countries also fall primarily in the 

middle of the distribution, but are skewed toward the poorest groups (38% in two 

poorest groups, versus 16% in the two wealthiest groups). 

No countries with a High life expectancy fall in the two poorest groups, while 

no countries with a Low life expectancy fall in the wealthiest group, and only 2% fall 

in the second wealthiest group (Figure 6).  Countries with a Medium life expectancy 

are overwhelmingly medium in wealth, with no countries in either the richest or 

poorest group and 84% of the countries in Group 3.  Countries with a High life 

expectancy were not concentrated in the middle of the distribution, but were evenly 

spread across the 3 wealthiest groups. 

Like the other variables, a country’s colonization status is correlated with GDP 

(Figure 7).  Not-colonies fall predominately in the middle of the distribution in Group 

3, as do former colonies, but are moderately skewed towards the wealthier groups 

(16% in the two poorest groups, and 36% in the two wealthiest groups), while former 

colonies are skewed towards the poorer groups (24% in two poorest groups, and 12% 

in the two wealthiest). 

In sum, the distribution of variables across the countries aligns with the MCA, 

in that countries that fall in a wealthy group are more likely to be Free, Christian, have 

a High life expectancy and not be a former Colony, whereas countries that are in a 

poorer group are more likely to be Not Free or Partly Free, Muslim or Other, have a 

Low life expectancy, and be a former Colony. 
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Figure 3.4  The distribution of countries for variable Democracy across the 5 size 
classes of GDP, where Group 1 has the lowest GDP. 
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Figure 3.5  The distribution of countries for variable Religion across the 5 size 
classes, where Group 1 has the lowest GDP. 
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Figure 3.6  The distribution of countries for variable Life Expectancy across the 5 size 
classes of GDP, where Group 1 has the lowest GDP. 
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Figure 3.7  The distribution of countries for variable Colony across the 5 size classes 
of GDP, where Group 1 has the lowest GDP. 
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Discussion 

We tested whether discontinuities in GDP for 190 countries were associated 

with four cultural variables that have been explored by the economics literature for 

their relationship to wealth and growth rate, namely, democracy, life expectancy, 

religion, and colonialism.  We did so by evaluating subsets of countries partitioned by 

their classification for each variable for discontinuities and congruence in gaps.  For 

example, each of the 190 countries was classified for the variable democracy into one 

of three levels: Free (n = 85), Partly Free (n = 59), and Not Free (n = 46).  Each data 

subset was evaluated for discontinuities, which are non-random gaps in the 

distribution where no countries fall within that particular range of GDP.  Thus, the 

discontinuous distributions consist of groups of countries with a similar size of GDP, 

and gaps, where there are no countries.  The groups are size classes, endogenously 

generated from within the global economy and identified objectively by the 

discontinuity methodology, and are hypothesized to be basins of attraction that 

represent a particular set of economic opportunities at those spatial and temporal 

scales.  It is presumed that while a number of processes are likely to be responsible 

for structuring the size classes, or basins, there are likely a few key processes that 

operate over limited ranges of spatial and temporal scales that play a strong 

structuring role for each size class.  If any of our four variables were one of those key 

processes, than we would expect it to generate gaps that are align across all the levels 

of a variable.  

 In general, the results indicated that the distribution of wealth, as captured by 

GDP, was strongly discontinuous, which is what we would expect in a complex 

adaptive system due to hierarchy, scaling, and non-linear interactions.  Although we 
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found discontinuities in both the complete distribution and in all 11 data subsets, we 

did not find strong evidence that these variables are individually operating as primary 

drivers in structuring all the size classes because the gaps were not congruent across 

all levels of each variable.  The two exceptions were in the Partly Free and Not Free 

levels of the democracy variable, and the Low and Medium levels of life expectancy, 

where there were congruent gaps beyond the gaps inherited from the complete dataset 

(Figure 1).  The inconsistent alignment of the gaps across the levels of a variable 

suggests that while the cultural variables are associated with wealth they are not 

directly responsible for structuring the size classes at all scales.  We cannot, however, 

reject the possibility that these variables play a role in structuring the size classes, for 

two reasons.  First, there is the possibility that these variables interact with each other 

and/or other unexplored variables in complex ways to generate the gaps which occur 

across all the datasets.  Regressing these variables with interactions against size class 

membership would be ideal, but the small n in individual response categories and total 

number of parameters precludes that as a statistically robust approach.  Second, these 

variables may not operate in the same way across all countries, as other studies have 

suggested (Yang 2008; Narayan et al. 2011), but play an outsized role at only a 

limited range of spatial and temporal scales, as is the case in ecosystems (Holling 

1992).  For example,  democracy could play a vital role in maintaining a basin of 

attraction at the wealthiest end of the scale, but be less relevant in structuring the mid-

ranges.  In that case, we would not expect to see congruence in gaps across all levels 

of a variable.  Furthermore, similar work on growth rates in city size classes found 

that it varied by size class; the conclusion was that different processes drive growth at 
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different size classes.  Such a conclusion does not require interactions, just that 

process varies with scale (Allen et al. 2006; Garmestani et al. 2007). 

Disentangling these patterns is not trivial.  The rank-ordered distributions used 

in the discontinuity analysis mean that countries that are not proximate to each other 

in the distribution in terms of their log GDP will not end up in the same size class, 

unless there are very few size classes detected.  We controlled for population by using 

per capita GDP, so large and small countries can be found in the same size class, but 

countries with highly disparate per capita GDP are unlikely to be.  This means that the 

wealthiest countries and the poorest countries will be partitioned by their relative 

wealth.  Since the cultural variables that we used are correlated with wealth, in that 

wealthier countries are more likely to be democracies, have a high life expectancy and 

be Christian, it begs the question of whether our results are spurious.  We had a 

specific and novel hypothesis, which asked whether these variables could be 

responsible for structuring the size classes, which were detected by assumption-free, 

objective methods that evaluate rank-ordered data for discontinuities.  It was possible, 

therefore, that no discontinuities would be detected, or conversely, that only one 

discontinuity would be found (which results in two groups, one on either side of the 

gap), which would align with the ‘twin peaks’ convergence club literature which finds 

two clubs, one rich and one poor (Quah 1996a).  It was also possible that each data 

subset would be discontinuous but no gaps would align, indicating that other 

processes were responsible for generating scaling in the global economy but without 

providing any clues.  Instead, all the distributions were discontinuous, but with the 

exception of two levels of life expectancy (Low and Medium), and two levels of 

democracy (Not Free and Partly Free), gaps were not congruent across the levels of 
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the variables, suggesting that these variables are not directly structuring the size 

classes.  However, 4 of the 11 variables did share gaps, which would be an unlikely 

random outcome.   

We did not, however, end our analysis with the analysis of the discontinuities.  

We also took a reverse approach to evaluate whether or not, given just each country’s 

classifications for the four variables, an unsupervised dimension-reduction technique 

(MCA) could correctly predict size class membership.  If these variables are 

correlated with wealth, and the size classes are a function of wealth, then there is 

currently no way to distinguish between a linear correlative relationship between 

gradients in a variable and wealth, and that variable acting mechanistically to 

structure wealth.  This is akin to the challenges other researchers have faced regarding 

directionality between these variables and GDP—does religious belief drive GDP, or 

does GDP generate religious belief (Barro & McCleary 2003)?  However, it is clear 

from the economic literature that while these variables are correlated with wealth, 

they have a far from simple relationship, with often inconsistent and contradictory 

results.   

Thus, the MCA analysis sheds some light on these complexities, because it 

demonstrates that these variables have a differential relationship with wealth (Figure 

3).  The MCA shows that democracy and life expectancy strongly explain 

membership in the wealthiest size class, as manifested in a very small ellipse for 

Group 5, the wealthiest group (Figure 3), but was only generally correlated to country 

membership in the poorest size class.  The ellipse for Group 1, the poorest group, 

encompasses virtually all levels of all variables except for  Free, High Lifespan and 

Christian, whereas if the relationship were linear, we would expect to see an equally 
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small ellipse for the poorest countries containing Not Free and Low Lifespan.  In fact, 

the ellipse for Group 2, the second poorest size class, is smaller and more strongly 

correlated with variables that fall on the other end of the spectrum from Free and High 

Lifespan.  While these variables in general appear to be strongly related to being 

wealthy, they are more loosely related to being poor.  Furthermore, if wealth were 

linearly related to these variables, then we would expect the middle size class to be 

associated with the mid-ranges of these variables, namely, Partially Free, a Medium  

life expectancy, and Other religion.  Instead, the middle size class is the biggest 

ellipse of all, encompassing every level of every variable with the exception of Not 

Free.  This suggests that these variables are differentially and non-linearly related to 

wealth, which means that democracy or life expectancy may well be critical 

structuring processes for wealthy countries, but less so for less-wealthy countries.  

This might manifest as gaps that do not align across levels of a variable. 

It is also important to note that although gaps were generally not consistent 

across the levels of the individual variables, there were 4 gaps present across almost 

all levels of all the variables.  These ‘master’ gaps appear to reflect structure in the 

complete data set (a Narcissus effect) as they align with the gaps detected when the 

full distribution of 190 countries is analysed for discontinuities.  The master gaps 

provide strong support for the contention that there are processes acting as critical 

structuring agents and generating size classes in global GDP, leaving as an open 

question what those processes may be, and whether they are operate at all scales or 

only a limited range of scales.  If the hierarchical structure of economies is similar to 

ecosystems, it is likely that  different structuring processes affect one or a few scales, 

which in total give rise to a discontinuous distribution. 
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Furthermore, the master gaps occur in the tails of the data, a pattern that is 

corroborated by the convergence club literature and our MCA results.  The 

implication is that the basins of attraction are larger, deeper, and more persistent in the 

tails of the data, and shallower and more ephemeral in the mid-ranges.  Within the 

convergence club literature few researchers have framed their analyses in the 

language of complex systems, and compared the clubs to basins of attraction.  

Notably, some of these researchers have used methods that allow for more than two 

clubs, and find evidence for the presence of multiple clubs in a variety of 

econometrics (Durlauf & Johnson 1995; Apergis et al. 2012), but even more 

strikingly, they also find that the mid-ranges of the data tend to be messier than the 

tails (Battisti & Parmeter 2013; El-Gamal & Ryu 2013).  The MCA results show the 

same pattern.  Although only the ellipse for the wealthiest size class is small, the 

ellipses for the two wealthiest size classes are almost fully orthogonal to and 

separated from the ellipses for the two poorest size classes, while the ellipse for the 

middle size class is, as previously noted, expansive, implying that the socio-cultural 

variables do a poor job of explaining size class membership in the middle of the 

distribution.  This pattern indicates stronger attractors in the tails of the data.  Previous 

research (Sundstrom et al. in review) found that the discontinuous distributions of all 

countries of the world over 43 years of data had discontinuous pattern that was 

strongly persistent in the tails of the data over time, with gaps occurring across almost 

all years of data in the same location, whereas the middle of the distribution showed 

higher variability on the number and location of gaps.  In dynamical systems theory, 

this suggests that the basins of attraction operating in the middle of the distribution 

have weaker attractors and are more transient. 
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Conclusion 

The global economy, comprised in this study of 190 national economies, is 

strongly discontinuous, consisting of groups of countries with a similar per capita 

GDP.  The cultural variables we explored appear to be strongly correlated to the 

wealthy size classes, moderately correlated to the poorest size classes, and not at all 

correlated to the mid-ranges.  Whether there is a mechanistic rather than associative 

relationship is unknown, as is the nature of the processes that are structuring the size 

classes—are they scale specific, scale neutral, or processes that impact all scales but 

do so differentially?   A rule in ecology is that only a small handful of processes 

structure any given scale domain, or size class (Gunderson and Holling, 2002).   

Further work that expands the range of variables tested for their association with the 

size classes to include econometric variables would hopefully shed light on the 

processes structuring them.   
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CHAPTER 4 CROSS-SCALE RESILIENCE IN THE HAWAIIAN 
ARCHIPELAGO 

Introduction 

The cross-scale resilience model was proposed as a method to account for 

diversity, and particularly functional diversity, in measures of ecological resilience 

(Peterson et al. 1998).  Ecological resilience emerges from a multiplicity of ecosystem 

attributes, including adaptive capacity and response diversity, so the cross-scale 

resilience model captures only a portion of the system attributes that underpin 

resilience (Elmqvist et al. 2003; Allen & Holling 2010).  The relative importance of 

functional diversity for ecosystem persistence and function has been validated in non-

resilience related ecological studies that have their roots in the extensive debate on the 

value of biodiversity (Tilman et al. 1997; Symstad & Tilman 2001; Díaz et al. 2007).  

The outcome of that debate has confirmed that richness and redundancy in functional 

traits as expressed by species are critical for ecosystem productivity, persistence, and 

vulnerability to disturbances (Mouillot et al. 2013b; Gagic et al. 2015; Cadotte 2017).   

The merits of measuring functional diversity are therefore clear, as there are 

increasingly strong mechanistic links between functional diversity and ecosystem-

level attributes.  The functional diversity literature is now well-developed, and classic 

biodiversity metrics such as diversity and evenness have been adapted, expanded, and 

validated as a means of measuring functional diversity (Hubálek 2000; Villéger et al. 

2008; Laliberté & Legendre 2010; Santini et al. 2017).  Univariate categorical traits 

that require species’ a priori classification into functional groups have been replaced 
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by sophisticated continuous multi-trait metrics that cluster species according to their 

trait expression (Villéger et al. 2008; Petchey et al. 2009).  What is not accounted for 

in these diversity evaluations, however, is scale. 

The strength of the cross-scale resilience model therefore still lies in its 

explicit articulation of the scales at which species’ functionality is expressed.  There is 

no longer any question that functional diversity plays a critical role in ecosystem-level 

attributes that are of interest, such as resilience and productivity.  But the degree to 

which it is valuable or necessary to understand how functional diversity  is distributed 

within and across the scales of a given system remains less examined. 

I used coral reef fish community data from the Hawaiian archipelago to 

examine whether the cross-scale resilience of fish communities that come from 

different regions within the archipelago, or from reefs that are dominated by different 

regimes, have the same cross-scale resilience.  My expectation was that the cross-

scale structure will systematically differ both between regions and among reef 

regimes and will be higher in the northwestern Hawaiian islands, and for communities 

found on coral-dominated reef. 

Material and Methods 

Study area 

The Hawaiian archipelago consists of a string of islands that are highly 

isolated from any continent.  The main Hawaiian islands (MHI) and the northwestern 

Hawaiian islands (NWHI) are considered two distinct regions within the archipelago 

because the MHI are heavily populated and the reefs are subject to a variety of 

anthropogenic disturbances, including overfishing and pollution (Williams et al. 2011; 
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Friedlander et al. 2013), whereas the NWHI are considered relatively pristine as the 

area is unpopulated, formally protected, and free of any localized anthropogenic 

disturbances (Kittinger et al. 2011). 

Data 

All data were manipulated and analysed in R v. 3.4.2 (R Development Core 

Team 2016) with the exception of the Gap Rarity Index.  Specific packages used are 

referenced in the text. 

Coral reef fish data came from a large-scale monitoring program in the 

Western Central Pacific ocean collected as part of the NOAA Pacific Reef 

Assessment and Monitoring Program (PRAMP) and supplemented by additional 

survey efforts led by Papahānaumokuākea Marine National Monument (PMNM), 

using identical methods and design (Heenan et al. 2017).  Fish data were collected in 

2010 from 302 sites across 11 islands.  Hawai’i, Kaua’i, Lāna’i, Maui, Moloka’i, 

Ni’ihau, and O’ahu are part of the MHI, and French Frigate Shoals, Kure, Lisianski, 

and Pearl & Hermes are from the NWHI (Figure 1).   

Reef sampling was limited to hard-bottom substrate in < 30 meters of water.  

Sampling sites were chosen randomly prior to the survey cruise, and the number of 

sites per island were proportional to reef size.  Surveys were conducted using 

underwater visual counts in the form of a stationary point count where pairs of divers 

conduct simultaneous counts in adjacent 15 meter cylindrical plots (see  McCoy et al. 

2016 for detailed survey method), and length of fish to the nearest cm was recorded.  

Fish were converted to biomass using the appropriate length-length conversion if 

necessary , followed by the length-biomass conversion.  Conversion metrics primarily 

came from Fishbase (Froese & Pauly 2017) and Kulbicki et al. (2005) while a few 
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were developed by PRAMP for fish classified to the genus or family level.  Trophic 

level classification came from the PRAMP database.   

 

 

 

 

Sampling data were pooled by island using site regime classifications from 

Jouffray et al. (2014), who classified each of the 302 sampling sites into either coral, 

turf, or macro algae benthic reef regime.  Macro algae and turf sites were pooled 

together, as those regimes were more similar to each other than to the coral regime 

(Jouffray et al. 2014).  Each island therefore had two fish community data sets, one 

for all fish from coral-dominated sites, and one for all fish from macro algae and turf-

dominated sites.  The island of Ni’ihau did not have any coral sites, leaving a total of 

21 community data sets.  Data for each community consisted of a list of fish species, 

their regional maximum body size, and their classification by trophic level.  Regional 

maximum body size for each species was compiled by recording the largest observed 

fish for each species from all fish sampled during 2010-2016 at the same 11 islands 

Figure 4.1  Map of the study area.  Islands in the lower-right block belong to the main 
Hawaiian islands, while the remaining islands are part of the northwestern Hawaiian 
islands (from Jouffrey et al. 2014). 
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by PRAMP.  Regional maximum size was used instead of maximum observed body 

size in FishBase because many of the FishBase observations were recorded in the 

1700’s or 1800’s and come from all over the world, so may represent an unrealistic 

standard for fish size in the western central Pacific given changes to coral reef fish 

habitat in the last century and differences between habitats around the globe.  The 

regional maximum body size and maximum observed body size distributions were 

significantly different (p-value from Wilcoxin paired test  < 0.001).   

As species richness is a function of area sampled (Gotelli & Colwell 2001) 

and larger reefs were more heavily sampled than smaller reefs, I used sample-based 

rarefaction analysis (package ‘vegan’) to ensure that sampling was sufficient to allow 

among-site comparison.  Rarefaction is a specialized form of species accumulation 

curve that standardizes data sets by repeatedly resampling the pool of samples without 

replacement (Gotelli & Colwell 2001).  Sites can only be validly compared if the 

rarefaction curve asymptotes.  Rarefaction curves were computed on functional 

diversity rather than species diversity, as that is the base metric used in the analysis.  

All sites minus one clearly asymptoted, and as that site was nearly at an asymptote it 

was retained in the analysis.   

Cross-scale resilience 

The cross-scale resilience model equates a resilient distribution of functional 

diversity emerges from the overlapping diversity of functions within a scale domain, 

and the redundancy of functions across scale domains (Peterson et al. 1998).  As the 

first step in an analysis, it is necessary to identify the scale domains of a system.  I 

followed the established methodology in the literature (Holling 1992; Sundstrom et al. 

2012; Nash et al. 2014a) and identified the scale domains for each of the 21 
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communities with the Gap Rarity Index (GRI) on rank-ordered log transformed fish 

biomass.  The GRI compares the observed size distribution with a continuous 

unimodal null distribution generated by smoothing the observed data with a kernel 

density estimator (Silverman 1981).  The null distribution is sampled 4000 times in a 

Monte Carlo procedure and the probability that the observed discontinuities in the size 

distribution occur by chance is calculated as a GRI statistic and tested for 

significance.  The coral community from Kaua’i was dropped from the analysis as it 

had 8 species, which is an insufficient sample size for the GRI. 

Metrics of cross-scale resilience 

Three metrics were used to capture the distribution of functions within and 

across scales (Allen et al. 2005).  Average functional group richness is the average 

number of functional groups in each scale domain.  Within-scale redundancy is the 

average number of species per functional group per scale domain.  Cross-scale 

redundancy is the average number of scale domains at which a functional group is 

represented.   

Statistical analysis  

Communities were compared using a factorial MANOVA, with region (MHI 

and NWHI) and regime (coral and macro-turf) as two-level independent factors, and 

average functional group richness, within-scale redundancy and cross-scale 

redundancy as response variables.  Island was designated as a random effect to 

account for the possibility that variation within an island was higher than variation 

among islands.  A Spearman rank correlation coefficient showed only a moderate 

correlation between average functional group richness and within-scale redundancy 
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(0.65), and the data passed all assumptions of a MANOVA, which are outliers (pkg 

‘mvoutlier’); multivariate normality (Shapiro-Wilk pkg ‘mvnormtest’); homogeneity 

of variances (Fligner-Killeen base pkg), and homogeneity of covariance matrices 

(boxM pkg ‘biotools’). 

Results 

A basic exploration of the data reveals the relationships between the species 

attributes of richness, functional richness, and number of scale domains with the 

independent variables of region and regime.  There were 20 community data sets, as 

each of the 11 islands had a ‘community’ representing all coral sites pooled and all 

macro-turf sites pooled, except for Kaua’i and Ni’ihau.  Species richness ranged from 

43 to 126 species; the number of scale domains detected ranged from 5-10; and the 

number of functional groups ranged from 9 to 11 (Table 1).  As expected, the number 

of functional groups increases with the number of species (Figure 2).   

 

Figure 4.2  Relationship between species 
richness and functional groups for all reef fish 
communities. 
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Table 4.1  Fish community metrics of the Hawaiian archipelago. Regions are main Hawaiian islands and northwestern Hawaiian islands; 
Regimes are coral or macro-turf;  FG = functional group. 

 

Region Island Regime # of species # of scale 
domains 

# of 
FG’s 

Cross-scale 
redundancy 

Avg # of FG’s 
per scale 

Within-
scale 
redundancy 

MHI Hawaii C 101 8 11 3.82 5.25 2.43 
MHI Lanai C 63 9 10 3.90 4.22 1.72 
MHI Maui C 84 7 10 3.70 5.29 2.21 
MHI Molokai C 60 8 9 3.78 4.25 1.66 
MHI Oahu C 46 8 9 3.33 3.75 1.47 
MHI Hawaii MT 125 9 11 4.45 5.44 2.56 
MHI Kauai MT 126 7 11 3.36 5.29 3.46 
MHI Lanai MT 87 8 10 3.40 4.25 2.49 
MHI Maui MT 117 9 11 4.18 5.11 2.53 
MHI Molokai MT 51 8 10 2.50 3.13 2.17 
MHI Niihau MT 105 6 11 2.82 5.17 3.20 
MHI Oahu MT 104 5 11 3.00 6.00 2.39 
NWHI French Frigate Shoals C 83 8 10 3.20 4.00 2.40 
NWHI Kure C 58 7 11 3.00 4.71 1.68 
NWHI Lisianski C 84 10 10 4.30 4.30 1.99 
NWHI Pearl & Hermes C 43 7 10 2.70 3.86 1.72 
NWHI French Frigate Shoals MT 92 6 11 3.00 5.50 2.73 
NWHI Kure MT 98 5 11 2.91 6.40 2.89 
NWHI Lisianski MT 50 7 9 3.00 3.86 1.90 
NWHI Pearl & Hermes MT 119 8 11 3.55 4.88 3.21 
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The relationships between  region and regime and the number of species, number of 

functional groups, and number of scale domains are largely insignificant.  

Communities from a macro-turf regime have more species and more functional 

groups, but there is little difference between regimes or regions for the other species 

attributes (Figure 3).    

An initial MANOVA found a significant multivariate effect for regime and 

island, but not region (Table 2).  The relationships between region and regime and the 

three cross-scale metrics are largely insignificant in visual inspections via boxplots 

(Figure 4).  Univariate analyses for the effect of regime and island for each of the 

response variables found the effect to be significant only for within-scale redundancy 

(Table 3).  In other words, within-scale redundancy varied between islands and within 

islands, and was higher for communities from a macro-turf regime (Figure 5). 
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Figure 4.3  Boxplots for differences in median values of three descriptive 
measures for coral and macro-turf regimes, and the main Hawaiian islands 
(MHI) and northwestern Hawaiian islands (NWHI). 
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Table 4.2  MANOVA results comparing cross-scale resilience metrics between 
regions, and between regimes, both within islands and among islands.  
 

Error: Island Df   Pillai approx F num Df den Df Pr(>F) 
 Region 1 0.175 0.424 3 6 0.743 
 Regime 1 0.794 7.715 3 6 0.018 * 

Residuals 8 
      Error: Within Df   Pillai approx F num Df den Df Pr(>F) 

 Regime 1 0.689 4.4204 3 6 0.058  . 
Residuals 8 

      Significance codes:  0  ‘***’  0.001 ‘**’  0.01  ‘*’  0.05  ‘.’  0.1  ‘ ’  1 
   

Table 4.3  ANOVA results testing for significant differences in each cross-scale 
metric between regimes, both within islands and across islands. 

 

Error: Island Df Sum Sq Mean Sq F value Pr(>F) 
 Response Cross-scale redundancy 

    Regime 1 0.206 0.206 0.611 0.455 
 Residuals 9 3.029 0.337 

   Response Average # functional groups per scale domain 
 Regime 1 0.542 0.542 0.769 0.403 
 Residuals 9 6.344 0.705 

   Response Within-scale redundancy 
   Regime 1 2.172 2.172 17.294 0.002 ** 

Residuals 9 1.131 0.126 
   Error: Within Df Sum Sq Mean Sq F value Pr(>F) 

 Response Cross-scale redundancy 
    Regime 1 0.168 0.168 0.566 0.474 

 Residuals 8 2.374 0.297 
   Response Average # functional groups per scale domain 

 Regime 1 1.352 1.352 2.160 0.180 
 Residuals 8 5.008 0.626 

   Response Within-scale redundancy 
   Regime 1 1.721 1.721 12.803 0.007 ** 

Residuals 8 1.075 0.134 
   Significance codes:  0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’  0.1 ‘ ’  1 
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Figure 4.4  Boxplots for differences in median values of the three cross-scale 
metrics for coral and macro-turf regimes, and the main Hawaiian islands 
(MHI) and northwestern Hawaiian islands (NWHI). 
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Figure 4.5  Comparison of the within-scale redundancy for each 
community, coded by regime type.  Red squares indicate a coral regime, 
while blue squares indicate a macro-turf regime. 
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Discussion 

The results of the MANOVA suggest that there were no differences in cross-

scale resilience between the two regions, and only a limited difference  between 

regimes or islands.  The only significant effect found was within and between islands, 

and the univariate ANOVA’s determined that only one of the three cross-scale metrics 

had a significant relationship, within-scale redundancy.  Within-scale redundancy 

calculated the amount of functional redundancy within a scale domain and was higher 

for macro-turf communities, even when within-island variation was controlled for.  

Reef fish communities dominated by macro algae or turf had, on average, a higher 

functional redundancy within each scale domain than reef fish communities found on 

coral-dominated reef. 

This is an unexpected result for a number of reasons.  The null hypothesis was 

that cross-scale resilience would be higher in islands belonging to the northwestern 

Hawaiian islands, and among coral-dominated communities.  By a variety of criteria, 

the NWHI region is less disturbed than the MHI (Friedlander et al. 2013), and remote 

islands in general support up to three to four times more standing biomass of reef fish 

(Sandin et al. 2008; Williams et al. 2015).  Friedlander et al. (2013) found that 

differences in density, size and biomass of reef fish communities was 260% higher in 

the NWHI compared to the MHI.  Interestingly, Cinner et al. (2016) found that some 

sites sampled in both the MHI and NWHI had significantly less fish biomass than 

expected given the environmental and socioeconomic conditions they are exposed to, 

suggesting that factors that either interact in unexpected ways or are currently 

unaccounted for are impacting reef communities.  All these studies were assessing 

biomass, and higher biomass in the NWHI is almost completely due to larger-bodied 



121 
 

 

apex predators (Friedlander et al. 2013).  As my analysis did not include abundance 

but rather functional group representation, even having just one fish sampled that 

belongs to a rare functional group such as large predators is sufficient to count in the 

tally of functional groups at that scale domain, so will influence average functional 

richness per scale domain and cross-scale redundancy.  For within-scale redundancy 

to be impacted, there would need to be a second observation of a large predator 

belonging to a different species.  Failing to account for abundance is a weakness of 

this method, but  the metric most robust to this is, in fact, the metric which was 

significantly different between islands and regimes.   

Comparing regions may have been confounded by the loss of the Ni’ihau and 

Kaua’i coral communities from the data set, further unbalancing the number of 

communities between the two regions.  Ni’ihau was removed because it had no coral 

sites, and Kaua’i was removed because it had only one sampling location that was 

coral dominated, and only 8 species recorded which is insufficient for the GRI.  The 

absence of coral sites in the MHI was not accounted for in the analysis, and although 

it may not be statistically significant in the sense that more islands were sampled in 

the MHI, it is interesting that both of the islands lacking coral dominated communities 

were from the MHI.  It is also possible that comparisons between regions may not be 

appropriate even though in general, remote reefs typically have both more standing 

biomass and larger-bodied taxa.  Differences in non-human related environmental 

variables such as oceanic productivity, wave energy and sea surface temperature can 

significantly impact the ability of a reef to support reef stocks (Williams et al. 2015; 

Robinson et al. 2017).  Finally, coral-dominated reefs are also believed to represent a 

less disturbed and more pristine system than their macro algae or turf-dominated reef 
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counterparts.  The lack of significant difference in the means of average functional 

richness per scale domain and cross-scale redundancy between regions, regimes, or 

islands is therefore surprising.  There are two primary ways by which we might 

reinterpret these results.  The first is to question the soundness of the original 

hypothesis, and the second is to consider what ‘resilience’ means in the specific 

context of the Hawaiian archipelago. 

Assumptions of the analysis 

I assumed that the NWHI is a more pristine ecosystem as a result of 

experiencing little to no human population , and therefore experiencing little to no 

localized anthropogenic disturbances such as fishing pressure or pollution from 

nearby landmasses (Williams et al. 2011; Friedlander et al. 2013).  However, it should 

be noted that the original analysis classifying the 302 sampling sites into regimes 

found that ~ 50% of all sites were turf-dominated sites, across both the MHI and 

NWHI (Jouffray et al. 2014). This suggests that  disturbances driving habitat regime 

are occurring throughout the archipelago.  Turf-dominated reef occurs when macro 

algae are grazed and there is natural coral mortality (Mumby et al. 2007).  The ability 

of coral to recruit and overgrow turf algae is naturally slow, and becomes even slower 

when nutrients are elevated, giving turf algae a competitive advantage under 

conditions of nutrient enrichment (Vermeij et al. 2010).  The prevalence of turf sites 

throughout the archipelago suggests that a combination of nutrient enrichment in the 

MHI and increased coral mortality across the archipelago could drive increased turf 

sites.  Despite being extremely remote from localized anthropogenic pressures, the 

NWHI reefs may nonetheless be diminished in their cross-scale resilience as a result 

of more globalized disturbances such as ocean acidification and increasing sea surface 
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temperatures.  Finally, another factor that may account for a failure to find differences 

between the regions may be that not all remote reefs support equally high fish 

biomass, as the very remote northern US Line Islands had almost two and half times 

the biomass of the equally remote NWHI (Williams et al. 2015). 

Other assumptions concerned the relationship between the cross-scale metrics 

and coral reef regimes.  Coral-dominated reefs are associated with increased habitat 

complexity compared to macro algae or turf-dominated reefs (Nash et al. 2013b; 

Jouffray et al. 2014).  In fact, our sites were classified into regimes by Jouffray et al. 

(2014) using a Principle Components Analysis that showed a clear relationship 

between high coral cover, high crustose coralline algae cover, and high structural 

complexity.  We assumed, therefore, that because coral habitat has more habitat 

complexity than macro algae or turf habitat, there would also be more scale domains 

detected in those fish community distributions (Nash et al. 2013b, 2014b).  An 

operating assumption of the discontinuity hypothesis, verified by empirical evidence, 

is that the number of scale domains found in animal communities is analogous to 

habitat complexity, because discontinuities in animal distributions reflects scale 

domains in ecological structure (Polo & Carrascal 1999; Haskell et al. 2002; Szabó & 

Meszéna 2006; Fisher et al. 2011; Nash et al. 2013b; Stirnemann et al. 2015).  Animal 

body size is used as a proxy to detect scale domains in ecological structure because of 

the difficulty in measuring structure, but one of the only studies that successfully 

analysed structure for discontinuities did so on coral reefs, and found that the number 

of scale domains found in reef structure was correlated to the number of modes found 

in fish size distributions (Nash et al. 2013b).  Modes are merely another way to find 

scale domains in fish size distributions, so are fully analogous to our approach of 
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finding breaks in rank-ordered size data.  We also expect that habitat complexity is 

positively related to species richness and functional group richness (which are 

strongly correlated to each other).  Therefore, we would expect coral habitat to have 

more scale domains, higher species richness, and higher functional richness, which 

should translate into higher values for all three cross-scale metrics. 

Indeed, our coral reef fish communities had on average more scale domains 

than the macro-turf communities (Figure 2), but the relationship was insignificant 

(Wilcoxin rank sum test, p > 0.05).  However, Nash et al. (2013b) found that the 

relative abundance of fish in a mode was more correlated to habitat structure than was 

the number of modes (scale domains) in a fish distribution.  As we did not use 

abundance when detecting our scale domains, we cannot know if abundance within 

scale domains has a stronger relationship with degraded and un-degraded sites than 

the actual number of scale domains detected.  An inspection of the abundance of fish 

sampled at each community reveals that while two sites in the NWHI had the highest 

abundance of fish sampled, they were both macro-turf sites (Figure 6).  Not only was 

there no significant difference in the abundance of fish between the MHI and NWHI 

(Figure 7) (Wilcoxin rank sum test, p = 0.7135), macro-turf sites had significantly 

greater average abundance than coral-dominated sites (Figure 8) (Wilcoxin signed 

rank test, p = 0.02).  Given that there was an even distribution of both macro algae 

and turf sites between the two regions (Jouffray et al. 2014), it would appear that there 

is a robust pattern of greater fish abundance sampled at macro-turf sites than at coral 

sites. 
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Figure 4.6  Abundance of individual fish sampled from reef communities across 
the MHI and NWHI.  Communities from a coral regime are in red, and 
communities from macro-turf regimes are in blue. 
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As for the assumptions that coral habitat would be associated with higher 

functional richness, and higher means for the three cross-scale metrics, none of them 

hold up.  For example, functional richness is higher for macro-turf sites (Wilcoxin 

rank sum test, p <0.05), and the greater abundance at macro-turf sites is not biasing 

our results because sampling rarefaction curves for functional diversity almost 

uniformly asymptoted.  More sampling would not result in finding more functional 

groups within a community.  There is no relationship between cross-scale redundancy 

and average number of functional groups per scale domain and either regime or 

region (Figure 3).  As none of the three metrics are weighted by the number of scale 

domains present, they are neither biased by scale domains, nor are they taking into 

account the number of scale domains.  They merely calculate each metric at each 

scale domain and then average across all scales to attain a community-level average.  

This may be a weakness of the current method given the expectation that habitat 

complexity equals more scale domains and thus could be a temporal measure of 

Figure 4.7  Boxplots comparing median values of abundance of individual 
fish sampled from coral and macro-turf sites (left), and from the MHI and 
NWHI (right).  Means are indicated with red circles. 
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degradation.  It would appear that my expectations are wrong on two counts: in most 

cases, there is no relationship at all between regime and region and the cross-scale 

metrics for the archipelago, and in the one instance in which there is a relationship, it 

is in the opposite direction as that expected: macro-turf sites have a higher within-

scale redundancy than do coral sites, both within an island and among islands. 

This brings us to the second assumption about resilience of what, and to what.  

I assumed that the difference in anthropogenic disturbances would manifest in higher 

values for the cross-scale metrics in the less disturbed sites.  I assumed that the given 

resilience of an ‘untouched’ community would be higher than the reduced resilience 

of a highly disturbed community.  Instead it would appear that the conversion of hard 

coral habitat to a macro algae/turf dominated regime has generated an increased 

resilience in these sites as manifested by a greater within-scale redundancy of 

function.  It is interesting to note that when comparing coral and turf communities, 

most of the macro-turf functional groups have higher degree of within-scale 

redundancy across multiple scale domains (Figure 8).  Each observation is the 

abundance for an island community (i.e. French Frigate Shoals coral community is a 

red point, and French Frigate Shoals macro-turf community is a blue point).  If we 

just consider the three herbivorous groups, browsers, grazers, and scrapers (Figure 8), 

we can see that browsers and scrapers tend to occur only at larger scale domains, and 

grazers tend not to occur at the largest scale domains.  Herbivory has long been 

argued to play a key role in maintaining hard coral reefs in that state (Knowlton 1992; 

Hughes 1994) and reduced herbivory is correlated to local changes in reef regime 

(Williams et al. 2001).  There is evidence from mid-depth reefs in the Caribbean that 

although biomass of grazers was positively associated with cropped turf and 
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macroalgal cover, it was negatively correlated with macroalgal cover as there simply 

weren’t enough grazers to maintain the reef in a cropped state (Williams & Polunin 

2001).  The implications for cross-scale resilience are unclear because biomass and 

the cross-scale metrics are assessing different attributes, but one possibility is that 

macroalgae and turf-dominated sites may support a higher functional diversity and 

redundancy in herbivorous fishes, even if their biomass is insufficient to return the 

site to a hard-coral dominated regime. 

Interestingly, there are also more large invertivores (Large IF), planktivores, 

small invertivores (small IF), and small predators (SmallPred) in macro-turf 

communities, although this effect does not hold at the largest scale domains.  This 

suggests that  coral reef communities have more within-scale redundancy at the 

largest scale domains, and this is reinforced by the large predator (Large Pred) 

observations in which coral reefs have large predators present at larger scale domains 

than macro-turf communities.  It is not possible to know the mechanism in this 

specific context for this disparity between coral and macro-turf communities at the 

larger scale domains.  Does coral habitat support larger-sized fish, or does the 

presence of larger-sized fish prevent coral habitat from becoming macro algae or turf 

dominated?  In general, a reduced abundance of fish in larger size classes as 

evidenced by a less steep size spectra is correlated to human population density and 

access to markets to sell fish, but the relationship is less significant between regions in 

the Hawaiian archipelago than within the MHI (Robinson et al. 2017), which may be 

why we see only minor differences in the functional redundancy at large scale 

domains between coral and macro-turf regimes. 
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Figure 4.8  Each plot shows the number of species of that functional group sampled at 
each scale domain.  Each community is plotted as an observation, and color indicates 
whether it is a coral or macro-reef dominated community.  Smoothing curves are also 
colored by regime, and allow a comparison of relative within-scale redundancy for the 
two regimes for each functional group. 
 

Another  possibility derives from a basic premise of the cross-scale model that 

argues that disturbances that impact the abundance of a species often occur at specific 



130 
 

 

scale domains within the systems, as opposed to operating in a scale-invariant 

manner.  Fishing, for example, typically targets larger-bodied fish.  The cross-scale 

model presumes that in the event of a scale-specific disturbance, compensatory 

responses are most likely to occur first by species in that same scale domain that also 

belong to the same functional group but have a different response diversity, so are not 

impacted by the disturbance.  Functionally redundant and similarly sized species,  if 

they exist, are most able to take advantage of resources at that scale (Ernest & Brown 

2001; Elmqvist et al. 2003; Bellwood et al. 2004; Nash et al. 2013a).  In other words, 

they will be competitively released and in the best position to take advantage of the 

freed-up resources due to the fact that they forage at similar spatial and temporal 

scales as the species whose abundance was reduced.  It is possible, therefore, that the 

increased redundancy of function at smaller-medium scale domains for macro-turf 

communities reflects a compensatory response as a result of the loss of larger-sized 

fish. 

Functional group classification 

This analysis classified functions in the most simplistic manner possible.  

Species that in reality represent multiple continuous traits and vary for the ‘amount’ 

of trait they express across individuals in a population were reduced to one category 

of a single categorical trait. Petchey (2004) demonstrated that a priori construction of 

functional groups may be no better than randomly assigning species to groups.  

However, assigning values to reef fish for multiple traits, although desirable, is 

especially challenging because for many species multi-trait information is 

unavailable.  At the same time, coarse classification methods fail to account for the 

way in which functional traits in fish with indeterminate growth can change over their 
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ontology.  Using continuous multi-trait data would not only require exhaustive 

information about variation in trait expression within species, it would also require 

creating arbitrary cut-offs where fish above or below a certain size change their trait 

categorization.  It has been shown that coarse functional categorizations such as those 

used here can still adequately discriminate  variation between communities (Nash & 

Graham 2016) but information is inevitably lost.  From our perspective, the challenge 

is to classify species with multiple or continuous traits and also understand these traits 

within and across scale domains.  Although sampling data were available for this 

analysis that represented individual fish sized to the centimetre, current methods to 

detect scale domains such as the GRI are inadequate for data where many fish have 

the same size.  An alternative method is to use some form of kernel density estimation 

to identify modes in the distribution, but then it becomes necessary to determine 

where a mode begins and ends, as all individuals must fall within a mode.  Until 

methodologies can be developed to objectively identify either discontinuities or 

modes in individual size distributions, our best alternative is to test the addition of 

more sophisticated functional diversity measures to the three currently used here. 

Conclusion 

As with any ecosystem, there are multiple environmental and human-driven 

variables that can impact community composition, abundance, and resilience.  This 

analysis took a novel approach to a well-studied coral reef ecosystem, and assessed 

whether the cross-scale resilience of reef fish communities differed by region, island, 

or regime.  Due to the complexity of the underlying differences between and among 

regions and islands resulting from environmental variables such as sea surface 

temperature, oceanic productivity, and wave energy or anthropogenic variables such 
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as protected status, history of fishing pressure, access to markets, and nutrient 

enrichment , it is difficult to draw strong conclusions.  Nonetheless, there was a clear 

signal that the within-scale redundancy of functions was higher for macro-turf sites, 

both within an island and between islands.  Although it may feel ironic that the 

resilience was higher in the more degraded reef communities, it is a reminder that 

resilience is not innately good or bad, but merely a measure of a system’s ability to 

remain in its current state given the disturbances it must cope with.  In this light, the 

resilience of degraded sites across the Hawaiian archipelago is higher than coral-

dominated sites, suggesting these sites will persist in this regime unless there are 

significant changes in external drivers, and that coral sites, as a result of their lesser 

resilience, may be vulnerable to future regime shifts to macroalgal or turf dominated 

regimes. 
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CHAPTER 5 THE ROLE OF ABUNDANCE IN THE CROSS-SCALE 
RESILIENCE MODEL 

Introduction 

Long before Darwin’s Origin of Species (1859), humans have carefully 

observed the natural world and noted what species are present, and in what numbers 

(e.g. Aristotle’s History of Animals circa 4th century BCE).  Such basic knowledge 

remains integral to the most advanced natural science theories of our time.  One such 

theory arises from complex systems science, and argues that the resilience of 

ecological and other complex systems emerges from a suite of attributes that allow the 

system to flex, absorb, and adapt to disturbances in a way that promotes the long-term 

persistence of the system in a recognizable configuration (to remain in a regime, or on 

an attractor; Holling 1973).  One of the core attributes that drives resilience is the 

distribution of species functional traits within and across the scales of the system, as a 

resilient distribution balances the tension between diversity and redundancy that is 

common across evolved systems (Peterson et al. 1998; Hillebrand et al. 2008; Page 

2010b).  Species perform many ecological functions that contribute to system 

maintenance and processes; these include nutrient cycling, soil formation, primary 

production, pollination, and more.  Recent research has made it clear that long-term 

system persistence and stability is strongly dependent on functional diversity, as 

represented by the functional roles species play (Hooper et al. 2005; Petchey & 

Gaston 2006; Hillebrand & Matthiessen 2009).  Diversity, however, can come at the 

expense of redundancy, because a high diversity means fewer species overlap in their 
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functional traits so the loss of any one species can mean a loss of that functionality 

(Mouillot et al. 2013a, 2014).  Redundancy, in the form of multiple species that have 

a similar functional role, provides critical functional reinforcement over time and 

space.  Resilience emerges in large part from the balance of functional diversity and 

functional redundancy within and across the scales of ecosystems (Peterson et al. 

1998). 

This cross-scale distribution of function is captured in the cross-scale 

resilience model, a model that bridges the gap between the mechanisms governing 

how individual species self-organize, and the emergence of the ecosystem-level 

property of resilience (Peterson et al. 1998).  The cross-scale resilience model 

currently accounts for which species are present, the scales at which they operate, and 

the functional roles species play, but not the numbers in which they are present.  

Metrics like abundance, biomass, and energetics inform us about how much resource 

is present, and therefore how much specified function is provided, which is currently 

missing from the cross-scale resilience model.  Incorporating abundance into the 

cross-scale model is not straightforward, as it is not at all certain what configuration 

of cross-scale abundance would provide the most relative resilience to disturbances, 

because compensation processes, when broadly defined, can include negative 

covariation as a result of competitive release, positive facilitation, and intraspecies 

behavioural plasticity.  Our purpose, therefore, is to detail the ways in which we 

would expect abundance to be relevant to the cross-scale resilience model based on 

abundance research that has occurred elsewhere in ecology, and to put forward a 

series of testable hypotheses that would improve our ability to anticipate and quantify 

how resilience is generated, and how ecosystems will (or will not) buffer recent non-
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stationarity in climate processes and other anthropogenic disturbances (Milly et al. 

2008). 

Background and research motivation 

Holling changed the trajectory of ecology when he proposed that ecological 

resilience “is a measure of the persistence of systems and of their ability to absorb 

change and disturbance and still maintain the same relationships between populations 

or state variables (Holling 1973) and contrasted it to engineering resilience, which 

focuses on “stability near an equilibrium steady state, where resistance to disturbance 

and speed of return to equilibrium are measured” (Holling 1996).  In effect, he 

proposed a new paradigm for ecosystem dynamics; one which described ecosystems 

as complex adaptive systems with thresholds, emergent phenomena at larger scales 

that cannot be predicted from aggregating knowledge at smaller scales and non-

equilibrium dynamics with multiple alternative stable states.  This perspective was in 

contrast to prevailing views of ecosystems as having linear, predictable dynamics, and 

a single fixed equilibrium state.  Resilience sensu Holling provides a way to 

conceptualize, measure, quantify, and manage the vulnerability of complex adaptive 

systems.  

As part of his conceptual model of ecological resilience, Holling and 

colleagues presented a framework to capture both the cycles of change that occur in 

ecosystems, and the different spatial and temporal scales at which these cycles operate 

(Gunderson & Holling 2002).  The adaptive cycle represents an idealized portrait of 

the phases of system development, maturation, collapse, and renewal that reflect 

internal processes of self-organization and evolution over time.  Nested adaptive 

cycles that operate at different spatial and temporal scales are called a panarchy 
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(Gunderson & Holling 2002).  Systems have different resilience at different stages of 

the cycle, providing insight into how structure interacts with process to drive system 

vulnerability.  Feedbacks at smaller and faster scales can cascade up a system, as in 

when fire begins in a stand of trees but spreads through the forest, or can act as a top-

down constraint, as in when climatic patterns of moisture constrain where forest can 

develop.  This hierarchical structure of pattern and process playing out at distinct 

spatial and temporal scales is the ecological theatre upon which individual, 

population, and community interactions unfold. 

The Textural Discontinuity Hypothesis (Holling 1992), hereafter referred to as 

the discontinuity hypothesis, was developed to test the basic proposition of nested 

adaptive cycles (Holling pers comm, Garmestani et al. 2009)).  It states that the key 

processes that structure ecosystems occur at distinct and limited ranges of spatial and 

temporal scales, called scale domains, driving the emergence of ecological structure 

that occurs at distinct and limited spatial and temporal ranges of scale.  The species’ 

components of this structure are more likely to persist if they have body masses that 

allow them to take advantage of the available scale domains of resource opportunity, 

as body mass is allometric with many life history and behavioural traits (Peters 1983).  

The transition from one scale domain to another is non-linear, creating discontinuities 

in both ecological structure and animal body mass distributions.  These discontinuities 

exist where there is either extreme variability in structuring processes or no persistent 

structuring processes.  In short, the scale domains identified by analysing distributions 

of animal body masses and ecological structure for discontinuities reveal the scales at 

which adaptive cycles operate (Gunderson & Holling 2002).  Discontinuities found in 

both organism body mass distributions and in ecological structure have since 
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confirmed these ideas (Thibault et al. 2011; Nash et al. 2014a, 2014b; Raffaelli et al. 

2015; Spanbauer et al. 2016), as has work on scaling and body mass in other 

disciplines (Haskell et al. 2002; Fisher et al. 2011; Hatton et al. 2015). 

The cross-scale resilience model (Peterson et al. 1998) bridged resilience 

theory, the discontinuity hypothesis, and panarchy, and was proposed as a measure to 

capture four elements that were the essence of Holling’s original argument for 

ecological resilience.  These are: 1) ecosystems are spatially and temporally multi-

scaled, discontinuous, and hierarchical; 2) ecosystems may have multiple alternative 

states in which they can exist under the same environmental conditions; 3) resilience 

is an emergent phenomena, and as such results from the interactions of individuals; 

and 4) the persistence of relationships, processes and functions is more important than 

stability or stationarity in either species presence or abundance.  The model 

specifically proposes that ecological resilience emerges from the diversity of 

overlapping functions within a scale domain, and the redundancy of functions across 

the scale domains, as this is most likely to buffer system level properties against 

disturbances that occur at particular scales within the system (Figure 1).  Wohlleben 

(2016), for example, describes the reproductive strategy of Central European 

deciduous trees that produce large seeds coveted by mice, squirrels, and jays for their 

high oil and starch content (oaks, chestnuts and beeches).  Mice often bury their seed 

stores at the base of the trunk from which they gathered the seeds or within 10 metres 

of the tree, while squirrels do so up to 100 metres from the tree, and jays will 

transport the seeds up to 5 kilometres away.  Because the seeds are most successful 

when growing in the shade of their mature counterparts, this overlapping function by 

seed dispersers across spatial scales provides resilience to the tree community because 
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disturbance at one spatial scale leading to the loss of a seed disperser can be 

compensated for by seed dispersers operating at other scales.   

 

 

 

 

 

 

 The cross-scale model was seminal because it provided a measure of 

resilience that captured critical system features that had been somewhat neglected by 

the traditional ecological literature, and provided a much-needed mechanism to 

address the provisioning of resilience (Oliver et al. 2015).  The model evaluated 

species presence not in terms of species richness (number of species), but in terms of 

Figure 5.1 Resilience emerges from an overlapping diversity of functions within a 
body mass aggregation, and a redundancy of functions across body mass 
aggregations.  Species within a body mass aggregation interact with their environment 
at similar spatial and temporal scales.  In this stylized example, seed dispersal is 
performed by 3 species that operate at distinct spatial scales: a mouse, a squirrel, and 
a jay. Adapted from (Holling 1992; Wohlleben 2016). 
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the functional composition represented by the community (number of different 

functions and number of species representing a given function).  Functional 

composition has since been shown to be more critical to the maintenance of system-

level features like primary productivity and persistence within a regime than species 

diversity (Rudolf & Rasmussen 2013; Soliveres et al. 2016).  Secondly, the model 

explicitly incorporated an objective evaluation of the scales at which process and 

pattern unfold, something long argued by Wiens and others as paramount to any 

robust understanding of ecosystem dynamics and behavior (O’Neill et al. 1986; Wiens 

1989; Levin 1992).  However, what is currently missing from the model is an 

understanding of the importance of the abundance of organisms and their functional 

traits with regard to how they are distributed within and across the scales of an 

ecosystem.  This is an important consideration because if the cross-scale hypothesis is 

accurate, the resilience of ecosystems is dependent on the distribution of these 

functional traits within and across scales.  As the function is imparted by species that 

are themselves unevenly distributed across scales and even within scales, what is the 

effect of fluctuating organism abundance on ecosystem function and thereby 

resilience? 

Furthermore, the cross-scale resilience model has always implicitly assumed 

that the primary mechanism by which the cross-scale distribution of species’ 

functions copes with disturbance is via changes in the abundance of species within the 

same functional group as a result of either compensatory dynamics or differential 

responses to environmental drivers (response diversity), but there have been few tests 

of this assumption (though see Angeler et al. 2013, 2014, 2015).  The case for 

response diversity was put forth in the original cross-scale resilience paper (Peterson 
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et al. 1998), but validations of its importance have been generic in the sense that they 

have confirmed that response diversity facilitates the coexistence of species and 

maintenance of ecosystem properties (Elmqvist et al. 2003; Baskett et al. 2014; 

Scranton & Vasseur 2016; Wieczynski & Vasseur 2016), as opposed to determining 

whether the distribution of species with different responses to disturbances within and 

across system scales is non-random and contributes to or diminishes system resilience 

(though see Nash et al. 2015).  Adding response diversity to an assessment of cross-

scale resilience is conceptually straightforward but in practice can be difficult due to 

the lack of necessary species-specific knowledge (Lefcheck et al. 2015).  We seek to 

discuss the ways in which including species’ relative abundances into the cross-scale 

resilience model can clarify and expand our understanding of resilience, as well as 

how response diversity might impact resilient abundance distributions.  Furthermore, 

we will articulate broad predictions and testable hypotheses pertaining to abundance 

and the cross-scale resilience model. 

Role of abundance in ecosystem resilience and the cross-scale model 

According to the cross-scale resilience model, species within a functional 

group will be distributed non-randomly across the scale domains of a system such that 

interspecific competition is reduced because species that forage and use ecological 

resources in a similar way will be separated by the scales at which they do so as they 

have distinctly different body sizes (Peterson et al. 1998; Greenfield et al. 2016).  

Niche compartmentalization by size has been demonstrated by several ecological 

models and theories (Vergnon et al. 2012; Rudolf & Rasmussen 2013; Scheffer et al. 

2015).  However, this does not explain how abundance among species will be 

distributed within a functional group or at specific scales.  Both phylogeny and 



141 
 

 

broader abiotic factors constrain the number of scale domains at which a functional 

group can occur.  For example, in a North American dry mixed grassland, aerial 

insectivores tend to occur at smaller scale domains than do aerial carnivores.  The 

largest aerial insectivore is the Common Nighthawk (Chordeiles minor) at 76 g, 

whereas the largest aerial carnivore is the Golden Eagle (Aquila chrysaetoes) at ~ 4 kg 

(Sundstrom et al. 2012); in other words, not all functions occur within all body size 

classes. 

The ecological literature is rife with research on the spatial distribution of 

abundance and the role of abundance in ecosystem processes and stability.  Some 

basic tenets have emerged from this body of work, and include the following: there 

are few common species and many rare (Gaston & Fuller 2007; Connolly et al. 2014); 

there are more small species than large species (Damuth 1981); species abundances 

are typically unevenly distributed within their geographic range (Maurer 2009); and 

species with a high abundance/biomass have large effects on ecosystem processes 

(Suding et al. 2008; Petchey & Gaston 2009; Stuart-Smith et al. 2013) although rare 

species can also contribute to the maintenance of such processes (Mouillot et al. 

2013a).  These tenets shape our expectations for the patterns of abundance and 

function that we anticipate within the context of the cross-scale resilience model, but 

also create many new questions. 

Abundance distributions 

Prior research within the broader ecological literature on patterns between 

body size, abundance, and functional traits/guilds suggests that abundance 

distributions within and across scales will be skewed; specifically, the most abundant 

species will be in different functional groups, and will also have distinctly different 
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body sizes (Figure 2) (Damuth 1981; Petchey & Gaston 2006; Vergnon et al. 2009; 

Magurran & Henderson 2012).   

 

 

 

 

 

Species with similar body sizes use resources at similar spatial and temporal scales, 

but competition is reduced by utilizing different resources (Rudolf & Rasmussen 

2013).  Vergnon et al. (2009) found that the most abundant phytoplankton species 

were far apart in terms of body size (the scale domain at which they operated), 

suggesting that strong interspecific competition prevents similarly-sized species from 

Figure 5.2  Prediction for distribution of abundance within functional groups, 
and across scale domains.  Clusters of similarly-sized species (represented by 
filled circles on x-axis) interact with their environment at similar spatial and 
temporal scales, so experience the strongest direct competition.  Our 
expectation is that that the most abundant species will belong to different 
functional groups, and they will occur at different spatial and temporal scales 
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attaining high abundances.  Functional diversity within a scale domain is both more 

diverse than expected by chance, and robust to community change (Forys & Allen 

2002; Sundstrom et al. 2012), meaning that species that have a similar size are more 

diverse in their functions than is expected by chance; even with species turnover, that 

diversity of function amongst similarly-sized species is retained (Forys & Allen 

2002).  However, rare species tend to be more vulnerable to extinction due to their 

small population sizes (Davies et al. 2000; Gaston & Fuller 2007; Rohr et al. 2016; 

though see Sundstrom & Allen 2014), which suggests that as a general principle, a 

more even distribution of abundance across species would reduce extinction risk and 

increase resilience (Rohr et al. 2016) because the loss of function represented by a 

loss of a species would be lessened. 

However, response diversity may be more relevant than evenness of 

abundance.  Consider a situation where response diversity is high, but abundance is 

strongly skewed.  As long as less abundant species have a differential  capacity to 

cope with a disturbance and can maintain or increase their abundance in response to a 

disturbance, then they can compensate and provide critical function until the dominant 

(with regard to abundance) species rebound.   If all species who share a similar 

functional role or operate at similar spatial and temporal scales have the same 

response to a disturbance, then that functional role or functionality at that particular 

scale domain will be effectively eliminated unless populations rebound.  Therefore, 

within the context of the cross-scale model, either relative evenness or relative 

skewness could result in resilient distributions of abundance, depending on the degree 

of response diversity present in the system.  Unfortunately, there is  a lack of data on 

the differing response thresholds of species to disturbances which largely prevents 
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researchers from incorporating response diversity into general modelling efforts 

(Lefcheck et al. 2015). 

Researchers investigating skewness in abundance have made a strong case that 

common or dominant species provide the bulk of ecological function, while other 

researchers have shown that rare species provide unique functions that are also 

critical, especially as insurance against particular disturbances (Ellingsen et al. 2007; 

Gaston 2010; Mouillot et al. 2013a; Inger et al. 2015).  Claims that high species 

evenness is a feature of undisturbed natural communities go back to Odum (1969) but 

were poorly substantiated at the time.  More recent theoretical and empirical work 

argues that dominance versus evenness is a function of how niche space is partitioned; 

dominance is associated with homogenous and low dimensional resource structure 

found in disturbed biotas, whereas evenness is associated with more diverse and 

complex resource structure that is a feature of undisturbed biotas (Sugihara & Bersier 

2003; Hurlbert 2004; Rohr et al. 2016).  Although the prevalence of strong dominance 

in real-world communities suggests that the debate is, to a certain extent moot as most 

real communities are dominated by a few common species (Dangles & Malmqvist 

2004; McGill et al. 2007; Connolly et al. 2014; Winfree et al. 2015), changes in the 

degree of dominance may nevertheless be an important indicator of changing system 

resilience (O’Gorman et al. 2012). 

Given the general patterns in body size, abundance, and functional groups just 

discussed, our expectation regarding general abundance patterns within and across 

functional groups and system scale domains is that the most abundant species will 

belong to different functional groups, and will operate at different spatial and 

temporal scales (Figure 2) (Walker et al. 1999; Sugihara & Bersier 2003; Vergnon et 
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al. 2009, 2012; Magurran & Henderson 2012).  We also expect that the degree of 

skewness in both abundance within a functional group, and abundance within a 

particular scale domain, will differ from system to system based on the innate degree 

of species and functional richness of the system and the degree of anthropogenic 

degradation it has experienced—systems with more habitat complexity and higher 

resilience will have less dominance and more evenness than simple or degraded 

systems.  Testing these patterns across multiple datasets, as well as comparing less 

degraded and degraded habitats, would be informative.  We argue that if degree of 

dominance (skewness in abundance) reflects, among other things, the complexity (or 

lack thereof) of niche space, then changes in dominance/evenness will be most 

relevant to tracking resilience over time, as changes in the degree of dominance 

reflects changes to the underlying resource template. 

Finally, there are two other aspects of abundance to consider: expectations 

regarding the shape of the distribution of abundance within a scale domain, and the 

role of variability in abundance as it relates to resilience.  Recall that the species 

within a particular scale domain are similarly-sized.  Thus, if we plot their abundance 

and retain their ranking, we would expect their distribution to be unimodal with the 

mode in the center of the distribution  (Figure 3).  This is different than plotting 

abundance against body size because it conserves their location in the scale domain 

relative to each other’s body mass, as well as their distance from a discontinuity (gap 

between scale domains as represented by a range of body mass where no species are 

present).   
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We expect species within a scale domain to have peak abundance in the middle of the 

distribution because it is thought that resources in the centre of a scale domain are 

more stable over space and time, whereas the edges or discontinuities are areas of 

Figure 5.3  Testable hypotheses regarding how species abundances are distributed 
within one body mass aggregation for a taxa.  Clusters of similarly-sized species 
along the x-axis are represented by filled circles.  Clusters are separated by 
discontinuities where no species fall.  Inset graph depicts 3 hypotheses for how 
abundance within a cluster might be distributed: open triangles depict scenario where 
maximum abundance occurs in species falling at the edges of the body mass cluster; 
asterisks depict scenario where maximum abundance occurs in the center of the body 
mass cluster, and closed circles depict scenario where abundance is uniformly 
distributed across species in the body mass cluster. 
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high spatial and temporal variability (Allen et al. 1999; Allen & Saunders 2002; 

Sundstrom & Allen 2014).  Stable resources should sustain greater abundances 

relative to resources that are highly variables in space and time.  However, it is also 

possible that there will be higher abundance at the edges of the scale domains, or that 

abundance will be uniform, although there is less biological basis for either of these 

possibilities (see Figure 3 for competing hypotheses). 

Variability in the spatial and temporal dimensions of resource structure is also 

associated with variability in abundance, as evidence from the Everglades has shown 

that species whose body masses place them close to a discontinuity experience higher 

variability in their abundance than species located near the centre of a scale domain, 

and this is believed to be related to the increased variability in resources at 

discontinuities (Wardwell & Allen 2009).  Furthermore, others found that within a 

scale domain, species closer to the discontinuities had lower abundance then species 

in the center (Vergnon et al. 2012).  We predict that variance in abundance of a 

functional group may be more important over time than total abundance, as variance 

in abundance is a typical early warning indicator of a regime shift (Carpenter & Brock 

2006), and therefore provides clues about changes to the underlying resource template 

and resilience.  If this is the case, then temporal data would be necessary to 

understand the natural range of variation present in both species abundances and 

system level provision of functionality. 

The role of compensation 

Compensation or functional redundancy can occur by a variety of pathways, 

ranging from classic compensatory dynamics such as density dependence and 

negative covariation via competitive release, as well as positive facilitation, 
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differential response diversity, and synchrony, or positive covariance (good times for 

one is good times for all) (Houlahan et al. 2007; Thrush et al. 2008; Gonzalez & 

Loreau 2009).  There is no consensus in the literature as to the relative prevalence or 

importance of these different mechanisms, or the degree to which compensation is 

even likely.  Most biodiversity-function models, including the cross-scale resilience 

model, assume that species in the same functional group will provide functional 

redundancy in the event that a disturbance reduces abundance of individuals within 

the functional group.  This is strongly supported by the work of Soliveres et al. (2016) 

which shows that there is little overlap (~ 30%) among different functional groups; in 

other words, different functional groups provide different services.  Work in 

experimental grassland communities also suggests that compensation is more like 

likely to occur by species in the same functional group (Roscher et al. 2011).  

Expanding upon this idea, we expect that functional compensation would first occur 

via species in the same functional group operating at the same scale domain, if there 

are any, and then by species operating at nearby scale domains, and this compensation 

would be reflected in either increases in abundance, behavioural plasticity, or both.   

Resource utilization is scaled to body size.  For example, while a moose and a 

mouse may forage on similar resources, a mouse may perceive something as a 

resource that is not discernible to a moose.  Species in the same functional group that 

operate at similar spatial and temporal scales are most likely to provide compensatory 

functionality.  For example, in long-term rodent community data, Ernest et al. (2008) 

found that when the largest granivore, kangaroo rats, were experimentally removed 

from plots, smaller species in the same functional group increased in abundance but 

only utilized 14% of the energy made available.  It wasn’t until a new species 
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similarly-sized to the kangaroo rat colonized 18 years later that those resources were 

once again used at a rate comparable to when the kangaroo rat was present.  There 

are, however, two important limitations with regard to the capacity of a community to 

show compensation (Kremen 2005; Davies et al. 2012).  The first is that the 

substitutability of species is imperfect, and may be especially limited when 

quantifying the amount of function.  It is not clear how to account for the spatial and 

temporal extent at which a large, but far less abundant species performs its functional 

roles, as opposed to the much smaller spatial and temporal extent of more abundant 

species.  For example, scraping function (i.e. the removal of algae and opening up 

bare substratum for coral larval settlement) has a non-linear relationship with body 

mass in herbivorous coral reef fishes (Lokrantz et al. 2008), so the loss of a larger 

herbivorous scraper likely has a disproportionate effect on the provision of that 

function (Nash & Graham 2016). 

These are particularly difficult questions to answer when different species are 

providing the functional compensation and therefore are not only potentially operating 

at a different scale domain but also have imperfect redundancy in functionality as no 

species can be an exact replacement for another.  Second, species in the same 

functional group may not be able to provide compensatory function if they are 

prevented from colonizing due to dispersal limitation or habitat fragmentation (as in 

the dispersal limitations in the rodent example), or if they have the same response to 

the disturbance.  Given that resilience is often assessed at the ecosystem level, it is 

reasonable to expect that the reduction in functions resulting from localized 

extinctions or disturbances within that system may remain uncompensated if other 

species within that functional group cannot overcome barriers to dispersal.  Although 
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testing data from different systems to assess patterns is necessary, comparing 

abundance distributions within a functional group between degraded and undegraded 

habitats would also be valuable. 

Despite the limitations on compensation discussed, we also expect that even 

the small amount (~ 30%) of overlap in function between functional groups 

documented by Soliveres et al. (2016) in their assessment of 150 grasslands, would, if 

typical of other ecosystems, provide a resilient balance between direct competition 

amongst species operating at the same spatial and temporal scales, and redundancy, or 

insurance against disturbances, as predicted in the original cross-scale model 

(Peterson et al. 1998).  Both trait overlap and behavioural plasticity could provide 

secondary compensatory function (Chong-Seng et al. 2014; Nash et al. 2016).  

Measuring changes in abundance over time would allow us to test whether functional 

compensation occurred first via species in the same functional group operating at the 

same scale domain.  Compensation occurring from changes in behavior as a result of 

trait overlap or behavioural plasticity would be more difficult to track, and would 

require energetics analyses such as Ernest et al. (2008), or foraging behavior studies 

such as (Nash et al. 2012).  Plasticity in foraging behavior may also eventually 

manifest in morphological change to traits like body size;  despite widespread beliefs 

that body size is conservative there are examples of rapid evolutionary change in body 

size and other morphological traits (White et al. 2004; Ozgul et al. 2010; Brown & 

Bomberger Brown 2013). 

The importance of response diversity (Elmqvist et al. 2003), positive 

covariance, and positive facilitation should not be neglected, as they operate 

independently of competitive release, and may be more important than previously 
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understood (Bruno et al. 2003; Houlahan et al. 2007; Thrush et al. 2008; Werner et al. 

2014).  The contradictory evidence in the literature with regard to the relative 

importance and frequency of competitive release versus positive facilitation, degree of 

response diversity, or positive covariance suggests that the strength of their roles is 

likely to differ from one context to another, making generalized predictions difficult.  

Nonetheless, we predict that a reduction in abundance of one member of a functional 

group is most likely to be compensated for by a similarly-sized species within the 

same functional group, regardless of whether it is due to competitive release or 

response diversity. 

Abundance versus biomass and energetics 

Discontinuities in body size distributions and ecological structure tell us about 

the scales at which resources and species are present, and functional classifications 

inform us about the functional roles species play, but abundance, biomass, and 

energetics inform us about how much resource is present, or how much function is 

provided (i.e. area of reef scraped by herbivorous fishes, or amount of carbon stored 

by soil microorganisms).  Selecting which metric to use in a cross-scale assessment 

may differ according to context and the research question, as White et al. (2007) 

describe abundance, biomass, and energetics as alternative currencies that do not 

always show the same pattern.  Each metric captures only a piece of the puzzle of 

resource partitioning.  Classifying species by functional roles often resorts to trophic 

levels and thus indirectly assumes that who eats what is the most critical functional 

contribution.  Similarly, energetics quantifies how much energy an individual or 

species consumes, but tells us little about the provision of other functions.  

Abundance and biomass both speak to amount of function in the sense that either 
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more individuals or more biomass of individuals will theoretically translate into more 

function provided.  However, abundance does not incorporate differences in how the 

rate or amount of function provided by an individual scales to body size, a 

relationship which cannot be assumed to be linear.  If the goal is to understand how 

changes in the distribution of species and the functions they provide within and across 

scales drives system-level resilience, it may well be that quantifying total functional 

biomass at scales (i.e. area of reef scraped/ g of herbivorous fish) is more sensible 

than total functional abundance (area of reef scraped/number of herbivorous fish).  

However, tracking variance in amount of function provided within a functional group 

will, in some circumstances, likely require energetics, as functions such as carnivory 

require understanding the various consumption rates of carnivores of differing sizes. 

Biomass in a size class or age class, rather than abundance,  is commonly used 

in aquatic systems (White et al. 2007).  Magurran et al. (2012) argue that biomass 

within functional groups explained processes structuring an estuarine community 

more clearly than numerical abundance.  Biomass may also be meaningful for 

terrestrial systems when trying to quantify, compare, and weigh functional 

contribution by differently-sized species operating at different scale domains.  

However, it is possible that abundance and biomass in terrestrial systems express the 

same general pattern over time, as robust evidence suggests that these patterns are 

highly conserved at the scale of ecosystems, even while component populations can 

vary widely (Ernest & Brown 2001; Hatton et al. 2015).  Regardless of which metric 

is used, we expect that total amount of function provided by a functional group should 

have non-directional change over time (accumulated changes exhibit no net direction) 

due to response diversity to environmental drivers (Houlahan et al. 2007; Thrush et al. 
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2008) and/or compensatory responses (Gonzalez & Loreau 2009).  This expectation 

assumes that the system remains within a regime (basin of attraction), and that all 

species in a functional group do not have the same response to environmental 

disturbance (Fischer et al. 2001; Elmqvist et al. 2003).  We propose testing this 

hypothesis with both abundance and biomass.  Declining trends in total biomass 

within a functional group (total functional abundance) would be a predictor of 

declining resilience as it would indicate a reduced ability to compensate (Gonzalez & 

Loreau 2009).  Directional trends in the total biomass within a scale domain would 

indicate changes to the underlying resource template, and thus a possible regime shift 

(Dossena et al. 2012; O’Gorman et al. 2012). 

Directional changes that indicate a regime shift versus normal range of 
variation 

Species’ abundances can vary from year to year in response to local, regional, 

and climate-driven processes.  For example, in response to a climate-driven drought 

event, chorus frogs waxed and waned, transforming from rare and narrowly 

distributed to abundant and widely distributed, and then back again, due to their 

species-specific response to the climate disturbance (Werner et al. 2014).  Only 

sufficient temporal data can detangle whether such transitions are indicative of a 

directional change in chorus frog abundance indicative of fundamental changes to key 

system processes and the underlying spatial and temporal scales of ecological 

structure , or if the changes fluctuated within a normal range of variation.  Without 

monitoring data that includes other species within the community, it can also be 

difficult to assess whether directional changes within one species are compensated by 

other species, or indicate a directional change to the underlying resource template 
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indicative of a regime shift.  As an example, the long-term rodent community work by 

White et al. (2004) showed abundance shifting down the body mass axis, moving 

from larger rodents to smaller rodents.  To further complicate things, they found that 

four of the nine species actually increased in average body size over time.  The 

landscape was transitioning from a grass-dominated regime to a shrub-dominated 

regime, driving the aforementioned shifts within the rodent community.   The scales 

at which resources were available was shifting, and this was reflected in both 

intraspecies plasticity (adjusting body size) and a shift in the location of abundance 

for granivorous rodents along the body size axis. 

In a classic freshwater aquatic example, Carpenter et al. (1985) demonstrated 

how trophic cascades can shift biomass both across trophic levels and along a body 

mass axis—an increase in piscivore biomass drives reduced planktivore biomass, 

increased herbivore biomass, and decreased phytoplankton biomass.  The dynamic 

shifting of biomass across trophic levels demarcates the changing scales at which 

resources are available.  Furthermore, community composition in a presence/absence 

sense may not change at all, even while changes in the key processes structuring the 

system have dramatically changed the amount of biomass at particular trophic levels 

and spatial and temporal scales.  Two highly conservative features of trophic 

communities, which can be understood as functional groups, are particularly relevant 

here: Hatton et al. (2015) found that both aquatic and terrestrial trophic communities  

maintain a near constant size structure, in that the mean body mass for a trophic 

community (total biomass in community divided by total numerical density, giving 

mean body mass) is constant for both predator and prey communities.  In other words, 

the carnivore to herbivore body mass ratio is constant, though the biomass ratio fits a 
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power law, so that as the biomass of prey increases, the biomass of predators 

increases more slowly.  This makes sense in the context of the discontinuity 

hypothesis and cross-scale resilience model, which propose that body mass is most 

directly related to the scales at which resources are available, while biomass reflects 

the amount of resources available.  Furthermore, the constancy of the carnivore to 

herbivore body mass ratio suggests strong compensatory dynamics, as the amount of 

prey fit the expectations of the body mass ratio despite variable abundances of species 

within the functional group (Hatton et al. 2015).  Given the robustness of this body 

mass ratio, a directional change in the total amount of biomass may indicate a regime 

shift, and the scales at which biomass is lost or gained will provide clues about the 

drivers of that shift.  Others have also shown that patterns of abundance over time at 

the system-level are stable relative to individual population abundances (Ernest & 

Brown 2001; Ernest et al. 2008).  We predict that this general relationship wherein 

variability within populations is higher than variability in system-level provisioning 

should hold unless a regime shift is close, in which case variability in system-level 

function should increase.  An impending regime shift should be preceded by either a 

change in the scales at which abundance and/or biomass are allocated, or a directional 

change in the overall biomass within a functional group.  Discriminating between 

abundance changes resulting from stochastic disturbance that may be buffered or 

compensated by other species, and bottom-up changes to the resource template will be 

critical. 

Caveats to incorporating abundance into the cross-scale model 

As the old adage goes, the devil is in the details, and the role of abundance in 

cross-scale resilience seems likely to be as complex as our understanding of 
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abundance in other ecological relationships.  We anticipate that there are likely to be 

general patterns in the distribution of abundance of functional groups within and 

across ecological scales, and that directional changes in the system-level provision of 

function will be an indicator of reduced resilience and an increased vulnerability to a 

regime shift.  However, we recognize that there is much we do not know, and present 

the following issues as part of an additional research agenda needed to flesh out our 

understanding of the role of abundance in ecological resilience. 

First, systems are neither static nor changing monotonically across all scales.  

Nested adaptive cycle dynamics ensure that processes that occur at different spatio-

temporal scales ought to be in different stages of the adaptive cycle.  In other words, 

processes of development, maturation, collapse and renewal do not occur in 

synchronicity at all spatial and temporal scales.  In fact, asynchrony of such processes 

is a critical component of resilience, because such modularity prevents disturbances 

from cascading unchecked up and down system scales.  However, we would expect a 

different distribution of abundance to be resilient depending on the phase of the 

adaptive cycle under consideration. 

Secondly, abundance per se may be less important than species functional 

richness.  For example, we know that rare and seemingly redundant species play a 

critical role in the long term persistence of system resilience and stability because 

they are a functional ‘reserve’ that comes into play when disturbances impact key 

species.  Their abundance is less relevant than their presence.  The importance of 

abundance, then, is restricted to species that  play a role in key feedback loops or 

keystone processes, or the few highly common species that provide the majority of 

function (Gaston 2008, 2010).  For example, in the classic spruce-budworm example 
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(Ludwig et al. 1978), budworms are controlled by insectivorous birds in the young, 

growing forest.  Qualitative analysis indicates that if other factors controlling 

budworm outbreak were held constant, bird populations would have to be reduced by 

two-thirds before there were would be a qualitative change in budworm-forest 

dynamics (Holling 1988). 

Third, while most of the work to date in this field has focused on terrestrial 

taxa such as mammals, birds, and reptiles, within which species have relatively 

differentiated functional roles, it is less clear how to address communities of taxa that 

perform a similar function, such as phytoplankton.  It may be difficult to determine 

functional role beyond photosynthesis, reducing the ability to carry out some of 

hypothesis testing discussed throughout this paper.  Understanding  how 

phytoplankton are distributed within and across the scales of aquatic ecosystems 

nonetheless has value as paleoecological data has made it clear that diatom 

communities change dramatically though time in response to environmental change, 

and as the basis of aquatic food webs, their resilience is critically important.  It will 

clearly be necessary to thoughtfully consider the context of a cross-scale resilience 

assessment, and the appropriate knowledge needed to make such an assessment 

relevant for the taxa under question. 

Finally, sampling methods and statistical issues may impede our ability to 

quantify the impact of abundance for  a variety of reasons.  Methods that assume 

stationarity are not appropriate, as we must assume directional changes in abundance 

resulting from climate change and other anthropogenic impacts that simplify or 

homogenize ecosystems.  Sampling protocols for abundance must be able to track 

changes in functional abundance over time, but also account for scales within the 
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system.  For example, sampling across the entire system for the abundance of a 

particular function averages out the body mass aggregations, and only tells us about 

system-level abundance rather than the cross-scale resilience. 

Putting theory into practice 

A cross-scale resilience assessment begins with a discontinuity analysis, as a 

means of objectively identifying the scale domains within a given system and serves 

as the foundation for understanding how species, and therefore their functional roles 

and abundance, are distributed within and across system scales.  The details of 

performing a discontinuity analysis are amply documented elsewhere (Peterson et al. 

1998; Allen & Holling 2008; Nash et al. 2014a) so will not be detailed here.  

Typically, discontinuities are identified in rank-ordered data sorted by taxon, so for 

example, birds have been evaluated separately from mammals. However, Holling 

(1992) showed that bird and mammal discontinuity patterns are linearly correlated as 

they utilize resources as a function of their size irrespective of taxonomy, so 

community analyses are theoretically possible.  The next step is to classify species 

into functional groups that are biologically reasonable given the taxon and system 

under question, and then to analyse how function is distributed within and across 

scales.  The objective of this paper was to articulate how abundance, as another layer 

of information about the structure of the system, would be distributed within and 

across system scales, and how we would expect this to relate to compensatory 

processes and therefore resilience.  Of the hypotheses discussed, we feel the most 

important can be summed as follows. 
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Dominance, or degree of skewness 

It is well established that abundance is generally skewed, in that there are a 

few dominant species with high abundance, and many species with low abundance.  

We expect that abundance will also be skewed both within a functional group (which 

are often defined as trophic levels) (Figure 2), and within an individual scale domain 

(Figure 3), and furthermore, that the most abundant species will belong to different 

functional groups, and will occur at different scale domains (Figure 2).  However, 

others have argued that degree of skewness speaks to the degree to which an 

ecosystem has been disturbed or disrupted, or homogenized (Odum 1969; Sugihara & 

Bersier 2003).  Regardless of the current degree of skewness in a given system and 

what it reflects about system heterogeneity/homogeneity, we expect that any 

persistent directional change to the degree of skewness in the abundance distribution 

of species within a functional group may be an early warning signal of a regime shift, 

because such a change will reflect a change to the underlying resource template. 

Compensation/Response diversity 

Resilience as per the cross-scale resilience model is predicated on the 

assumption that if there is the loss or reduction in abundance of a dominant species, 

their functional role will be compensated for other species in that functional group 

who either experience competitive release, or have a different response diversity than 

the afflicted dominant species.  We expect that in that event, compensation will first 

occur via species in the same functional group and from the same scale domain (body 

size class), and then from species operating at nearby scale domains.  Furthermore, we 

know that system-level stability in the provision of a function can be maintained 
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despite (or because of ) substantial variance in the abundance of the individual species 

comprising a functional group, so we also expect that an increase in the variance in 

abundance of an entire functional group is likely to be more relevant than the total 

amount of abundance within a functional group.  Increased variance suggests a 

reduction in compensatory or response diversity processes, and may be an early 

warning signal of a regime shift. 

Conclusion 

The creation of the cross-scale resilience model was novel, bold, and elegant.  

It articulated a simple model with clear testable hypotheses.  It is possible to 

summarize in one sentence the primary conclusion of the model: system level 

resilience emerges from the overlapping diversity of functions occurring within a 

scale domain, and the redundancy of functions spread across the scale domains.  For 

the cross-scale resilience model to more realistically capture the role of species in 

contributing to system-level resilience, it is necessary to understand not just how 

function is distributed within and across system scales, but how the distribution of the 

abundance or volume of function within and across scales impacts resilience.  Adding 

abundance to the cross-scale resilience model is more nuanced and may never 

generate such a simple model without extensive caveats, but we feel that general 

patterns are likely to emerge given sufficient hypothesis testing. 

The stable provision of functionality at the system level arises from the degree 

of compensatory function, response diversity, and behavioural plasticity contained 

within the system, all mechanisms that buffer disturbances but are rooted in 

variability in species abundances over time.  Thus, it is likely that it is directional 

change in system-level function or persistent changes in the scale domains at which 
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functional biomass is present that is likely to denote changing resilience or a regime 

shift. We have articulated some of the primary ways in which abundance may affect 

the emergence of resilience as represented by the functional roles species provide, as 

well as a set of testable hypotheses with which to test these ideas.  We feel that this 

stream of research will provide a rigorous foundation for the quantitative evaluation 

of ecological resilience. 
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CHAPTER 6 DETECTING SPATIAL REGIMES IN ECOSYSTEMS 

Introduction 

The possibility of multiple regimes for ecosystems is now well documented, 

and methods to detect temporal regime shifts have received a great deal of attention 

(Scheffer & Carpenter 2003; Guttal & Jayaprakash 2008; Dakos et al. 2008).  Less 

well developed is the application of these tools to the identification of spatial regimes 

that reflect the boundary between two types of ecosystems (though see Kéfi and 

others 2014).  Spatial data has unique challenges in that while it is not necessary for 

data points to be equally spaced (Dai et al. 2013; Cline et al. 2014), sufficient spatial 

sampling resolution is needed to distinguish one spatial regime from another.  The 

identification of spatial regimes is increasingly important due to habitat 

fragmentation, which increases the proportion of boundaries in landscapes (Kent et al. 

2006), and anthropogenic climate change, which is expected to shift ecological 

boundaries.  Studies have already shown rapid altitudinal shifts in montane ecological 

boundaries in response to climate change (Allen & Breshears 1998; Beckage et al. 

2008).  Similarly, climate-driven boundary shifts are being detected in marine systems 

as both spatial shifts in primary production and in individual species ranges, as well as 

in phenological shifts and changes in community composition (Beaugrand et al. 2002; 

Edwards & Richardson 2004; Grebmeier et al. 2006).  Because ecological boundaries 

in terrestrial systems typically demarcate the distribution of vegetation and ecosystem 

type, they provide critical information about the extent and rate of the biological 
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processes shaping the boundary and driving the maintenance of the regime within the 

boundary (Yarrow & Salthe 2008).  This has implications for both environmental 

management and biological conservation (Kent et al. 2006). 

Boundary identification has been an active area of research in terrestrial 

ecology and biogeography, and is generally both data intensive and statistically 

challenging, particularly when it involves vegetation sampling (Kent et al. 2006).  The 

use of remotely-sensed data is less laborious than field work, but the method is poor at 

distinguishing between physically similar but floristically different vegetation; hence, 

it may require labor-intensive  ground-truthing to verify ecological transitions in plant 

assemblages (Kent et al. 2006).  Boundary detection is further complicated by the 

multiplicity of scales at which different processes and physical patterns are expressed 

(Fagan et al. 2003; Strayer et al. 2003), and that the relationship between abiotic 

variables such as climate, and biotic variables such as vegetation, is often non-linear 

across boundaries (Danz et al. 2012).  Typically, terrestrial ecological boundaries 

defined for ecoregion maps such as those used by U.S. federal agencies are based on 

potential plant communities, which in turn reflect differences in bedrock, soil, 

altitude, temperature, and moisture (Bailey 1983; Omernik 1987).  Terrestrial plant 

communities may not respond as rapidly as animal communities to direct 

anthropogenic change and climate change (Pearson 2006; Pearman et al. 2008), 

therefore defining the boundaries between animal communities may better represent 

current biotic and abiotic conditions.  Variation in animal population dynamics 

provides information on the stability of ecosystem mechanisms, processes, and 

linkages, and may serve as an early warning signal of shifting regimes (Cline et al. 

2014). 
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Pelagic marine ecological boundaries are typically defined by primary 

production characteristics (Longhurst 1998) which reflect aquatic properties such as 

currents, temperature, salinity, nutrients, and bathymetry, but are complicated by the 

ephemeral nature of features such as oceanographic fronts.  Landforms, such as 

straights, may create another form of boundary between biological communities.  

Advection across fronts or through physical constrictions between water masses can 

serve as a driver of both physical and ecological homogeneity, though the degree of 

connectivity can vary rapidly in space and time (Wassmann et al. 2015).  There is 

much current discussion of appropriate variables by which to track marine ecological 

change (Rice & Rochet 2005; Samhouri et al. 2009; Rombouts et al. 2013).  A priori, 

it is difficult to know which individual taxa or processes represent a spatial regime 

and thus ecological boundaries.  Because of the central role played by zooplankton as 

a prey item and a grazer, zooplankton data have commonly been used (Hooff & 

Peterson 2006; Pace et al. 2013), although Scheffer et al. (2003) warn that 

zooplankton community composition and abundance may be too chaotic to be useful 

for regime shift prediction except at very high level aggregate states. 

Ideally, a monitoring program should be able to forecast far-reaching change 

such as a regime shift.  However, too often monitoring focuses on particular species 

of interest, effectively barring community-level or ecosystem-level analyses.  We use 

spatially explicit avian and zooplankton community species composition data to test 

for the identification and location of spatial regimes using Fisher information, an 

information-theory method with no strict data requirements that is a powerful tool for 

understanding system-level change within a location, or over space. 
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Regime shifts and Fisher information 

There is widespread acceptance in the scientific community that some 

ecosystems exhibit multiple regimes, and that the transition between regimes can be 

abrupt and discontinuous (though see Fukami & Nakajima, 2011; Hastings & 

Wysham, 2010).  Statistical indicators of regime shifts that can act as an early 

warning signal are thought to represent generic properties that behave in similar and 

predictable ways across system types (Dakos et al. 2011), and are proposed to have 

the added advantage that detailed mechanistic knowledge is not necessary for their 

use.  The indicators include critical slowing down, which can manifest as slower 

recovery rates from perturbation, increased autocorrelation, and increased variance 

(Scheffer et al. 2009); changing skewness (Guttal & Jayaprakash 2008); conditional 

heteroscedasticity (Seekell et al. 2011), and the variance index (Brock & Carpenter 

2006). 

These indicators have transformed our ability to identify variables that change 

in response to exogenous or endogenous drivers and signal an impending regime shift.  

However, much remains uncertain.  For example, although the various indicators have 

been tested on model systems and historical data sets with known temporal regime 

shifts (Lindegren et al. 2012), their performance is not consistent (Seekell et al. 2011; 

Perretti & Munch 2012; Dakos et al. 2013; Batt et al. 2013) and their ability to predict 

future regime shifts is unknown (Boulton et al. 2014).  Some methods, such as 

conditional heteroscedasticity, require large, high resolution samples (Seekell et al. 

2011) and their applicability to complex systems with multivariate data is 

questionable because most studies have been conducted using either simulated data or 

very simple systems (Scheffer et al. 2009; Drake & Griffen 2010; Dakos et al. 2012; 
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Dai et al. 2012).  When models have incorporated realistic levels of ecological noise, 

the indicators tend to perform poorly (Perretti & Munch 2012).  A difficulty in 

developing early warning indicators is that the critical variables driving system 

transitions are typically unknown.  Brock and Carpenter (2012) cite this lack of 

knowledge as a “fundamental problem” in leading indicators research. 

Researchers have urged that multiple ecosystem variables should be evaluated 

when interpreting indictors for real systems (Carpenter et al. 2009; Lindegren et al. 

2012).  For example, Litzow et al. (2013) found that when analysing rising variance in 

catch data from fisheries, trends in individual fisheries largely failed to be statistically 

significant, while pooling multiple populations increased their ability to detect a 

collapse.  The variance index (VI) was developed to capture dominant variance trends 

in multivariate systems (Brock & Carpenter 2006).  VI should spike prior to a 

transition, but results from this index are sometimes unclear (Eason et al. 2014). 

Fisher information may address some of the issues listed above.  Fisher 

information is an information theory approach (Fisher 1922) that captures patterns in 

system dynamics as evidenced by the trends in variables that characterize the system’s 

condition.  The approach collapses the behavior of multiple variables into an index 

that can be used to track changes in dynamic order, including regimes and regime 

shifts.  Historical applications of information theory-based approaches include 

assessing ecosystem functioning, stability, complexity, and diversity (Anand & Orloci 

2000; Svirezhev 2000; Patricio et al. 2004; Fath & Cabezas 2004).  More recently, 

Fisher information has been employed for sustainable environmental management at 

various spatial scales (Karunanithi et al. 2011; Eason & Garmestani 2012) and to 
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examine temporal patterns in both terrestrial (Mayer et al., 2007; Eason and Cabezas, 

2012;) and aquatic systems (Mantua 2004; Spanbauer et al. 2014; Eason et al. 2016). 

While other methods like time series analysis requires a sufficient resolution 

of data to separate noise from a genuine signal of an impending regime shift, the data 

requirements for Fisher information are more lenient.  A strength of Fisher 

information is that it can readily incorporate a wide variety of data types and variables 

and has been used to identify regime changes in various types of systems with data 

resolutions from relatively small and moderate (Eason & Cabezas 2012) to quite large 

(Spanbauer et al. 2014).  Furthermore, there is no minimum or maximum number of 

variables needed to compute the index.  When assessing a complex system 

characterized by multiple variables, methods like Spearman rank order correlation 

have been used in conjunction with Fisher information to determine which variables 

or groups of variables are critical for shaping the Fisher information signal (Eason & 

Cabezas 2012).  Accordingly, one of the key limitations of traditional statistical 

indicators is avoided because there is no need to make assumptions about which 

variables best act as indicators of an impending regime shift, particularly when much 

is uncertain and our knowledge is limited. 

Purpose 

Our goal is to identify spatial regimes in avian and zooplankton community 

data using Fisher information, and compare the extent to which Fisher-identified 

regime boundaries are coincident with our a priori understanding of where these 

ecological boundaries exist, as per classification systems such as Bailey’s (1983) and 

Omernik’s (1987) for terrestrial systems, and marine domain descriptions found in 

Carmack et al. (2010) and Archambault et al. (2010).  The terrestrial ecoregion maps 
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rely heavily on potential natural vegetation based on underlying geological and 

climatic variables, so significant discrepancies between actual land use, actual 

vegetative cover, and potential vegetation can exist, and should be reflected in the 

composition of the animal community.  Boundaries in marine systems are not as 

spatially constrained as in terrestrial systems and the key habitat determinants of 

species’ distributions and community structure are not as easily defined.  It is 

important to note that we are not trying to identify regime shifts that represent a 

critical transition (e.g. Scheffer 2009), but rather the geospatial point or region at 

which one ecosystem type transitions into another. 

Although Fisher information is suited to multivariate data encompassing a 

wide range of biotic and abiotic data that characterize any given regime, we used a 

single taxon dataset from each system (birds and zooplankton).  Limiting the data in 

this way had the benefit of making this a conservative test of the performance of 

Fisher information that reflects the data readily available to others working on similar 

problems.  We compared the Fisher information results with a range of early warning 

indicators (critical slowing down, captured by the lag-1 autocorrelation coefficient; 

variance; kurtosis; skewness; and the variance index), and multivariate methods 

commonly employed by community ecologists (nMDS (Oksanen 2013), and cluster 

analysis). 

Methods 

Terrestrial data 

We used USGS Breeding Bird Survey data (BBS) from 30 survey routes along 

a ~ 1900 km transect.  Each BBS route is 41 km long and has 50 stop points located at 
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800 m intervals; at each stop point, a 3-minute point count of sighted and heard birds 

is recorded, and data from each stop point are totalled for the route (Sauer et al. 2014).  

The routes begin in the Rocky Mountains, move due east through the central prairie 

region, and then veer north into Minnesota, terminating at the western border of Lake 

Superior (Figure 1).  The species abundance data are a snapshot of the 2007 bird 

community at each route location.  The routes are located in 5 Omernik Level III 

ecoregions (Omernik 1987), but were selected such that there were roughly an equal 

number of routes in four gross ecosystem types: 8 routes from the Southern Rockies 

(montane forest), 7 from the High Plains (grassland), 3 from the Central Great Plains 

and 4 from the Western Cornbelt Plains (total of 7 routes from grassland-agriculture 

matrix), and 8 from the Northern Lakes and Forest ecoregion (northern forest-wetland 

matrix).  The unequal number of routes among ecosystems was due to data 

availability; not all routes are covered in all years, as route coverage relies on 

volunteers.  Although we used the Omernik ecoregions as an underlying map layer 

when selecting routes, there are multiple ecoregion maps used by U.S. land agencies, 

with sometimes substantial differences between them.  None are ‘right’ per se, but all 

are best approximations of potential vegetation based on areas with similar geology, 

physiography, vegetation, climate, soils, land use, wildlife, water quality, and 

hydrology (United States Department of the Interior).  We downloaded the complete 

species abundance list for each route (Sauer et al. 2014) and used it to create a route-

species abundance matrix, where abundance is the number of individual birds for each 

species at each route, with values ranging from 0 – 293.  
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 Figure 6.1  The USGS Breeding Bird Survey route locations in the central and northern 
United States.  The Omernik Level III ecoregion boundaries are colored in grayscale , while 
the Bailey Level III ecoregion boundaries are shown using dotted lines.  (Figure 6.1.pdf, 377 
KB) 



171 
 

 

Sampling biases are an issue with BBS data, resulting primarily from under 

detection of wary, rare, and aquatic species, as well as differences between observers.  

However, those biases are present across all routes and should not impact the very 

coarse pattern extracted from the absence/abundance data.  Remotely-sensed data for 

land cover type is also available for a 400 m buffer around each route (Sauer et al. 

2014).  The land cover data provides a sense of the heterogeneity of the habitat type 

for each ecoregion.  We averaged the percent of each land cover type across all routes 

for each of the five Omernik ecoregions. 

Marine data 

Zooplankton community surveys were conducted in 2008, and samples 

analysed under the auspices of the International Polar Year program, Canada’s Three 

Oceans project (Carmack et al. 2008).  The survey traverses 12,000 km from coastal 

British Columbia just north of Vancouver Island to the Labrador Sea on the eastern 

side of Canada, crossing through 6 oceanic domains: the Gulf of Alaska, the Bering 

Sea, the Chukchi Sea, the Beaufort Sea Shelf, the Canadian Arctic Archipelago, and 

terminates in the Davis Strait/Labrador Sea (Figure 2).  Although these oceanic 

domains share some zooplankton species, they are known to be distinct from each 

other to varying degrees (Archambault et al. 2010; Pomerleau et al. 2011, 2014).  

There were 44 sampling locations irregularly spaced along the transect. 
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Mixed zooplankton samples were collected from August to September by 

vertical net hauls with a 236 micron net (typically to 100 m or 7 metres above the 

bottom), and were preserved in 95% ethanol and 10% buffered formalin.  The 

zooplankton samples were keyed out to the lowest possible taxonomic unit and 

enumerated and 4th root transformed, as is standard for marine zooplankton data.  

When possible, the developmental stages of each taxa was counted separately.  A site-

taxa abundance matrix was created.  Sites were ordered from western-most to eastern-

most station. 

Statistical Methods 

Fisher information was developed by Fisher (1922) as a measure of the 

amount of information about a particular parameter (or system characteristic) that can 

Figure 6.2  Zooplankton data collection locations. 
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be obtained by observation.  The form of Fisher information used in this work is 

based on the probability of observing various conditions (p(s)) of the system (Fath et 

al. 2003; Mayer et al. 2007). 

 

This is appropriate for our study because we are interested in determining patterns 

of change in the condition (or state: s) of a system.  From this equation, note that Fisher 

information is proportional to the change in the probability of observing a system state 

(dp(s)) over the change in state ds (i.e. 𝐼 ∝ 𝑑𝑝(𝑠)
𝑑𝑠

 ).  The significance of this proportionality 

may be examined using two cases.  The first example is a system in which the overall 

condition does not change from one observation to the next.  While such a system may 

fluctuate within a basin of attraction, it is considered stable because the overall conditions 

are predictable and the patterns are evident; accordingly, the probability of observing a 

particular state of the system is high and Fisher information tends toward infinity.  The exact 

opposite is true of a system that is constantly changing.  In this case, the system displays no 

bias toward a particular condition and there are no distinct patterns useful for characterizing 

the way the system behaves; hence, there is equal probability of the system functioning in 

any state and Fisher information is zero (Pawlowski & Cabezas 2008). 

Karunanithi et al (2008) adapted Equation 1 to handle empirical data from real 

systems.  Through a series of derivation steps, Fisher information (henceforth denoted as FI) 

is numerically estimated as: 

 

𝐹𝐼 = 4�[𝑞𝑠 − 𝑞𝑠+1]2
𝑛

𝑠=1
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where p(s) is replaced by its amplitude (q2(s) ≡ p(s)) to reduce calculation errors from 

very small p(s).  Further details on the derivation and calculation may be found in 

(Mayer et al. 2007; Karunanithi et al. 2008; Cabezas & Eason 2010). 

Fisher information has traditionally been used to explore temporal patterns, 

however, the method can be applied to examine spatial dynamics.  The core of the FI 

approach is to assess patterns in data based on tracking systematic changes in line 

with some ordering principle such that trends are evaluated over a series of points 

(e.g., point a, point b, etc.).  This sequence may be defined temporally or spatially.  

The key distinction is that rather than using time as the basis for assessing changes, 

spatial location is the ordering principle.  The basic algorithm for computing FI is as 

follows: (1) select variables (e.g. 𝑥𝑖, i = 1: n variables) that characterize the condition 

of the system (in this case various animal species) and gather data (i.e., species 

abundance) from each sampling location (lj) across the route: (𝑥𝑖(𝑙𝑗)), j = 1 : m 

sampling locations), such that the abundance of each species at each site defines one 

point (e.g.. 𝑝𝑡1(𝑙1): [𝑥1(𝑙1),𝑥2(𝑙1),𝑥3(𝑙1), … , 𝑥𝑛(𝑙1)]; (2) assemble the data into a m 

× n matrix and divide it into a sequence of overlapping windows that advances one 

route location per iteration; (3) determine the measurement uncertainty for each 

variable (𝑈𝑋𝑖) and use this to define a boundary (tolerance) around each system state.  

If the measurement uncertainty is unknown then the variation in a stable portion of 

data may be used as a proxy.  This boundary (size of states) defines how much a 

measurement can vary within a particular state; (4) Use the size of states to determine 

which points are similar (dimensions stay within the boundary defining a minimum 

range of variation) and group (bin) similar points together into discrete states; (5) 

Compute p(s) by counting the number of points binned in each state and dividing this 
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value by the total number of points in the window; (6) compute q(s) and calculate FI 

using Equation 2. This process is repeated for each window.  Based on empirical 

assessments, a hwin ≥ 8 was suggested (Cabezas & Eason 2010), however, it is 

generally set based on the amount of data available.  Increasing the hwin tends to 

decrease the magnitude of the FI result and number of FI points, but the basic trends 

remain intact (Cabezas & Eason 2010). 

Different system regimes are controlled by fundamentally distinct processes 

and exhibit unique patterns.  Tracking FI affords the ability to assess changes in these 

patterns.  Regimes are identified as periods over time or across space in which FI is 

non-zero and the values are relatively stable (i.e., dFI/dl ≈ 0).  While steadily 

increasing FI indicates rising dynamic order, less change and possible movement to 

more consistent patterns, declining FI signifies unstable dynamics, loss of resilience 

and may provide warning of an impending shift (Eason et al. 2014).  Although FI 

typically declines prior to a regime shift (Mayer et al. 2007; Eason & Cabezas 2012; 

Eason et al. 2014), researchers examined model dynamics to study the behavior of FI 

in the neighbourhood of a tipping point and found that the behavior of FI depends 

heavily on the trends in the variables as the system approaches a shift (Eason et al. 

2014; Gonzalez-Mejia et al. 2015).  It is therefore possible for FI to increase as a 

system transitions from one regime to another.  Such a result is in line with Seekell et 

al. (2011, 2012), who found both increasing and decreasing trends in early warning 

indicators prior to a shift. 

Once a shift has been identified, the underlying variables can be explored to 

determine (or compare) the condition of the system in its new state (Eason & 

Garmestani 2012).  Although higher FI values are generally associated with a greater 
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degree of dynamic order, the level of dynamic order is not as important as the ability 

of the system to remain stable within a desirable regime. When interpreting FI, a regime 

is denoted by a relatively stable FI trend (i.e., dFI/dl ≈ 0) with a high mean (↑µFI) and 

low standard deviation in FI (↓σFI) or low coefficient of variation in FI (↓𝑐𝑣𝐹𝐼 = 𝜎𝐹𝐼
𝜇𝐹𝐼

 ) 

(Gonzalez-Mejia 2011; Eason & Garmestani 2012).  Transitions are identified as periods 

outside of stable regimes characterized by relatively high σFI and cvFI. 

The traditional temporal early warning indicators (variance, skewness, and 

kurtosis) were computed using standard functions.  The spatial variants (Moran’s I 

spatial autocorrelation and spatial variance and skewness) were not used because the 

sequential one-dimensional ordering of the sampling stations lent itself to a space-for-

time substitution.  Since critical slowing down can be understood as increases in 

short-term autocorrelation, the lag-1 autocorrelation coefficient was used as an 

estimate (Dakos et al. 2008).  The VI was computed as the maximum eigenvalue of 

the covariance matrix from the dataset (Brock & Carpenter 2006).  Note that the VI 

and traditional indicators are expected to spike or increase prior to a regime shift, 

while FI tends to decline (Eason et al. 2014).  Fisher information and the traditional 

indicators were computed in MATLAB (v. 2014b) using a 5 station moving window 

that advanced one station at a time, where a station was either a BBS route or a 

plankton sampling site.  A window size of 5 ensured that there were FI results for 

each ecoregion for both studies; using smaller or larger windows resulted in similar 

trends in the FI results, similar to other studies (Cabezas & Eason 2010).  Multivariate 

analyses were conducted using metaMDS and ordicluster from package ‘vegan’ (R 

Development Core Team 2016).  The distance matrices for the nMDS were created 

using Bray-Curtis, and multiple dimensions were plotted in a scree diagram to find the 
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lowest dimensionality with an adequate ordination fit as expressed by a stress value 

(<0.2, (Clarke 1993)).  The mean, standard deviation, and the coefficient of variation 

(CV) in FI were calculated for each regime to explore regime stability. 

Results 

Terrestrial data 

Fisher information detected four regimes and two transition zones which are 

roughly congruent with a priori expectations based on ecoregion maps, but diverge in 

significant ways (Figure 3).  The total drop in FI between the high point in regime 1 

and the low point in transition 1 is greater than that between regime 2 and regime 3 

(∆FI of 2.05 and 0.98, respectively), suggesting that the difference in FI between the 

Southern Rocky Mountains and the 3 Plains ecoregions is greater than the difference 

among the Plains regions, which is to be expected.  Likewise, the total drop in FI 

between regime 3 (all Plains routes) and regime 4 (Northern Lakes and Forest) is the 

largest of all (∆FI of 2.51), indicating that the greatest variation in bird community 

structure exists between these two regimes. 
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 Figure 6.3  Fisher information ((FI; bold solid line)) and Variance Index (VI; faint dotted line) for Breeding Bird Survey community data 
from 30 routes ordered from west to east along the x-axis.  Regimes identified by FI are shown as shaded boxes around the plotted line.  The 
Omernik ecoregion domains under the x-axis allow comparison as to how well the regimes align with the ecoregions, which represent 
potential rather than actual vegetation.  Because one FI value is produced per window, the first FI value is at route 5. 
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The declining trend in FI from west to east means avian community structure 

is losing order, which aligns with the reality of increasing intensive agricultural land 

use.  FI classified the community structure in the first High Plains route as being 

similar enough to the eastern Southern Rocky Mountains to include it in the first 

regime.  There followed a steady loss of order, as reflected in the FI value, across the 

western High Plains.  When FI did stabilize, indicating a new regime, that regime 

captured routes from both the eastern High Plains and western Central Plains 

ecoregions, indicating a blurring of the distinction between the two Plains ecoregions 

in terms of vegetative cover and avian community structure.  Similarly, the third 

regime incorporates routes from the eastern Central Plains and most of the Western 

Cornbelt Plains ecoregions, indicating that avian community structure did not 

significantly differ between the two Plains ecoregions.  This is not an unexpected 

result, given that those two ecoregions are, in reality, a grassland-agriculture matrix. 

The traditional indicators did not provide clear results and yielded graphs with 

no interpretable pattern (Figure 4), however, VI provided results that were 

complementary to FI (Figure 3).  The VI peaks in several places which are congruent 

with regime shifts identified by FI (routes 10, 18, and 21).  In general, the VI provides 

complementary information that supports the trend captured by FI, but is significantly 

more difficult to interpret when evaluated alone because it is not possible to ascertain 

whether a peak marks the beginning or end of a stable regime or of a transition zone. 
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While all three descriptive statistics (mean (μFI), standard deviation (σFI), and 

coefficient of variation (cvFI) in FI) indicate relative stability in each of the first three 

regimes, the fourth regime, wholly comprised of routes from the Northern Lakes and 

Forest region, has a lower mean, higher standard deviation, and higher coefficient of 

variation in FI than the other regions, indicating that there is greater variation in 

community structure within this ecoregion (Figure 5).  Furthermore, the two transition 

zones have a higher CV than the regimes (except the 4th regime), indicating zones of 

high variability as community structure transitions from one regime to another. 

 

Figure 6.4  Results for traditional regime shift parameters applied to the BBS 
avian community data: variance, skewness, kurtosis, and ARI (critical slowing 
down).  The graphs are largely uninterpretable when used on multivariate data 
such as this. 
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Figure 6.5  The stability of each terrestrial regime over space, as defined by the mean (µFI), standard deviation 
(σFI), and coefficient of variation (cvFI) of FI.  While regimes 1-3 are clustered together and relatively stable 
with high µFI, low σFI and cvFI, Regime 4 was highly variable (low µFI, high σFI and cvFI).  The transition 
periods exhibited the least amount of stability. 
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The results of the multivariate analyses suggest that while the nMDS (stress 

value of 0.080 for 2 dimensions) and cluster analysis (not shown on Figure 6 because 

results are identical to the nMDS) identifies distinct communities that align with the a 

priori expectations of the Omernick ecoregions, they do not distinguish between the 

High Plains and Central Plains communities.  The nMDS (Figure 6) shows the 

dissimilarity in community structure in terms of the relative position of each route to 

every other in ordination space, as well as how those routes align with ecoregion 

expectations by drawing polygons that connect the routes belonging to each Omernik-

defined ecoregion.  The routes from the three Plains ecoregions are closer to each 

other in ordination space than either the Southern Rockies or Northern Lakes and 

Forest routes, indicating that they are more similar in community structure. The first 

route of the Northern Lakes and Forest region, indicated by FI as part of a long 

transition zone between regimes, is also very proximate in ordination space to the 

Cornbelt Plains routes, reflecting their closeness in geographic space.  However, the 

High Plains and Central Plains overlap each, indicating that the nMDS does not 

perceive them as dissimilar.
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Figure 6.6  Ordination plot for the BBS avian community data (k = 2, stress = 0.080).  
The BBS routes are shown with open circles, while the polygons contain all the routes 
that fall into the ecoregions (Omernik 1987).  The overlap between the High Plains 
and the Central Plains suggests that these two ecoregions do not substantially differ in 
avian community structure.  (Figure 6.6.pdf, 18KB) 

  

Marine data 

Fisher information detected two regimes and two transition zones, which 

partially align with the a priori expectations for the locations of the oceanic domains 

(Figure 7).  FI is low and rises steadily throughout two-thirds of the Bering Sea 
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domain.  Since FI never stabilizes in this domain, much of the Bering Sea is classified 

as a transition zone.  The first regime extends from the northern Bering Sea through 

the Chukchi Sea.  As the transect enters the Beaufort Sea, FI climbs steeply without 

stabilizing, indicating increasing dynamic order in community structure and 

classifying the Beaufort Sea as a second transition zone.  The second regime extends 

from the more geographically closed-in waters of the Canadian Arctic Archipelago 

through the sixth oceanic domain, the Davis Strait/Labrador Sea.  The entire distance 

from the western edge of the Archipelago to the Labrador Sea is represented by only 

12 stations, so it is relatively under-represented compared to the western half of the 

survey.  
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Figure 6.7  Fisher information (FI; bold solid line) and Variance Index (VI; faint dotted line) for zooplankton community data from transect of 
44 sampling stations ordered from west to east along the x-axis.  Because one FI value is produced per window, the first FI value is at route 5. 
Regimes and transition zones are shown as boxes drawn around the FI plotted line.  The a priori-defined oceanic domains are under the x-
axis, to see how well the location of the regimes identified by FI align with the oceanic domains identified in the literature. 
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Like the terrestrial case study, when the FI trends are compared to the 

traditional regime shift indicators, only the VI was able to provide sensible results 

(Figure 7).  The Variance Index peaks at the boundary of the Bering Sea, the Chukchi 

Sea, and to a lesser extent the Beaufort Sea Shelf.  However, it does not distinguish 

whether the increased variance denotes the beginning of a stable regime, or signals a 

transition zone.  The descriptive statistics support an overall picture of change in 

community structure which reflects successive patterns of an ecoregion with high 

variability (i.e. high σFI and cvFI) transitioning into a more stable regime (high μFI, 

and low σFI and cvFI)  (Figure 8). 

The multivariate analyses support the FI results, and suggest that the 

boundaries between the a priori defined ecological domains are soft, particularly 

between the Bering Sea and Chukchi Sea.  When viewed in ordination space, the 

nMDS places the stations so they more or less flow from west to east along the arc, 

but there is also strong overlap in community structure at sampling locations near the 

edges of the domains (Figure 9; (stress value of 0.121 for 3 dimensions)).  The cluster 

analysis (Figure 9; pruned to 6 clusters) divides the stations of the Bering Sea into two 

clusters, and places two of the Bering Sea stations in the Chukchi cluster, as well as 

fails to distinguish between the Canadian Arctic and the Davis Strait/Labrador Sea.  

The overall result is that the zooplankton communities do not have crisp boundaries 

which fully align with the a priori defined domains described in the methods, but 

have softer boundaries with considerable overlap in community structure between 

domains.  Furthermore, FI communicates a richer story of community structure 

transitioning across space than either the nMDS or cluster analysis.  However, unlike 

the BBS case study, the transition zones were marked by a rise in FI, as opposed to a 
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drop, which may suggest a possible slowing down of changes in community structure 

before the patterns destabilized and the system organized into a new regime.  Further 

work on the underlying system dynamics would be instructive. 

 

 

  

Figure 6.8  The stability of each marine regime over space, as defined by the mean 
(µFI), standard deviation (σFI) and coefficient of variation of FI (cvFI). While the 
two regimes are relatively stable with high µFI, low σFI and low cvFI, the transition 
periods exhibited the least stability.  Note: Regimes reflect the domains identified by 
the trend in FI, not the regimes a priori identified using Carmack et al. (2010)) and 
Archambault et al. (2010). 



188 
 

 

Figure 6.9  Ordination plot for the zooplankton community data (k = 3; stress = 0.121.  
The sampling stations are shown with open circles.  The results of a cluster analysis 
(pruned to 6 clusters) are shown with black spiders, while the oceanic domains a 
priori identified from the literature are represented by the colored polygons.  Both the 
nMDS and the cluster analysis fail to assign some sampling stations to the ‘correct’ 
oceanic domain for all domains except the Gulf of Alaska. (Figure 6.9.pdf, 19KB) 
 

Discussion 

Detecting spatial regimes with Fisher information 

Given animal community data, we found that Fisher information was able to 

detect spatial regimes and transitions between spatial regimes in both terrestrial and 

aquatic ecosystems, across regional scales (1900 and 12,000 kilometres respectively).  
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These studies were an important step towards determining the utility of FI in detecting 

spatial regimes in both aquatic and terrestrial systems, even given data limitations.   In 

contrast, the traditional indictors we examined, such as variance, skewness, kurtosis, 

and critical slowing down, were unable to detect spatial regimes, though this was 

unsurprising as they are not suited for multivariate data.  The VI helped to confirm 

general trends, but it does not reveal details about the regime dynamics that are useful 

for assessing the behavior of the system, e.g., whether there is a stable regime 

between two peaks, or whether changes in the VI are capturing a transition.  Our 

results suggest that Fisher information can be a powerful, easy-to-use tool to assess 

regime shifts in animal (or other) community data, providing a biological link 

between anthropogenic disturbances such as land use and climate change and spatial 

shifts in ecological communities. 

The ecological reality of community regimes 

Our analyses demonstrated that the bird community boundaries only roughly 

coincided with the expectations of ecoregion maps.  There are substantial differences 

between the potential vegetation underpinning the ecoregion classifications, and the 

actual spatial locations of stable avian communities.  If FI were to fully coincide with 

the ecoregion maps, then we would expect to see a stable FI value through the center 

of each ecoregion, with evidence of increasing variability at the borders, indicated by 

declining FI.  Instead, the High Plains had high variability in community structure 

throughout the core of the ecoregion.  And rather than FI identifying three distinct 

Plains regimes, as per the ecoregion expectation, it identified two regimes, each of 

which straddled routes from the Central Plains.  In other words, the avian community 

structure was simplified relative to ecological expectations, with a blurring of the 
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boundaries between what are considered distinct ecoregion types by US land 

agencies.  Indeed, the difference in FI between regime 2 and regime 3 is such that the 

argument could be made that the entire Great Plains is one regime, with a slow but 

steady loss of order as one moves from west to east, corresponding with an increasing 

intensity of agriculture.  The transitions to and from the Plains are both much steeper 

than that between the two Plains regimes, as would be expected. 

The land cover summary (Table 1) supports the findings of FI as it 

demonstrates that the three prairie landscapes exist on a gradient of actual vegetative 

cover.  As we move east from the High Plains to the Cornbelt Plains, the percent 

grassland cover drops dramatically from 60% to 5%, and the percent of row crop land 

cover rises from 14% to 74% (Table 1). The most significant changes occur between 

the High Plains and the Central Great Plains.  These patterns are in contradiction to 

ecoregion maps (Omernik 1987; Bailey 2015), which hold the difference between the 

Central Great Plains and the Western Cornbelt Plains as much more fundamental (a 

Level I division) than that between the High Plains and the Central Great Plains (a 

Level III division).  To the extent that the land use cover in each 400 m route buffer 

around the ~40 km route reflects on a gross level the land cover of each ecoregion, it 

seems likely that the heterogeneity within the Plains landscapes due to agriculture and 

grazing has been reduced. 

 



 

 

191 

Table 6.1  Land cover classification for a 400 m buffer around each 41 km BBS route.  The dominant land cover type for each ecoregion is in 
bold.  Note that Northern Lakes and Forest is roughly evenly split between Deciduous Forest and Woody Wetlands, evidence for the 
hetereogeneity of the region. 

 

Landcover Type Southern 
Rockies 

High 
Plains 

Central 
Plains 

Western 
Cornbelt 

Northern Lakes 
and Forest 

Open Water 0.01  0.01 0.01 0.04 
Low Intensity Residential    0.02  
Deciduous Forest 0.14  0.02 0.03 0.25 
Evergreen Forest 0.47    0.12 
Mixed Forest 0.01    0.11 
Shrubland 0.15     
Grassland/Herbaceous 0.18 0.61 0.20 0.05  
Pasture/Hay 0.02 0.04 0.08 0.12 0.10 
Row Crops  0.14 0.66 0.74 0.03 
Small Grains  0.13 0.02 0.01  
Fallow  0.07    
Woody Wetlands     0.28 
Emergent Herb Wetland    0.01 0.04 
*Only showing those categories for which at least one ecoregion has > 1% 
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The length of each transition zone is suggestive of soft, rather than the hard 

boundaries depicted on ecoregion maps (Bailey 1983; Omernik 1987).  The long 

transition from the Cornbelt Plains to the Northern Lakes and Forest, which covered 

more than 400 kilometres, may be impacted by two factors:  First, the final two routes 

in the Cornbelt Plains occur on the upward sweep of the transect and so are 

substantially more northern than the other Cornbelt Plains routes.  Latitude is known 

to affect animal communities (Clergeau et al. 2006).  Second, the first route in the 

Northern Lakes ecoregion technically falls into a narrow band of the North Central 

Hardwood Forest.  This rapid shifting across three ecoregions is captured by FI as a 

long transition before the fourth regime begins.  Finally, the higher cvFI and thus 

relative variability of FI in the fourth regime, which falls wholly within the Northern 

Lakes and Forest ecoregion, is possibly explained by the heterogeneity of the land 

cover, though it is also possible that further data points would reveal the fourth regime 

as another transition as the study ends at a geographic rather than ecological border.  

However, community structure in this ecoregion is likely more variable than in the 

other regimes because the landscape itself is more variable, as it is a patchy mosaic of 

water features and forest (Table 1). 

The zooplankton data tell a similar story to the avian data.  Although there is 

correspondence between zooplankton community structure, large scale oceanic 

structure, and regime transitions as detected by FI, some boundaries are less defined 

than a priori expectations.  Domains thought to contain distinct communities, such as 

the Bering Sea or Beaufort Sea Shelf (Springer et al. 1989; Hopcroft et al. 2010; 

Pomerleau et al. 2014), appear to be transition zones between stable communities.  

The failure of both FI and the nMDS to distinguish between the Canadian Arctic 
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Archipelago and Davis Strait/Labrador Sea may be a function of inconsistent sample 

coverage.  Further work examining how the frequency of sampling affects the power 

and sensitivity of FI is warranted. 

The inability of FI to crisply distinguish between the Bering Sea and the 

Chukchi Sea is consistent with our understanding of the region as a mixing zone 

where Bering Shelf water mixes with water from the Anadyr current, which enters 

from the west, and Alaska coastal water, which enters the Bering Strait from the east 

(Coachman et al. 1975).  These three water masses are believed to harbour unique 

zooplankton communities (Springer et al. 1989), and as the water masses do not mix 

until they pass through the Bering Strait into the Chukchi Sea, the zooplankton 

community contains a mixture of communities that differ from the southern Bering 

Sea and have high patchiness  (Eisner et al. 2014; Pomerleau et al. 2014).  As the 

transect enters the Beaufort Sea, there is a decline in both Pacific taxa and 

zooplankton community patchiness associated with the mixing of the three Pacific 

water masses and Arctic water, corresponding to greater similarity among samples 

and increasing dynamic order in FI.  The expectation was that the Chukchi, 

understood to be a mixing zone of watermasses, would be identified by FI as a 

transition zone, while the Beaufort Sea Shelf would be a stable regime.  Instead, the 

northern part of the Bering Sea and the Chukchi had a stable FI value denoting it as a 

regime, while the Beaufort Sea Shelf underwent a long and significant increase in 

dynamic order that never flattened sufficiently to qualify as a regime.  This means that 

the variability in zooplankton community structure as the transect traverses the 

Beaufort Sea was much higher than that of the northern Bering/Chukchi Sea, despite 

the latter region consisting of a mixing zone of multiple water masses.  The FI results 
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suggest that studies on dominant zooplankton species within each domain (Nelson et 

al. 2009; Walkusz et al. 2010; Pomerleau et al. 2014) may not strictly correlate to 

bigger picture studies which assess variability in community structure over space, or 

that zooplankton species compositional data or the way in which they are collected 

are not a good proxy for spatial regimes. 

What Fisher information captures that multivariate analysis does not 

The nMDS analysis largely aligned with the a priori ecoregion and 

oceanographic domain expectations, but was not always able to distinguish between 

ecoregions (the High Plains and Central Plains) or domains (Canadian Arctic and 

Davis Strait/Labrador Sea), though in the case of the zooplankton data, may be a 

function of insufficient sampling stations in those domains.  Perhaps most 

importantly, the multivariate analyses are largely visual; ordination methods create 

their own space, and thus do not tell us about spatial shifts in the location of a 

community.  Routes that were geographically farther away from each other tended to 

be more dissimilar than routes that were close together.  However, this rather crude 

depiction of community structure does not tell us where the boundaries between 

communities occur, whether they are hard or soft, or if the soft boundaries are 

themselves ecotones with stable community structure.  Furthermore, the approach 

does not provide any insight on the spatial extent of the transitions.  The ability to 

assess whether or not a particular community is gaining or losing order over time 

could allow land use managers to anticipate a potential regime shift within a location, 

or document if community locations shift in space over time.  That said, our ability to 

detect change using FI may be improved by employing post-hoc tests to assess trends 

in the index.  Researchers have explored approaches such as cut-offs, Mann-Kendall 
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tests, and Bayesian methods to help reduce interpretive uncertainty (Heberling & 

Hopton 2010; Vance et al. 2015; González-Mejía et al. 2016), but these methods are 

still under development. 

Idio- or non-idiosyncratic changes in animal community regimes? 

To what extent can we expect changes in plant and animal communities to 

occur in a fashion detectable by monitoring and analytical methods like the one 

presented here?  Our contention is that it will depend on whether or not species’ 

response to anthropogenic change is idiosyncratic within and across taxa.  If species’ 

responses are fully idiosyncratic, then the patterns at the community level will 

become chaotic as a function of independent species’ responses as anthropogenic 

impacts accumulate and intensify.  Accordingly, tracking spatial regimes and the 

location of the transition zones between them would not be a useful activity for 

managers or scientists.  There are, however, constraints on individual response such 

that pattern identification will remain useful and feasible on shorter timescales, 

though the possibility of no-analog communities seems highly likely for multi-decadal 

or longer time scales (Williams & Jackson 2007).  In general, we expect to see 

changes in animal abundances in the short term as a response to climate change and 

anthropogenic influence, as opposed to changes in presence/absence.  Changes may 

result from range shifts, as there is substantial evidence documenting vagile species 

recently shifting their ranges to track their climatic niche (Parmesan, 2006; Parmesan 

& Yohe, 2003; Tingley et al., 2009), but the rate of climate change is such that 

migration capabilities are unlikely to keep up with the rate of thermal change 

(Thuiller et al. 2008), and the ability to shift ranges is further impeded by habitat 

fragmentation, which has been shown to reduce range shift (Iverson et al. 2004; 
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Thuiller et al. 2008).  As a result, range contraction due to a lack of suitable habitat 

and reduced survivorship within their original range is also expected (Davis & Shaw 

2001; Parmesan 2006). 

These issues confound the identification of ecological boundaries and our 

ability to track changes in boundaries over time.  Fisher information can assist 

researchers and managers in tracking changes in the patterns of community structure 

associated with habitat types or biogeographical distribution areas, as well as the 

temporal dissolution of community structure as no-analog communities assemble over 

time.  A substantial benefit to Fisher information is that it circumvents many of the 

difficulties currently present in defining ecological boundaries, such as problems of 

non-linear responses across ecotones, landscape fragmentation, and land use change 

in terrestrial systems, or the ephemeral nature of some oceanographic boundaries, as 

well as the vast spatial scales involved, all of which can be difficult to capture without 

exhaustive data collection (Strayer et al. 2003; Kent et al. 2006; Danz et al. 2012).  

Other researchers have discussed the challenges of tracking boundary region shifts as 

a way to monitor climate change, when, for example, little to no native vegetation 

remains (less than 5% of the original prairie in the United States due to land 

conversion), and critical structuring processes have been repressed or altered (natural 

fire regimes supressed) (Danz et al. 2012).  Fisher information allows for the 

simultaneous analysis of multiple, disparate variables and provides a synoptic 

approach that may allow for detection of ecological change and boundary shift 

without pre-supposing key taxa as bell-weather species of change.  However, future 

studies wishing to estimate more precisely the location of boundaries and how they 
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may shift over time may also need to account for phenological/seasonal detection 

differences in the taxon under question. 

We also propose that monitoring animal populations is more likely to reflect 

currently changing conditions and is easier than detecting variation in plant 

communities or oceanographic properties.  Remotely-sensed data remain challenged 

to identify physically similar but floristically different species, and ground-truthing 

large ecological regions is unfeasible.  Animal species’ responses are likely to occur 

more rapidly than plants, as there can be a large mismatch between vegetation and 

climate change, with changes in vegetation lagging substantially behind changes in 

climate (Beckage et al. 2008).  Long-lived species such as trees can exhibit ecosystem 

responses to land use and climate change at century-scales because of the spatial and 

temporal processes structuring forests (Starfield & Chapin 1996), while terrestrial 

animal species are more vagile and can act as a leading indicator of vegetation 

change, or of a change in climatic variables such as temperature.  Furthermore, as we 

demonstrated, there can be significant differences between ecoregion mapping, which 

is based on potential vegetation as a function of geomorphology and soils, and the 

location of spatial regimes actually present after decades of land use changes.  All of 

these issues make it critical to identify reliable spatially-explicit tools for mapping the 

effects of climate and land use change on biodiversity (Mokany & Ferrier 2011), and 

our research suggests that Fisher information can be one of those tools. 

Conclusion 

Our analyses confirmed that when using multivariate data, traditional early 

warning indicators are very difficult to interpret, and integrated indicators such as FI 

and VI more consistently detect regime shifts.  We found that Fisher information 
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provided the clearest, most detailed, and interpretable signal of spatial regime shifts.   

Although the Variance Index did not provide clear signals as a stand-alone indicator, 

some congruent trends are found when the results are presented in conjunction with 

FI.  Fisher information has the further benefit of being highly flexible in terms of the 

choice of variable selection and data input, and is able to detect a clear signal without 

the need for difficult-to-acquire high resolution data. 

This research had the further benefit of highlighting the incongruence between 

terrestrial ecoregion maps, which are focused on ecological potential, and the 

ecological reality of community regimes given land use and climate change.  The 

method presented would allow researchers to track both the shifting spatial locations 

of communities over time, as well as the change over time within a location, both of 

which are critical as the consequences of anthropogenic change manifests in 

community structure and dynamics over time and space. 

We appreciate that for both systems analysed, a different taxa could show 

spatial regimes in different locations.  Reptile or mammal community regime location 

may or may not overlap bird regime location, and the transitions between ecoregions 

may be more or less steep given the taxa under consideration.  Neither mammals nor 

reptiles tend to be as vagile as birds, and their ability to disperse in response to 

climate or land use change is accordingly more limited.  Further research evaluating 

the spatial regimes of other taxa and the extent to which they overlap bird and 

zooplankton species would be useful. 

Finally, further studies that looked more deeply into community structure 

within a spatial regime could inform managers as to which subgroups of species are 

most dominant within each regime, while correlation analysis could identify the 
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subgroups of species responsible for driving the value of Fisher information within 

each regime, both of which would allow managers to objectively select subgroups of 

species to monitor as the primary indicators of ecological stability within a 

community. 
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CHAPTER 7 THE ADAPTIVE CYCLE: MORE THAN A METAPHOR 

Introduction 

The adaptive cycle and its extension to panarchy (nested adaptive cycles) was 

proposed as a metaphor and conceptual tool for understanding long-term dynamics of 

change in complex adaptive systems (CAS) like ecosystems and social-ecological 

systems (Gunderson & Holling 2002).  As such, the concept has had uptake by 

researchers from a variety of fields (Bunce et al. 2009; Burkhard et al. 2011; Randle 

et al. 2014; Fath et al. 2015; Kharrazi et al. 2016; Thapa et al. 2016) despite the lack 

of empirical evidence demonstrating adaptive cycles in real data (though see Angeler 

et al. 2015b).  However, work from a wide array of fields, focused on an even wider 

array of ideas—self-organized criticality, edge of chaos, regime shifts, sustainability, 

resilience, punctuated equilibrium, game theory and thermodynamics (Langton 1990; 

Lindgren & Nordahl 1994; Kauffman 1995; Bak & Boettcher 1997; Ulanowicz 1997; 

Aronson & Plotnick 2001; Jorgensen et al. 2007; Lockwood & Lockwood 2008; 

Scheffer 2009b) suggests that the adaptive cycle describes endogenously generated 

dynamics in complex adaptive systems that may reflect inevitable dynamics of CAS’s 

as a result of the internal processes of self-organization and evolution over time.  We 

review the multiple lines of evidence supporting the theory that adaptive cycles and 

panarchy may be common structure resulting from the fundamental dynamics of 

complex adaptive systems.  We also detail the multiple paths by which researchers 
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could systematically and quantitatively look for signatures of panarchical dynamics in 

ecosystems, rather than relying on metaphor and largely qualitative descriptions. 

Adaptive cycles and panarchy 

An adaptive cycle describes system movement through a 3-dimensional state 

space defined by system potential, connectedness, and resilience (Figure 1), as 

originally developed by Holling and colleagues (Holling 1986; Gunderson & Holling 

2002).  System potential is concerned with the range of options available for future 

responses of the system; in ecosystems this can mean an accumulation of nutrients, 

resources, biomass, and diversity that provide a broad range of options for the future 

behavior of the system in response to change.  Connectedness refers to the 

relationships between system elements and processes, and the degree to which 

elements are dominated by external variability, or by relationships that mediate the 

influence of external variability (Holling & Gunderson 2002).  Finally, resilience 

refers to the degree of disturbance a system can buffer without moving into a new 

regime, or basin of attraction (Holling 1973).  The stylized cycle consists of four 

phases defined by the four quadrants of the state space, but importantly, system 

movement through the phases is not rigid or predetermined.  In the two front loop 

phases, r (exploitation) and K (conservation), there is a slow and gradual 

accumulation of resources and relationships.  Systems tend to spend the most time 

here, and are often understood to be on a stable attractor, or at a quasi-equilibrium in 

which large-scale system features such as biomass are stable over time (Hatton et al. 

2015; Allhoff & Drossel 2016).  As the system moves from the r phase of exploitation 

into the conservation phase, potential  and connectedness increase, but resilience 

shrinks because the high connectedness amongst system elements makes the system 
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vulnerable to cascading disturbances.  In the two back loop phases, omega (release) 

and alpha (reorganization), dynamics are rapid as the system transitions to a new 

phase of exploitation.  The omega phase is characterized by the rapid release of 

accumulated resources; for example, in ecosystems, the release of nutrients and 

biomass when a disturbance event such as fire, drought, insectivory or intense grazing 

triggers a collapse.  This is quickly followed by a period of reorganization, such as 

when soil processes capture nutrients and pioneer species begin colonization 

processes (Holling & Gunderson 2002). 

 

 

Nested adaptive cycles with bi-directional cross-scale feedbacks are called a 

panarchy (Figure 2).  A core hypothesis of panarchy is that the key processes that 

structure ecosystems occur at different ranges of spatial and temporal scales, often 

separated by orders of magnitude.  Thus, the spatio-temporal scales of pine needle 

turnover on a pine tree are dramatically different than the geological scales of the 

Figure 7.1  Phases of the adaptive cycle (from Gunderson  & Holling, 2002) 
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processes that drive where boreal forest occurs on earth.  Research on the 

discontinuity hypothesis, closely related to the development of panarchy (Holling 

1992; Nash et al. 2014a), demonstrated that ecosystems contain scale domains, or 

spatio-temporal domains over which key processes, ecological structure, and 

resources either do not change or change monotonically (Wiens 1989).  Scale 

domains are separated by discontinuities, or scale breaks that represent a transition to 

a new set of structuring processes, as in the transition from photosynthesis structuring 

pine needles, to herbivory driving forest patch dynamics (Holling 1992; Nash et al. 

2014a).  Thus, adaptive cycles occur at each scale domain within the system, resulting 

in complex systems with multiple and nested domains of scales.   At smaller and 

faster scale domains within a larger ecosystem, disturbances can drive cycling 

dynamics that are confined to those scales, while processes of renewal and 

regeneration depend on system memory at larger scales.  Occasionally, disturbances 

can cascade up to larger and slower spaciotemporal scales, especially if those larger 

scale domains are in the K phase of their own adaptive cycle, as the accumulation of 

system potential in the form of standing biomass and bound nutrients shaped by high 

connectance between system elements renders it more vulnerable to cascading effects 

up the panarchy (Gunderson & Holling 2002). 
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Clues from abroad: inference from other fields 

These descriptions of cyclic system behavior intuitively apply to virtually any 

living, adaptable system, and the authors of the original panarchy volume (Gunderson 

& Holling 2002) both push back against the compulsion to see adaptive cycles 

everywhere, and utilize examples from a variety of economic, social, and ecological 

systems.  Work on the adaptive cycle and panarchy has largely occurred within the 

confines of resilience science, a field of research connected to panarchy as both are 

part of a larger narrative of how to conceptualize, study, and manage complex 

ecological and social-ecological systems originally developed by Holling and 

colleagues (Resilience Alliance, 2017).  However research in other fields also 

suggests that the fundamental dynamics of system development, maturation, collapse, 

Figure 7.2  A panarchy.  Three nested adaptive cycles with bi-
directional cross-scale feedbacks (from Gunderson & Holling, 
2002). 
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and reorganization captured by panarchy are endogenous dynamics in CAS’s that 

reflect internal processes of self-organization and evolution over time. 

Complex adaptive systems arise when systems are open; that is, they import 

energy and export entropy, and in the process of dissipating energy generate the 

essential characteristics of a complex system (Schneider & Kay 1994).  Levin (1998) 

proposed that the essential elements of a CAS can be reduced to three things: 

“sustained diversity and individuality of components; localized interactions among 

the components; and an autonomous process where based on the results of local 

interactions, a subset of the components is selected for replication or enhancement (p. 

432).”  From these essential elements flow the other key features of a CAS: continual 

adaptation and introduction of novelty, non-equilibrium dynamics as a result of the 

dispersed and local nature of selection, the absence of top-down global control, and 

the emergence of hierarchical organization and other emergent phenomena (Levin 

1998).  Many have argued that when systems are driven by the same ‘physical 

principles and forces that drive self-organization in open, inorganic, far-from-

equilibrium systems’, such as nonequilibrium thermodynamics (Kurakin 2010), then 

the patterns of emergence of structure and process should be generalizable  across 

system types.  If ecosystems and other complex adaptive systems are driven by the 

same fundamental rules of thermodynamics and physics then there are grounds for the 

premise that the basic phases of the adaptive cycle may be a feature of multiple types 

of complex adaptive systems. 

Empirical evidence to support the contention that these dynamics are 

endogenous and primary to self-reinforcing, evolutionary systems comes from a range 

of fields.  Non-equilibrium dynamics of change that are less extreme then fold-
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bifurcations (regime shifts) can be difficult to model, either because data from real 

systems is highly labor-intensive to collect; non-linear dynamics are often intractable 

to mathematical resolution; or because reconciling mathematical predictions with 

experimental communities in a laboratory setting can be very difficult (Fussmann et 

al. 2000).  Nonetheless, there is evidence to suggest that simple rules and local 

interactions between system elements can generate non-linear dynamics that fall into 

a range of behavior from fully ordered and at equilibrium, to chaotic and 

characterized by wildly oscillating fluctuations (Fussmann et al. 2000; Becks et al. 

2005).  In a study of predator-prey interactions in laboratory conditions, population 

dynamics included chaotic behavior, as well as stable limit cycles and coexistence at 

equilibrium (Becks et al. 2005).  Foster and Wild (1999) used a non-linear logistic 

diffusion sigmoid curve to map the phases of self-organization in economic systems, 

which mirror the adaptive cycle, and Lindgren and Nordahl (1994) found that the 

shifting pattern of dynamics emerging from the tension between competition and 

cooperation in evolution in social systems creates a shifting pattern of dynamics 

where cooperative structures self-organize, grow, occasionally enjoy long stable 

periods, and then break up over time.  The system is in a perpetual non-equilibrium 

state because of the trade off between competition and cooperation, and, importantly, 

complex and unpredictable patterns and structures emerged from an initial chaos.  The 

patterns were cyclic and punctuated; over time a  pattern emerged and stabilized until 

a mutation/innovation appeared that abruptly generated pattern collapse and 

reorganization.  The cycling behavior of companies over time follows the adaptive 

cycle closely, as many companies jostle somewhat randomly for their niche, a small 

number grow explosively to a large size and dominate for sometimes decades, and 
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then inevitably crash and fail (Beinhocker 2006).  While in ecosystems the players 

still standing after a crash then reorganize and begin the process over again in 

competition with opportunistic invaders, usually the same company does not re-enter 

the playing field after failing, but is replaced by a multitude of new, small start-ups, or 

previously subordinate companies that are competitively freed (Beinhocker 2006). 

In archaeology, Marcus (1998) developed a dynamic model of social evolution 

that explains ‘cycles of consolidation, expansion, and dissolution’ (Parkinson & 

Galaty 2007) of geopolitical states which has since been shown to fit a wide range of 

archaeological communities, while work by Tainter (1988) demonstrates what can 

happen when the collapse phase occurs at the level of the panarchy, rather than at 

smaller-scale adaptive cycles (collapse of civilizations).  Though Gunderson and 

Holling (2002) briefly discuss punctuated equilibrium as another example of adaptive 

cycles, Jain and Krishna (2002a, 2002b) modeled evolution in a simulated ecosystem 

and found cyclical dynamics as a result of endogenous interactions that correspond to 

both punctuated equilibrium and adaptive cycle dynamics.  The parameter which 

drove the system through the phases of growth and collapse was the changing pattern 

of connectance between system elements, precisely as Holling predicted in his 

adaptive cycle. 

Foundational work in complex systems theory also supports adaptive cycle 

dynamics as endogenous processes of complex adaptive systems.  Work by early 

pioneers argued that there are a limited number of system states to which systems 

evolve.  These states strongly parallel the 4 phases of the adaptive cycle, and despite 

criticism that these cellular automata and Boolean network modelling efforts were too 

mechanical to effectively capture the dynamics of real complex systems  they 
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highlighted that given too much or too little order, systems can be trapped in states 

that lead to death because they are either too static or too chaotic to support the 

processes necessary to sustain self-organized, persistent structural hierarchies that can 

adapt and evolve to changing conditions (Figure 3)(Wolfram 1984; Langton 1986; 

Kauffman 1993; Ulanowicz 1997). 

 

 

 

 

 

 

Langton (1986) proposed that systems therefore evolve to ‘edge of chaos’ 

behavior, where they are poised at the cusp of chaos and avoid falling into the traps of 

frozen order or full-fledged chaos.  Furthermore, evidence suggests that systems at the 

edge of chaos are able to maximize information, entropy rate, and adaptation (Latora 

et al. 2000).  Ulanowicz (1997) pushed back against the claim that the edge of chaos 

is a point or tiny region of state space, arguing that it is more appropriately viewed as 

a range or region of parameter space which he calls a ‘window of vitality’, and 

Figure 7.3  Wolframs's 4 classes of cellular automata end states.  In Class I, 
evolution leads to a homogeneous state (limit points).  In Class II, evolution 
leads to a set of separated simple stable or periodic structures (limit cycles).  
In Class III, evolution leads to a chaotic pattern (strange attractors).  In Class 
IV, evolution leads to complex localized structures, sometimes long-lived 
(long transients) (adapted from Wolfram, 1984). 
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subsequent work has borne this out (Zorach & Ulanowicz 2003; Nakajima & Haruna 

2011; Benincà et al. 2015). 

Edge of chaos dynamics are closely related to the theory of self-organized 

criticality, which argues that systems can self-organize to a point or region of state 

space that is a transition between order and chaos, where behavior exhibits power-law 

and/or fractal dynamics (Kauffman 1995; Bak & Boettcher 1997; Pascual & Guichard 

2005).  Schneider and Kay  (1994) propose that life itself is a far-from-equilibrium 

dissipative structure, arising to poise at the cusp between low and high entropy (order 

and disorder) and this tension between opposing forces is mirrored in ecology, where 

the tension and trade-off between diversity and redundancy plays out in evolution, 

community assembly, and resilience (long-term persistence in a regime)(Page 2010).  

Studies from a broad range of fields have found edge of chaos dynamics and/or self-

organized criticality (Bonabeau 1997; Turchin & Ellner 2000; Latora et al. 2000; Li 

2000; Lansing 2003; Kurakin et al. 2007; Upadhyay 2009; Kitzbichler et al. 2009; 

Kong et al. 2009; Salem 2011; Nakajima & Haruna 2011; Chua et al. 2012; Benincà 

et al. 2015), but interestingly,  not all systems stay there, as some systems show such 

dynamics for only a range of parameter space, or for a limited duration of time, or 

only larger system scales stay poised at criticality (Li 2000; Upadhyay 2009; 

Medvinsky et al. 2015; Lansing et al. 2017) while smaller scales experience collapse 

and renewal consistent with the other system states articulated by the early pioneers. 

If, as has been argued, systems are tuned to evolve to criticality, where even 

small events can trigger a collapse or phase transition (Bak & Paczuski 1985; de 

Oliveira 2001) then it is far from obvious that all spatial and temporal scales of a 

complex adaptive system could be at criticality concurrently, as this would generate 
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severe instability as even small disturbances would constantly cascade up and down 

system scales.  Instead, at ecosystem-level system scales and larger, we tend to see 

stable quasi-equilibrium behavior which can persist long enough that it led earlier 

ecologists to assume that deterministic successional behavior and equilibrium 

dynamics was the norm (Clements 1936).  Brunk (2002) argues that systems require 

time to rebuild the structure that allows the transmission of disturbance.  In forests, for 

example, it takes time to regrow the biomass that becomes the fuel load which can 

spread fire throughout the forest, rendering it unlikely that a system can stay poised at 

SOC at the system level  unless regular collapses at smaller spatial and temporal 

scales occur with sufficient frequency to prevent disturbances from cascading up to 

the largest scales of the system.  Similarly, Plotnick and Sepkoski (2001) argue that 

extinction and origination processes, which Bak and Sneppen (1993) claim fit power-

law behavior and SOC, are better explained by hierarchical and multiplicative 

processes operating over multiple distinct ranges of scale.  This means that at only at 

certain scales and certain periods in extinction/origination processes would there be 

behavior typical of SOC. 

Another body of evidence suggesting that adaptive cycles may be generic and 

ubiquitous features of complex systems comes from researchers who have tried to 

bridge the gap between fundamental theory in non-equilibrium physics and chemistry, 

and the dynamics of ecosystems or other complex adaptive systems over space and 

time (Schneider & Kay 1994; Ulanowicz 1997; Jørgensen & Fath 2004; Beinhocker 

2006; Kurakin 2011).  One basic tenant that has emerged is that systems accrue 

complexity over time as processes of self-organization generate discontinuous, 

hierarchical layers of structure that dissipate more energy (Schneider & Kay 1994; 
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Jørgensen & Fath 2004).  Furthermore, system development moves towards 

‘increased order, organization, and storage of usable energy in sequential phases that 

see first biomass, then networks, and finally information (in terms of genetic 

complexity) increase’ (Fath et al. 2004; Jørgensen et al. 2016).  Complexity and order 

evolve from relative simplicity and disorder under the influence of “periodic but 

transient setbacks in the form of organization relaxations and restructuring” (Kurakin 

2011).  These authors describe detailed dynamics of change in complex adaptive 

systems via various applications of thermodynamics (exergy, infrared thermal 

measurements and electron and proton transport in autocatalytic processes)(Schneider 

& Kay 1994; Jørgensen & Fath 2004; Kurakin 2011) that fully align with panarchy, 

although they place less emphasis on the stages of collapse and renewal.  They argue 

that setbacks to this trajectory of increasing complexity have occurred at all spatial 

and temporal scales (e.g. from a small forest fire to mass extinctions to the fall of 

prior civilizations), but have not changed the fundamental trajectory of increasing 

complexity over time; the players may come and go, but the organization of 

relationships tends to be preserved and evolve (Kurakin 2011).  Setbacks in this 

trajectory towards increased complexity are therefore temporary and of little import.  

However, we argue that externalizing setbacks as temporary impediments to be 

overcome rather than necessary for long term persistence and renewal through 

innovation and adaptation is problematic.  Furthermore, the relative impact of 

‘setbacks’ depends on the timescale under consideration.  For example, social and 

economic systems at the global scale are increasingly complex (more structure and 

information content as in Ulanowicz 1997), but many ecological systems are at risk of 

simplification as anthropogenic degradations accumulate, rapid species extinctions 
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reduces the diversity necessary for systems to retain and build complexity, and 

climate change drives an increased risk for system-level regime shifts.  Alternate 

regimes can be simpler, more homogenous systems as a result of missing crucial 

elements that allow it to reorganize into a similar state after a disturbance.  When 

viewed at geological timescales, it seems likely that processes of thermodynamics, 

self-organization, and evolution will resume the inexorable march to increasing 

complexity.  That  is small comfort, however, for humans in the 21st century, given 

the timescales under consideration. 

Collectively, these different  theories on endogenously driven cycling 

dynamics of change are the backbone of our argument that nested adaptive cycles are 

generic and ubiquitous dynamics of complex adaptive systems.  They inform our 

series of propositions and testable hypotheses . 

Our propositions 

#1 If nested adaptive cycles are innate dynamics of complex adaptive 
systems, there ought to be generic, measurable signals of such dynamics 

Our most general proposal is simply that a  panarchy, or nested adaptive 

cycles, reflect the inevitable dynamics of CAS’s as a result of the internal processes of 

self-organization and evolution over time.  Even in the absence of anthropogenic 

forcing or exogenous drivers, CAS’s can move among the phases of the adaptive 

cycle as a result of internal dynamics that are driven by self-organization and 

evolution, and that research on self-organized criticality, punctuated equilibrium, 

game theory, artificial intelligence, and thermodynamics support this hypothesis 

(Kauffman 1993, 1995; Lindgren & Nordahl 1994; Aronson & Plotnick 2001; 

Jørgensen & Fath 2004; Lockwood & Lockwood 2008).  The movement of a system 
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through the phases of the adaptive cycle could also be triggered by exogenous factors, 

but regardless of the trigger the trajectory of movement will be sensitive to initial 

conditions as well as the relative resilience of the system as it shifts from one phase to 

another.  Because complex adaptive systems by definition evolve, the qualitatively 

similar system dynamics described in a variety of systems are likely the result of 

evolution in a thermodynamically open complex system.  We propose, therefore,  that 

there ought to be system signals that can be used to track a system’s developmental 

trajectory that are consistent across varied system types. 

#2  Tracking system change at scale domains will improve our ability to 
identify and predict dynamics of system change over time 

Panarchy allows researchers to explicitly examine the scales at which 

dynamics of growth, maturation, collapse and renewal occur, so provides a framework 

for evaluating whether cross-scale feedbacks buffer or amplify collapse across the 

nested adaptive cycles of the system.  Amplification can lead to a system-level regime 

shift during the renewal phase which manifests as movement to another attractor as 

the system reorganizes (Scheffer 2009b).  Regime shifts in ecological and social-

ecological systems are an active research field.  Typically, regime shifts at the system 

level, such as a shallow lake, grassland, or coral reef system, are examined for 

movement between alternative stable states.  However, cycling dynamics at smaller 

spatial and temporal scales within the system can either buffer or amplify 

disturbances, so connecting the probability of a system-level regime shift to the 

dynamics of adaptive cycles within system scale domains would be of value.  For 

example, studies suggested that the Baltic Sea had undergone a regime shift 

(Österblom et al. 2007; Möllmann et al. 2009), but Yletyinen et al. (2016) argued that 
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the shift was not system-wide and involved only a limited number of species; the 

difference between a regime shift at one scale domain versus the system is not trivial.  

A primary distinction between panarchy and other models of system change is that 

panarchy explicitly incorporates differences between the spatial and temporal scales 

of key processes.  We argue that finding system signals which track dynamics of 

change at explicit and objective scales would improve our ability to identify and 

predict potential cascading effects of disturbances.  Systems should evolve to edge of 

chaos/SOC dynamics and cycle through periodic stages of release and reorganization 

without the interference of any human generated disturbances, but it is clear that 

human-forced perturbations could drive a system or adaptive cycle(s) nested within a 

system through cycles of creative destruction and reorganization far more frequently 

than power law behavior might predict.  Understanding and quantifying the risk of 

cascading disturbances is critical, but not feasible unless we can identify simple 

metrics that capture the state of development of a system with data that is realistic to 

acquire. 

#3  Self-organized criticality and/or edge of chaos dynamics are 
characteristic of one phase of the adaptive cycle 

We hypothesize that the conservation (K) phase of an adaptive cycle may well 

operate at SOC or the edge of chaos, but only if cycles of collapse and renewal occur 

with sufficient frequency at smaller spatial and temporal scales (Brunk 2002; 

Gunderson & Holling 2002).  For example, if the hierarchy of nested adaptive cycles 

in a system were identified using discontinuity theory as per Nash et al. (2014a), then 

we would expect to see that as systems develop and mature within and across scales, 

power law behavior and edge of chaos dynamics will increase from ‘weak’ to 
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‘strong’, peaking in the K phase of development, consistent with theory (Brunk 2002), 

and that edge of chaos/SOC  is more likely to be persistent at larger spatial and 

temporal scales.  

 

 

 

 

Ecology currently has early warning indicators of an impending regime shift, 

though their ability to explain historical behavior is better than their ability to predict 

the probability of a future regime shift (Seekell et al. 2011; Lindegren et al. 2012; 

Perretti & Munch 2012; Batt et al. 2013).  Similarly, it makes sense to try to reduce a 

system to variables that can represent the state of the system as a whole because we 

often lack time series data on complete food web topologies or ecological networks. 

SOC peaks 

SOC peaks 

SOC peaks 

SOC peaks 

Figure 7.4  A conceptual diagram of nested adaptive cycles for a pine-dominated 
ecosystem.  Self-organized criticality should peak at the height of the conservation 
phase of the adaptive cycle.  Since the spatial and temporal scales increase at each 
level of the hierarchy, the forest system at the highest level in the panarchy should 
spend the most time at SOC.  Adapted from Allen et al., 2014. 
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Potential signals of adaptive cycle dynamics 

We discuss a series of possible parameters that could represent a system signal 

of dynamics of behavior and change.  Many of these have been developed and/or 

explored by other researchers for precisely that purpose (Burkhard et al. 2011), but 

with the goal of representing system behavior at the largest spatial and temporal scale, 

whereas we argue for the value of understanding dynamics of change within and 

across the scales of the system.  These signals are thermodynamic metrics, and 

include exergy, ascendency, infrared, and Fisher Information; network theory and 

connectance; and biomass. 

Thermodynamic metrics 

A variety of indicators use principles of thermodynamics to capture system 

development and change, but perhaps the most well-known are exergy (Mejer and 

Jorgensen), ascendency and its related indicators (Ulanowicz 1997), infrared 

(Schneider & Kay 1994), and Fisher Information (Fath & Cabezas 2004; Karunanithi 

et al. 2008).  Exergy measures the difference in entropy between equilibrium and an 

actual state.  Since ecosystems operate far from equilibrium, measuring ecosystem 

exergy reflects the total amount of energy stored in organic structures (Ludovisi 

2009).  Exergy equations take into account information/structure, and concentration, 

and indirectly account for the manner in which biological matter is distributed among 

ecosystem compartments, typically by using carbon as the energy currency and 

genetic complexity as the information (Ulanowicz 1997; Scharler 2012), such that 

more biomass of more complex organisms will cause exergy to rise (Fath & Cabezas 

2004).  The detailed data required to calculate exergy for an equilibrium system (used 
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for comparison and necessary for the calculation) as well as the system of interest is 

formidable.  Exergy by itself is disconnected from a larger understanding of 

resilience, as the extinction of lower-order species with less genetic complexity and 

an increase in abundance of higher-order organisms with more complexity can drive 

an increase in exergy (Fath & Cabezas 2004), but will also reduce functional 

redundancy and future adaptive capacity.  From the perspective of the adaptive cycle, 

an increase in exergy in this scenario would equate to reduced resilience and reduced 

potential, and thus when exergy is calculated at the system level, it does not 

sufficiently capture critical system features.  Furthermore, developers of exergy-based 

indicators tend to use reductionist terms such as stable ‘climax’ community 

succession dynamics and downplay or ignore collapse and renewal dynamics 

(Ludovisi 2014).  However, were exergy to be calculated for each scale domain and 

thus for the complete nested set of adaptive cycles, it could potentially capture 

sufficient information about system dynamics to provide a picture of system change 

and development  through time. 

Ascendency theory (Ulanowicz 1997) quantifies change in system dynamics 

by using information theory to measure growth and structure in food webs, where 

growth is an increase in system activity or total system throughput, and structure is 

the mutual information contained in the trophic flow.  Ascendency, when coupled 

with overhead, which captures system redundancies and the material for adaptive 

capacity, is a process of growth and maturation in ecosystems that fully parallels 

panarchy.  In fact, Ulanowicz used ascendency theory to test the adaptive cycle and 

concluded that they are fundamentally telling the same story (1997).  However, 

panarchy explicitly addresses the notion of cycling dynamics occurring at multiple 
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domains of scale, and via the discontinuity hypothesis provides a method for detecting 

scale domains (Holling 1992), whereas ascendency theory only touches on feedbacks 

across levels in the hierarchy and does not explicitly model or account for them.  

Furthermore,  it fails to substantively treat collapse and renewal as integral and 

necessary processes that are both unavoidable and critical for system resilience and 

persistence;  the stages of maturation only briefly acknowledge that there are 

‘temporary setbacks’,  and downplay the possibility of collapse occurring at large 

scales when a system has reached senescence (Holling’s K phase).  In an application 

to national economies, the authors write, “The senescent stage is in some systems 

usually followed by reorganization or by recycling after which a new qualitative state 

of immaturity and growth emerges.  There are, however, two possibilities for complex 

systems to escape recycling, at least temporarily” (Matutinovic et al. 2016).  That is a 

serious caveat to throw out and immediately  move past, as they do not discuss time 

scales or the fact that collapse in some form is inevitable.  The failure to treat collapse 

and renewal as integral, endogenously driven and necessary processes that are critical 

for system resilience and persistence at larger spatiotemporal scales is a limitation of 

the theory.  Furthermore, any theory that views disturbances as external to a system 

will be constrained in its ability to explain and predict future behavior.  Such 

assumptions are particularly dangerous because they can permeate research choices 

that in turn can lead to misleading results; for example, Matutinovic et al. (2016) trim 

their economic data to capture only ‘trends that are not disturbed by exceptional 

geopolitical events or the last major recession’.  This is reminiscent of reductionist 

assumptions of equilibrium dynamics and deterministic successional trajectories 

towards climax communities that get momentarily ‘disturbed’ by external events.  
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And finally, although Ulanowicz’s (1997) rigorous and quantitative ascendency 

theory captures system development, the data demands of fully realized food webs are 

intense and only provide a snapshot of ecosystems at one point in time.  While 

tracking system development or dynamics of change via ascendency and overhead 

will provide highly valuable insight into the trajectory of dynamics, the feasibility of 

doing so is low.  A simpler signal that nonetheless represents dynamics either within a 

scale domain (at the scale of one adaptive cycle) or at the system level (the highest-

order adaptive cycle within the system of interest) would therefore be of high value. 

Infrared is a thermodynamic metric proposed by Schneider and Kay (1994) as 

a test of their proposition that complex systems such as ecosystems should increase 

their total dissipation over time and become more complex, whereas simple or 

degraded systems should dissipate less energy.  They argue that “more mature 

systems should degrade incoming solar radiation into lower quality exergy”, resulting 

in lower reradiated temperatures (lower airborne infrared thermal measurements).  

However, as Fath et al. (2004) point out, “ecosystems are complex adaptive systems, 

and as such one would expect the thermodynamic properties of the ecosystem to 

change during development”.  It is now understood that while more mature systems 

dissipate more exergy than less mature or degraded systems, exergy dissipation 

eventually plateaus while system maturation continues and is reflected in other 

thermodynamic metrics such as total energy throughflow and system exergy storage 

(Aoki 1995; Fath et al. 2004; Ludovisi 2014).  As with exergy and ascendency, 

understanding infrared in terms of the expectations of nested adaptive cycles would 

address current shortcomings; in other words, while Schneider and Kay’s hypothesis 

that maturing ecosystems will continually increase total dissipation as expressed by 
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infrared  may only be correct for the renewal and exploitation phases of the adaptive 

cycle, tracking changes in infrared within scale domains could nonetheless be an 

effective signal of ecosystem change over time.  However, doing so for real 

ecosystems will require evaluating infrared within scale domains of ecosystems, 

something that is conceptually only feasible for vegetation systems, and would require 

developing techniques to identify scale breaks in vegetation systems. 

Finally, Fisher Information is a measure of the amount of disorder contained 

in any given parameter or system characteristic, and is based on the probability of 

observing a system state (Fath & Cabezas 2004; Sundstrom et al. 2017). It has been 

used recently to detect spatial and temporal regime shifts in ecosystems (Spanbauer et 

al. 2014; Eason et al. 2014; Sundstrom et al. 2017) but has the potential to track 

system change as ecosystems move among the phases of the adaptive cycle because 

the degree of order can be reflected in patterns of species richness, abundance, 

functional richness, growth rate, connectance, and complexity (genetic), all of which 

are anticipated to change in systematic ways among the phases of the adaptive cycle.  

Whereas a drop in Fisher Information indicates a loss of order or pattern in the data 

from unstable dynamics and a loss of resilience, as we would expect during the 

collapse phase of the adaptive cycle, a rise in order indicates less change and possible 

movement to more consistent patterns, as we would expect in the growth phases, and 

a stable value for Fisher Information would occur during the conservation phase 

where the system spends the most time in a stable regime (Fath & Cabezas 2004).  

Because Fisher Information can handle any kind and amount of multivariate data, 

there is the opportunity to exploit a variety of data types that characterize system 
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dynamics in order to explore changes in Fisher Information over time and within scale 

domains. 

Network theory/ Connectance 

Network theory is commonly used to examine ecosystems as ecological 

networks, where each species is typically a node in the network, and the relationships 

between nodes is captured either via topographical features such as connectance (the 

number of other species to which a species is connected), or flows of energy or matter 

(Woodward et al. 2005; Ludovisi & Scharler 2017).  Scale is often only an indirect 

feature of network analyses, either when species are classified by trophic levels, 

which can be a crude classification of scale (such as O’Gorman et al. 2012), or when 

organism body size is embedded in the network (Woodward et al. 2005).  Although 

Holling (2002) did not reference network studies in his explication of adaptive cycles 

and panarchy, connectedness is an axis in the graphical depiction of an adaptive cycle.  

His depiction of connectedness is more akin to topological studies than flow network 

studies such as ascendency theory (Ulanowicz 1997), as it focuses on connectivity 

between system elements, and how it is related to the degree to which system 

elements are influenced  by external variables.  Low connectivity between elements 

means their behavior is primarily controlled by external variability in processes, 

whereas high connectivity between system elements can act to strongly mediate and 

buffer external variability.  However, high connectivity between system elements also 

renders the system more brittle and vulnerable to collapse (Ulanowicz 1997), because 

the degree to which nutrients are bound up in existing pathways and relationships 

between elements reduces the system’s ability to “sample alternative and potentially 
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better configurations” (Kurakin 2007).  Tracking  connectedness at each scale domain 

and across time may therefore be a robust signal of changing dynamics. 

More recent studies suggest that highly complex food webs (networks) can be 

simplified to just a handful of functional groups that describe the types of direct and 

indirect interactions species have, and that these functional groups are well predicted 

by body mass (Kefi et al. 2015; Kéfi et al. 2016).  It may be possible, therefore, to 

understand changes in network metrics like connectance or the number of trophic and 

non-trophic interaction types within scale domains in order to track system change 

over time.  Since many interactions would naturally cross scale domains (in general, 

predators are larger than prey), it is not immediately clear how to calculate these 

metrics when partitioned by scale domains.  Furthermore, as with calculating flows in 

metrics such as ascendency, the data needs are fairly prohibitive because of the extent 

of monitoring and expert knowledge needed to populate these food webs (for 

example, see Kefi et al. 2015; Kéfi et al. 2016).  Such efforts are likely to have a high 

reward, however, as the need to integrate network theory, which is focused on 

relationships between network elements and therefore accounts for scale only 

indirectly, and resilience theory via the discontinuity hypothesis, which is focused on 

the scales at which species and processes operate, is a ripe topic for research.  

Jorgensen  et al. (2016) has argued for the need to integrate vertical and horizontal 

topology in network studies by bringing together hierarchy theory with 

thermodynamic theory via networks, but his understanding of hierarchy theory rests 

solely on levels of organization, rather than the more objectively defined scale 

domains driven by pattern and process that underpin discontinuity theory(Holling 

1992)  



223 
 

 

Biomass 

Perhaps the simplest possible signal of dynamics of change is biomass.  

During the reorganization and exploitation phases, biomass is expected to accumulate, 

and then plateau during the conservation phase when connectivity and recycling of 

nutrients and material increases.  In a resilient system, system-level biomass should 

remain relatively stable while collapse and reorganization phases play out at smaller 

spatial and temporal scales, resulting in increased variability in biomass at the 

particular spatial and temporal scales of the disturbance as compensation processes 

occur.  Changes in biomass in both flora and fauna ought to reflect movement among 

the phases of the adaptive cycle within scale domains, and could be converted to a 

measure of carbon similar to exergy analyses in order to have common currency to 

modeling of stocks of carbon in vegetation and animal species among scale domains 

and across time (Scharler 2012).  Furthermore, other features of resilience such as 

functional diversity and functional redundancy, which mirror Ulanowicz’s ‘overhead’ 

and provide the buffering capacity that prevents system-level regime shifts, can be 

readily incorporated into models of changing biomass at scale domains, merely by 

partitioning biomass within scale domains by functional groups (Peterson et al. 1998; 

Forys & Allen 2002).  Understanding how biomass changes across scale domains, 

such as rate of increase in biomass, captures the basic thermodynamic changes that 

drive system growth, development, collapse and renewal (Kurakin 2010).  Measuring 

this, however, will require two challenges to be met first. 

The first challenge lies in our ability to detect scale domains in ecological 

systems.  Typically, researchers identify discontinuities in animal body mass 

distributions for a specific taxa.  Discontinuity theory argues that ecological 
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processes, and therefore ecological structure, occur at discrete and limited ranges of 

scale (Holling 1992).  Since animals forage and interact with their environment in 

ways that are highly allometric with body mass, animal body masses fall into size 

classes, separated by discontinuities, that reflect those spatial and temporal scale 

domains of process and structure (Holling 1992; Nash et al. 2013b; Raffaelli et al. 

2015).  In short, animal body mass distributions are lumpy, consisting of groups of 

similarly-sized organisms that are separated by gaps, or scale breaks, where there are 

no species.  Discontinuity researchers have used a variety of methods to identify scale 

breaks in animal data (Allen 2006; Nash et al. 2014a; Raffaelli et al. 2015), but the 

vast majority of discontinuity analyses use rank-ordered body size data of a single 

taxon, such as birds or mammals, and furthermore, only rarely have researchers 

identified scale breaks in ecological structure (Nash et al. 2013b).  To our knowledge, 

only Holling (1992) in his original presentation of the discontinuity hypothesis 

compared the location of scale breaks found in multiple taxa concurrently.  Yet any 

effort to understand ecological change at adaptive cycles across multiple scale 

domains requires the identification of scale breaks and scale domains in multiple 

taxon concurrently, something that is feasible but has not yet to date occurred. 

Second, finding discontinuities in ecological structure (such as vegetation, 

coral reefs) remains a major challenge.  Virtually all the research on the various 

thermodynamic metrics, with the exception of Fisher Information, has been conducted 

on aquatic systems and only rarely on terrestrial (Lu et al. 2015), presumably because 

they are easier to sample and have faster time scales.  The fundamental difference 

between what we propose and other efforts to track system dynamics of change is that 

we argue for the need to track system dynamics at scale domains, and can leverage 
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existing theory and methodology when looking for scale domains in animal 

communities (Holling 1992; Allen & Holling 2008).  However, our ability to find 

objective size classes in ecological structure remains limited to a few attempts to find 

breaks in the fractal dimension (Morse et al. 1985; Li 2000; Nash et al. 2014b), while 

most researchers fall back on pre-defined spatial scales, as in Lu et al. (2015) who 

survey vegetation plots at 1 m2 for herbs, 25 m2 for shrubs, and 100 m22 for trees in a 

forest exergy analysis.  The recent application of light detection and ranging (LiDAR) 

technology in ecology (Lim et al. 2003) has the potential to transform our ability to 

find scale breaks in vegetation, as the airborne scanning laser provides 3D scanning of 

vegetation, improving our ability to estimate standing biomass and capture multiple 

components of vegetation structure (Lefsky et al. 1999; Asner & Mascaro 2014; 

Coops et al. 2016), including the potential to calculate the fractal dimensions of forest 

vegetation (Yang et al. 2015).  However, given the timescales of the longest-lived tree 

species, temporal data that captures the largest and slowest spatial scales in forest 

systems, in particular, will not be possible, making it difficult to understand dynamics 

of change at the scale of forest ecosystems. 

Finally, changes in total amount of biomass at scales may be less significant 

than changes in the rate of growth.  Flow rates in other complex adaptive systems 

have been shown to more accurately predict the state of a biological system than do 

concentrations (Kurakin 2009).  Work on eco-exergy flows in forest plantations 

suggest that growth rates systematically vary over the course of development (Lu et 

al. 2015), though the short temporal span of the data (20 years) only covers the 

reorganization and exploitation phases of the adaptive cycle.  Long-term data from 

terrestrial vegetative systems would be necessary to test these hypotheses. 
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Conclusion 

Although the adaptive cycle and panarchy theory are conceptual and 

qualitative, important aspects of the theory have been empirically validated.  A main 

premise of Holling’s argument (2002) was that nested adaptive cycles occur at non-

user defined scale domains but at specific ranges of spatial and temporal scales 

structured by a few key processes,  and evidence has accumulated to support this 

(Allen & Holling 2008; Wardwell et al. 2008; Sundstrom 2009; Nash et al. 2014a; 

Spanbauer et al. 2016).  Researchers within and without ecology have found panarchy 

a useful way to frame questions regarding dynamics within their systems.  Concepts 

like self-organized criticality, edge of chaos, power-law behavior, ascendency theory, 

thermodynamics, information theory and more all tell a narrative of system dynamics 

and behavior that are of a piece with panarchy theory. 

We are proposing that the adaptive cycle reflects the inevitable dynamics of 

complex adaptive systems as a result of the internal processes of self-organization and 

evolution over time.  We argue that because complex adaptive systems by definition 

evolve, the qualitatively similar system dynamics described in a variety of systems are 

the result of evolution in a thermodynamically open system, and as such, ought to 

manifest in signals of system development and change that can be tracked across the 

spatial and temporal dimensions of a system in accordance with the theory of nested 

adaptive cycles. 

Our interest, therefore, is in system-level properties that remain stable because 

of, not in spite of, dynamics of change at smaller and faster spatial and temporal 

scales.  None of the metrics or indicators proposed here (exergy, ascendency, Fisher 

Information, network metrics, biomass or rate of growth) are based on a fixed species 
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identity or a particular community structure beyond how species identity is related to 

rates of energy consumption, functional role, or type of interactions with other 

species.  As Kurakin (2009) explains, “what is preserved are the spatio-temporal 

relationships between individual components, i.e. a certain organizational structure-a 

form-but not individual components.  Members come and go, but the organization 

persists”.  Understanding system development and change over time will help us more 

effectively maintain such organization over timescales relevant to human lifespans. 
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CONCLUSION 

This dissertation spanned a variety of data types from ecological to economic 

systems and concentrated on core ideas central to the notion of ecological resilience in 

complex adaptive systems.  These core ideas revolve around scale and emergence, 

and are captured in Holling’s discontinuity hypothesis, the closely related concept of 

panarchy, and resilience as an emergent phenomena.  The analytical and conceptual 

chapters sought to extend these core ideas conceptually, and then test some of those 

extensions analytically. 

In Chapter 1, I proposed that the discontinuity hypothesis and its extension in 

the cross-scale resilience model is relevant to other complex adaptive systems, and 

described how they can be used to identify and track changes in system parameters 

related to resilience.  I explained the theory behind the cross-scale resilience model, 

reviewed the cases where it has been applied to non-ecological systems, and discussed 

some examples of social-ecological, archaeological/anthropological, and economic 

systems where a cross-scale resilience analysis could add a quantitative dimension to 

our current understanding of system dynamics and resilience.  I argued that the 

scaling and diversity parameters suitable for a resilience analysis of ecological 

systems are also appropriate for a broad suite of systems where non-normative 

quantitative assessments of resilience are desired.  Too many fields, including 

ecology, study critically important system features such as system persistence, 

function, and collapse without taking into account scales.  Even within ecology, there 
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are extensive fields such as network theory or biological/functional diversity-

ecosystem function studies that ignore or fail to take into account the role of scaled 

processes and their relationship to properties that emerge at the system level.  Writing 

this chapter highlighted the need for methods to explicitly account for scales.  Despite 

the challenges and limitations of the discontinuity hypothesis and cross-scale 

resilience model, they nonetheless provide an avenue for tackling scaling issues when 

trying to account for, predict, or explain system behavior and dynamics. 

In Chapter 2, I applied my argument from Chapter 1 to cross-national 

economies as a complex adaptive system and tested whether global economies have 

discontinuous size distributions, a signature of multi-scale processes in complex 

adaptive systems.  I contrasted the theoretical assumptions underpinning this 

methodology with that of the economic convergence club literature, and detailed the 

ways in which the traditional convergence club literature fails to substantively address 

the non-equilibrium realities of economic systems.  I found that the size distributions 

of economies are discontinuous and that there are persistent patterns of aggregations 

and gaps over time, particularly in the tails of the data, suggesting that there are scale 

domains of structuring processes that act as basins of attraction.  These size classes 

are outwardly similar to convergence clubs, and in fact confirmed the primary result 

of convergence club research which demonstrates that the divisions between rich and 

poor countries are the starkest and most clear-cut.  However, the size classes I found 

are derived from theory that is a more appropriate fit to economic dynamics because it 

adequately incorporates realistic expectations of economies as complex adaptive 

systems.  I argued that the underlying mechanisms, rather than emerging from 

conditions of initial equivalence, evolve and operate in multiple scale domains that 



230 
 

 

can be objectively identified and assessed, and suggested that understanding the 

patterns within and across scale domains may provide insight into the processes that 

structure wealth over time.  This chapter also clearly demonstrated that transposing 

methods from one field to another has challenges, because while ecologies and 

economies are both complex adaptive systems, one is made up of multiple species and 

many well-defined processes, and the other is comprised largely of the human species 

with far more personal agency than non-humans, and many poorly-understood 

processes. 

 In Chapter 3, I tested whether socio-cultural-historical differences among 

countries could be responsible for structuring discontinuous size classes in cross-

national GDP.  The four variables I used (democracy, life expectancy, religion, and 

colonial status) have been proposed in the economics literature as likely playing a role 

in GDP, but have received far less attention than more typical econometrics. My 

results were equivocal, because while there were clear and persistent discontinuities in 

the datasets, they could not be attributed to the independent effect of each of the 

variables, and nor could those variables be ruled out  as possible structuring 

processes.  A secondary technique using an unsupervised ordination was able to more 

clearly demonstrate that countries that were similar to each other with regards to their 

variable classifications were more likely to cluster together in ordination space and 

belong to the same size class.  In other words, countries that were Free (democratic 

standing), and Christian (religious standing) with a High Lifespan (life expectancy) 

clustered strongly compared to countries with other levels of those variables. The 

overall story mirrored that of Chapter 2, which is that the processes that occur in the 

tails of the data are more persistent and generate a stronger attractor than processes 
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structuring size classes in the middle of the distribution.  It is also clear that to the 

extent that these socio-cultural variables structure economies, they do not operate in 

the same manner at all scales of the system, an outcome that is analytically 

challenging but also expected, given the hierarchical nature of scaling processes in 

other complex adaptive systems. 

In Chapter 4, I applied the cross-scale resilience model to the coral reef fish 

communities of the Hawaiian archipelago, and tested the hypothesis that the cross-

scale resilience structure of communities differed between the two regions of the 

archipelago (the less disturbed islands of the remote northern reaches of the 

archipelago, versus the habited islands of the southern part), or between coral-

dominated and macro-dominated reef communities.  Only within-scale redundancy 

had a significant effect on regimes within and across islands, and macro-turf 

communities expressed a higher within-scale redundancy, suggesting that the less 

desirable regime was also the more resilient. 

In Chapter 5, I discussed a major limitation of the cross-scale resilience model 

as it currently stands, which is the absence of any consideration of abundance in either 

species or the functional roles they represent.  I drew on an extensive ecological 

literature on abundance to detail the ways in which we would expect abundance to be 

relevant to the cross-scale resilience model, and put forward a series of testable 

hypotheses regarding the inclusion of abundance in the model.  The primary message 

of this conceptual paper is that studies of two types are necessary to make a stronger 

mechanistic link between species and resilience as an emergent phenomena.  First, we 

need to look for patterns in the distribution of abundance within and across scales, as 

pertains to species’ functional roles.  Although other researchers have looked at 
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patterns in abundance and functional diversity, no one does so in the context of the 

multi-scaled structure of ecosystems.  Second, changes in the abundance of functions 

and the scales at which they occur are likely to provide strong signals of changing 

resilience and vulnerability to a regime shift, and this has value for researchers and 

managers. 

In Chapter 6, I switched gears to focus on a concept that is a fundamental 

component of ecological resilience--the idea that complex systems self-organize to 

exist in regimes.  Most work on regimes focuses on a single system changing regimes 

over time, but I focused on the idea of identifying regime boundaries across space 

using an information theory method that assesses order in data (Fisher Information).  

We used spatial data on zooplankton and avian communities to look for transitions 

between ecosystem types, and compared the results to the boundaries found in 

ecoregion maps such as those by Omernik and Bailey.  The results made it clear that 

relying on traditional static ecoregion maps as the basis of boundary demarcation 

between ecosystem types was not appropriate given 1) the possibility of soft 

boundaries between ecosystems, 2) the non-stationary nature of vegetation and animal 

communities given climate change, and 3) the lack of correspondence between 

predicted community structure (as determined by the ecoregion maps) and observed 

community structure given land use changes.  Comparing Fisher Information results 

to traditional early warning indicators and traditional multivariate analytical 

techniques also highlighted the added value that Fisher provided because of the 

explicit spatial information about community change absent from the other 

approaches.  The results suggested that using Fisher information to track movement in 
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ecological boundaries over time could be a powerful methodology, given the current 

era of rapid and unpredictable ecological change. 

And finally, in Chapter 7, I argued that the changing dynamics captured in the 

adaptive cycle are likely the result of endogenous processes inherent to complex 

adaptive systems, rather than just a handy conceptual metaphor.  I drew on research 

from a wide range of scientific fields to support that claim, and then articulated the 

primary means by which the hypothesis could be tested in real systems.  The most 

feasible approach for tracking system movement among the phases of the adaptive 

cycle is likely to be tracking changes in biomass.  It is the most reasonable in its data 

requirements, and can be, with the development of already existing LiDAR 

technologies and the expansion of the discontinuity hypothesis to account for multiple 

taxa simultaneously, computable for both the floral and faunal components of 

ecological systems.  Tracking changes in biomass within and across system scales 

would be, when combined with the cross-scale resilience model, a comprehensive and 

robust way to understand dynamics of change in complex systems and what those 

changes portend for the future structure and function of said system. 
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APPENDIX A DISCONTINUITIES IN CONSTANT GDP  

 

 

 

 

 

Figure A.1  Change over time in the difference in wealth between the 
richest and poorest country. 
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Figure A.2  Change in the average span of gaps. 

Figure A.3  Change in average number of countries per aggregation. 
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Table 1  The frequency with which an annual distribution has a certain number of 
aggregation (43 years of data). 

 

Number of aggregations Frequency of occurrence 

3 3 

4 13 

5 6 

6 3 

7 7 

8 6 

9 4 

10 1 

 

Figure A.4  Change in the average span of the aggregations. 
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Figure A.5  Yearly discontinuous distribution of constant (2005) per capita GDP for 43 years.  Shading 
represents the proportion of countries falling in each cluster.  (Figure 5 Appendix.pdf, 27kb) 
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