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Abstract 
Aim: Biodiversity is a multidimensional property of biological communities that represents different 
information depending on how it is measured, but how dimensions relate to one another and under 
what conditions is not well understood. We explore how taxonomic, phylogenetic, and functional 
diversity can differ in scale-of-effect dependence and habitat-biodiversity relationships, and subse-
quently how spatial differences among biodiversity dimensions may arise. Location: Nebraska, 
United States. Taxon: Birds. Methods: Across 2016 and 2017, we conducted 2,641 point counts at 781 
sites. We modeled the occupancy of 141 species using Bayesian Bernoulli-Bernoulli hierarchical lo-
gistic regressions. We calculated species richness (SR), phylogenetic diversity (PD), and functional 
diversity (FD) for each site and year based on predicted occupancy, accounting for imperfect detec-
tion. Using Bayesian latent indicator scale selection and multivariate modeling, we quantified the 
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spatial scales-of-effect that best explained the relationships between environmental characteristics 
and SR, PD, and FD. Additionally, we decomposed the residual between-site and within-site biodi-
versity correlations using our repeated measures design. Results: Although relationships between 
specific land cover types and SR, PD, and FD were qualitatively similar, the spatial scales at which 
these variables were important in explaining biodiversity differed among dimensions. Between-site 
residual biodiversity correlations were negative, yet within-site biodiversity residual correlations 
were positive. Main conclusions: Our results demonstrate how spatial differences among biodiversity 
dimensions may arise from biodiversity-specific scale-dependent habitat relationships, low shared 
environmental correlations, and opposing residual correlations between dimensions, suggesting 
that single-scale and single-dimension analyses are not entirely appropriate for quantifying habitat-
biodiversity relationships. After accounting for shared habitat relationships, we found positive 
within-site residual correlations between SR, PD, and FD, suggesting that habitat change over time 
influenced all biodiversity dimensions similarly. However, negative between-site residual correla-
tion among biodiversity dimensions may indicate trade-offs in achieving maximum biodiversity 
across multiple biodiversity dimensions at any given location. 
 
Keywords: Bayesian latent indicator, birds, land cover, multi-level correlations, multi-scale, multi-
variate model, scale selection, scale-of-effect, species richness 
 
1. Introduction 
 
Biodiversity is a multifaceted property of biological communities emerging from the as-
sembly of organisms shaped by ecological and evolutionary processes (Naeem et al., 2016; 
Swenson, 2011). Biodiversity is most commonly characterized by measures of taxonomic 
diversity (e.g., species richness, species evenness), which are often assumed to approxi-
mate other components of biodiversity, including phylogenetic and functional diversity 
(Naeem et al., 2016; Rodrigues et al., 2011). Although the multiple dimensions of biodiver-
sity (i.e., taxonomic, phylogenetic, functional) are interrelated, the assumption that one di-
mension is a reliable surrogate for another does not necessarily follow from theory (Faith, 
1992; Swenson, 2011) or empirical study (Chapman et al., 2018; Forest et al., 2007; Lyash-
evska & Farnsworth, 2012; Mazel et al., 2018). Each biodiversity dimension clearly contains 
unique ecological and evolutionary information, thus it is not surprising that assuming 
perfect collinearity among biodiversity measures can lead to false inferences about un-
measured dimensions and limit our ability to identify the mechanisms driving biodiversity 
patterns (Naeem et al., 2016; Swenson, 2011; Swenson & Enquist, 2009). Dimensions of bi-
odiversity are not completely independent, however, and understanding the extent to 
which one biodiversity dimension represents another has value for how we measure bio-
diversity, and how we think about community formation and function (Naeem et al., 2016; 
Pavoine et al., 2013). 

One of the challenges in understanding the relationships among biodiversity dimen-
sions is that the processes that shape ecological communities, and thus biodiversity, act at 
multiple spatial scales (Boyce, 2006; Chase & Myers, 2011; Levin, 1992; Sandel & Smith, 
2009). Environmental features that predict the presence of a species at one spatial scale, for 
example, may perform poorly when considered at another scale (Robinson, 1950; Stuber et 
al., 2017). Not matching the scale of analysis with the scale of the underlying processes 



M I R O C H N I T C H E N K O ,  S T U B E R ,  A N D  F O N T A I N E ,  J O U R N A L  O F  B I O G E O G R A P H Y  4 8  (2 0 2 1 )  

3 

affecting community composition can therefore obscure relationships among biodiversity 
dimensions, and between biodiversity dimensions and environmental features, contrib-
uting to poor model performance at best, and inappropriate inferences at worst (Henebry, 
1995; Keitt et al., 2002; Stuber & Fontaine, 2018, 2019). Despite an awareness of the im-
portance of spatially specific assessments of ecological relationships (Chalfoun & Martin, 
2007; Horne & Schneider, 1995; Hurlbert & Jetz, 2007), few biodiversity studies address 
scales-of-effect when measuring, or more importantly, predicting biodiversity metrics 
(Jackson & Fahrig, 2014; Martin, 2018; McGarigal et al., 2016). Unlike biodiversity studies 
that seek to understand how biodiversity metrics themselves change across spatial scales 
(e.g., how alpha and beta biodiversity differ, or how local biodiversity compares to re-
gional biodiversity), scale-of-effect studies consider biodiversity at a single scale (e.g., local 
biodiversity), and vary the scale (in either extent or resolution) that predictor variables 
explain variation in biodiversity. While scale-of-effect studies are increasing in wildlife and 
landscape ecology (referred to as multiscale studies; reviewed in McGarigal et al., 2016; 
Stuber & Gruber, 2020), only a few consider habitat-biodiversity relationships (reviewed 
in Martin, 2018). 

Hierarchical models provide a means to disentangle sampling error from the ecological 
processes driving biodiversity and quantify the relationships among biodiversity dimen-
sions and the environmental features that ultimately shape biodiversity (Kéry & Schaub, 
2011; Rich et al., 2016). Using a multiscale approach that quantifies biodiversity-environment 
relationships within relevant spatial scales (Stuber et al., 2017), we quantified taxonomic, 
phylogenetic, and functional biodiversity dimensions of bird species across Nebraska, 
USA, and asked: (1) how correlated are biodiversity dimensions within– and between–
study sites over time, (2) at which spatial scales do habitat predictors best explain variation 
in biodiversity dimensions, (3) do the shapes of habitat response curves differ between 
biodiversity dimensions, and (4) how might habitat responses and intercorrelations be-
tween dimensions lead to differences in predictions of biodiversity metrics among biodi-
versity dimensions. We expected positive between-site and within-site correlations among 
biodiversity dimensions due to some level of information sharing as all three metrics are 
calculated from the same underlying biological data, and ecological processes therefore 
may influence each biodiversity dimension to some degree (Pavoine et al., 2013; Stevens & 
Tello, 2014). We also expected negative biodiversity response curves for all biodiversity 
dimensions across agricultural land cover types, as land use intensification has been linked 
to biodiversity loss (Benton et al., 2003; Donald et al., 2001; Flynn et al., 2009). There is no 
theory yet to guide predictions of absolute scales-of-effect of biodiversity-environment re-
lationships. However, we predict that the scales-of-effect relating to phylogenetic diversity 
will be relatively larger on average than those of functional diversity and taxonomic diver-
sity, as phylogenetic diversity is shaped by the biogeographical history of sites, which are 
likely structured over broader spatial and temporal scales than functional and taxonomic 
diversity, both of which may be strongly shaped by local, density-dependent processes. 
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2. Materials and Methods 
 
2.1. Avian point counts 
We conducted 500 m fixed radius avian point count surveys during the breeding seasons 
(mid-April to late-June) of 2016 and 2017, on publicly accessible secondary and tertiary 
roads across Nebraska, USA (Fig. 1; Mccarthy et al., 2012; Robbins et al., 1986). Survey sites 
were selected based on generalized random tessellation stratified sampling, which ran-
domly distributed sampling sites across six a priori–selected land cover types (based on a 
30 m resolution land cover product developed by the Rainwater Basin Joint Venture: 
Bishop et al., 2011) to spatially balance our sampling by mimicking the spatial variation 
across habitat gradients in Nebraska (Stevens Jr & Olsen, 2004). Sites were grouped into 
“routes” consisting of 7–19 point count locations such that all sites in each route could be 
visited within one morning. Additional routes were created in 2017 to include several of 
Nebraska’s Biologically Unique Landscapes, which are managed for declining rare species 
and unique natural communities (Fig. 1; Table S.1; Schneider et al., 2011). Trained observ-
ers visited each site up to four times (i.e., the “robust design” following Williams et al., 2002) 
during each sampling season. To reduce temporal correlation among visits, we random-
ized the order of route visitation and starting position. During surveys, observers recorded 
every bird seen or heard within a 3-minute period (i.e., a visit), which occurred between 
15 min before sunrise and 10 A.M.: the time at which avian vocalizations are greatest and 
most consistent across species (Hutto et al., 1986). We did not perform surveys during in-
clement weather, including fog, drizzle, prolonged rain, and wind with speeds > 20 kmh. 
 

 
 

Figure 1. A map of the 2016–2017 survey points throughout the state of Nebraska, USA. 
Lightest gray points were visited only in 2016, medium gray points were visited only in 
2017, and dark gray points were visited both years. 
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2.2. Species occupancy modeling 
For each visit, species counts were collapsed into binary occurrence data. We modeled the 
occurrence of each species detected with a hierarchical logistic regression that jointly esti-
mated occupancy and detection probabilities to account for imperfect detection (Kéry & 
Schaub, 2011). Specifically, we used a Bernoulli-Bernoulli hierarchical logistic regression, 
in which the probability of (latent) true site occupancy was modeled as a function of land 
cover predictors (linear and orthogonal quadratic effects of percentage grasses, small 
grains and woodland, and linear effects of percentage conservation reserve program 
grasses [CRP], and wetland within the 500 m radius of the point count surveys were in-
cluded), with a fixed effect for year that allowed a sites’ occupancy status to change be-
tween years. The observation process was reflected by a detection probability model. 
Detection probability was associated with visit-specific covariates, including observer 
identity as a random effect and linear and quadratic effects of wind speed, time of day, 
date, temperature, and cloud cover as fixed effects (Diefenbach et al., 2003; Kéry & Schaub, 
2011; Royle & Kéry, 2007). See Table S.2 for JAGS code used to specify the model. 

We estimated occupancy for each species via Bayesian posterior simulation with JAGS 
(“just another Gibbs sampler”; Plummer, 2003) via the rjags (Plummer & Stukalov, 2014) 
and coda packages (Plummer et al., 2005) in program R (R Core Team, 2018). We ran each 
model with one chain of 120,000 Markov chain Monte Carlo (MCMC) samples after a 5000-
iteration burn-in period. We visually confirmed convergence and calculated the mean and 
95% credible interval for each covariate, which represented our estimate and its uncer-
tainty. 

As many species were relatively rare, we maximized the number of detections available 
for model fitting and examined model performance for each species by comparing pre-
dicted versus observed detections. We turned each model’s estimated probability of de-
tecting a species at a visit into predictions of detection if the estimated probability of 
detecting a species at a visit was greater than the prevalence of the species across all point 
count visits (Crammer, 2003). This data-based prevalence thresholding for model checking 
was simple and effective at minimizing predictions of false negative and positive detec-
tions (Liu et al., 2005) and was used only to assess model performance. 

To measure model fit, we compared predicted versus observed detections using the 
true skill statistic (TSS; TSS = sensitivity + specificity − 1) because TSS is largely insensitive 
to the threshold used to binarize data and is unbiased by unequal proportions of presences 
and absences, which is particularly important for rare species (Allouche et al., 2006). TSS 
values ranged from −1 to +1, where +1 indicated perfect agreement between predicted and 
actual detection. Values close to zero indicated that the predicted detection was no better 
than random, and negative values indicated that the predicted detection was opposite of 
the observed detection. We considered model fit to be excellent if the model’s TSS was 
above 0.75, adequate if TSS was between 0.4 and 0.75, and poor if TSS was less than 0.4 
(Allouche et al., 2006). 

Semi-variograms of a random subset of single-species occupancy models did not sug-
gest residual spatial autocorrelation. All species models were used in subsequent modeling 
steps. 
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2.3. Diversity dimensions quantified based on occupancy models 
We took a two-step approach to estimating mean diversity metrics based on predicted spe-
cies occupancy of sites by first estimating species occupancy independently (described 
above), then using the fitted models to simulate mean biodiversity metrics (i.e, taxonomic, 
phylogenetic, functional) based on the estimated occupancy models. Our simulation ap-
proach to estimate mean biodiversity (described below) is statistically equivalent to a point 
estimate from a multispecies occupancy model but computationally tractable for the large 
size of our dataset both in terms of number of species analyzed and the number of sam-
pling locations (Calabrese et al., 2014; Devarajan et al., 2020). Our approach highlights the 
trade-off between model completeness and feasibility that limits our ability to estimate 
direct measures of uncertainty around diversity scores but instead relies on credible inter-
vals around diversity point estimates and correlations to understand uncertainty. 
 
2.3.1 Taxonomic diversity 
We used species richness (SR) as our measure of taxonomic diversity, quantified as the 
number of species predicted to occupy a site within each year. A species was considered 
to occupy a site when the modeled occupancy probability was higher than the prevalence 
of the species across all visits (Allouche et al., 2006; Crammer, 2003). 
 
2.3.2 Phylogenetic diversity 
Because there was uncertainty associated with phylogenetic tree construction, we followed 
the consensus tree-building recommendations of Rubolini et al. (2015) to generate a phy-
logeny that included all species detected in our study. We downloaded 1,000 phylogenetic 
trees generated from a trimmed subset of the Hackett phylogeny, which was the most com-
plete molecular phylogeny of extant bird species available (Hackett et al., 2008; Rubolini et 
al., 2015; compiled from http://www.birdtree.org: Jetz et al., 2012). Using the maximum 
clade credibility criterion (program BEAST: Bouckaert et al., 2014), we generated a consen-
sus tree and assigned the median divergence to branch lengths on the consensus tree to 
represent time since speciation (Morrison, 2008; Fig. S.1). We then calculated Faith’s (1992) 
phylogenetic diversity (PD), which is the sum of all the branch lengths on the phylogeny 
connecting the species occupying a site (R package “picante”; Kembel et al., 2010). The root 
of the phylogeny, which extended to include all taxa in the dataset, was included in calcu-
lations of PD so that any combination of clade members would include the evolutionary 
history since the root (Faith et al., 2004). 
 
2.3.3 Functional diversity 
Like a phylogenetic tree, a functional dendrogram hierarchically clusters species; however, 
species similarity is based on ecological trait similarities rather than genomic similarity. 
We built a functional dendrogram based on 23 functional traits: 4 reproductive traits, 10 
diet traits, 1 binary activity trait, 1 body size trait, and 7 foraging strategy traits (Table S.3; 
Petchey et al., 2007). Trait information was compiled from the “Birds of North America” 
series from the American Ornithological Society (Rodewald, 2015), the “Elton Traits 1.0” 
species foraging characteristics database for extant birds (Wilman et al., 2014), and the CRC 
Handbook of Avian Body Masses (Dunning Jr, 2007). Each trait was standardized (mean = 
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zero, standard deviation = 1) so that all traits had equal influence in the construction of the 
functional dendrogram (Petchey & Gaston, 2002, 2006). We hierarchically clustered species 
using Gower’s distance and an unweighted pair group method based on arithmetic mean 
(Mouchet et al., 2010; Petchey & Gaston, 2002; Podani & Schmera, 2006; Fig. S.2). Like PD, 
we quantified functional diversity (FD; Petchey & Gaston, 2002) using the total branch 
length connecting all co-occurring species at each site based on our functional dendrogram, 
including the dendrogram’s root (R package “picante”; Kembel et al., 2010). 
 
2.3.4 Predicted biodiversity 
Because there is uncertainty and potential bias associated with stacking occupancy model 
predictions (Calabrese et al., 2014), we took a two-step, simulation approach to calculating 
biodiversity dimensions based on estimated single-species occupancy models. First, we 
simulated 1000 predictions from each single species occupancy model (i.e., for each study 
site we predict 1000 possible community assemblages based on overlaying 1000 single-
species model predictions given the uncertainty in occupancy models). Then, we calculate 
the mean biodiversity for each site based on its 1000 simulations (i.e., calculate mean SR, 
mean PD, mean FD per site based on 1000 simulated communities from estimated occu-
pancy models). This approach accounts for prediction uncertainty in occupancy models 
rather than using a thresholding procedure to binarize model predictions. Furthermore, 
by extracting the mean biodiversity, the simulation framework leads to the same biodiver-
sity point estimate that would be produced by a multi-species occupancy model (Calabrese 
et al., 2014; Devarajan et al., 2020) in a way that is computationally feasible for the large 
size of our study. 
 
2.4 Biodiversity–land cover relationship modeling 
To investigate the correlation structure between the predicted biodiversity metrics (scaled 
and centered) and identify the scale-of-effect of land cover covariates, we built a trivariate 
mixed-effects model with Gaussian error distributions for each biodiversity dimension. 
Multivariate hierarchical models are often used in behavioral ecology and quantitative ge-
netics to decompose the variation in labile traits into their within- and among-individual 
components—for example, in studies in which repeated measures of plastic behavioral 
traits are measured in individuals over time (Dingemanse & Dochtermann, 2013). The ex-
ample of repeatedly assaying behavioral traits on individuals is analogous to repeatedly 
measuring biodiversity at individual sites over time; in our case, individual field sites are 
repeatedly “assayed” for avian biodiversity that may change over time because of coloni-
zation or extirpation processes. In this case, biodiversity can vary both among (e.g., sites 
in forests have higher average biodiversity than sites in grasslands) and within sites (e.g., 
a field site may undergo a colonization event during the study such that biodiversity in-
creases between the first and second field season). Because the structure of our data is sim-
ilar to that of behavioral ecology and quantitative genetics data on individual subjects, we 
can use the same multivariate hierarchical models to gain insight to the multilevel nature 
of variation in biodiversity over time and across sites. Analytical procedures to identify 
scales-of-effect of predictor variables on the response of interest can be embedded within 
the multivariate framework (Stuber & Gruber, 2020). 
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We quantified relationships among taxonomic, phylogenetic, and functional dimen-
sions of biodiversity and their relationships with six land cover gradients. Each biodiver-
sity metric was allowed to have its own fixed effects of year and land cover covariates with 
random intercepts for sites that were jointly estimated to account for the nonindependence 
of multiple biodiversity metrics (Dingemanse & Dochtermann, 2013). We examined linear 
and orthogonal quadratic effects for row crops, small grain, grasses, and trees and linear-
only effects for CRP and wetlands, which displayed a narrower range of variation across 
our study sites. 

Because we did not know the spatial scales at which land cover variables influence bi-
odiversity, we incorporated Bayesian latent indicator scale selection (BLISS; Stuber et al., 
2017) in our trivariate model to determine which spatial scales of land cover variables best 
explained variation in each biodiversity metric. To save computational time, we used a 
two-step process to model land cover relationships at their optimal scales by first using 
BLISS to identify the optimal spatial scales for explaining land cover–biodiversity relation-
ships from a set of candidate spatial scales, and then running a final model with only the 
BLISS-selected optimal spatial scales (Hooten & Hobbs, 2015). Previous work in this sys-
tem investigating species abundance suggested the range of candidate scales used (500m–
20km) is adequate for describing land cover scales-of-effect (Stuber & Fontaine, 2019), and 
we considered published suggestions for selecting candidate spatial scale ranges in similar 
exploratory studies (Jackson & Fahrig, 2014). 

The BLISS procedure encoded each scale as a latent class indicator variable to sample 
land cover coefficients at each candidate spatial scale in proportion to its probability of 
being the most informative scale relevant to predicting each biodiversity metric (Stuber et 
al., 2017). We included all six land cover predictors because BLISS performed well with 
even highly correlated variables (≥ ρ = 0.8; Stuber et al., 2018; row crop and grasses were 
correlated at ρ = −0.8). We used uniform, discrete priors for each candidate spatial scale, 
which allowed BLISS to perform scale selection independently for each land cover variable 
and biodiversity metric combination (e.g., the optimal scale of the SR-row crop relationship 
could be 500 m, while the optimal scale of the PD-row crop relationship could be 2 km). 
BLISS evaluated both linear and quadratic effects of land cover variables at the same spa-
tial scale at every sampling iteration. For each variable, we chose the scale with the highest 
posterior probability for each land cover type as the best spatial scale. Then, to better esti-
mate the parameters for the habitat-biodiversity relationships at the optimal scales and 
save on computational time, we reran the same trivariate model with land cover covariates 
only at their selected scales (i.e., the same model formulation but without BLISS). See Table 
S.4 for JAGS code to specify the model. 

We ran our models with one MCMC chain for 20,000 iterations after a 5000 burn-in 
period with mean-zero, normally distributed priors with a standard deviation of 0.1 on 
fixed effects and used a Wishart distribution for the precision parameter of the multivariate 
normal distribution. We visually assessed each parameter for convergence. 

We quantified pairwise biodiversity correlations at the between-site and within-site 
levels based on the random intercepts and residual covariance between the three response 
variables in our multivariate model (Dingemanse & Dochtermann, 2013). A between-site 
correlation would be present when, for example, site-mean values of PD correlated with 
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site-mean values of FD. When considering measurements that change over time, such as 
biodiversity at a defined location, correlations can be decomposed into between-site and 
within-site components that jointly contribute to the raw pairwise correlations (Brommer, 
2013; Dingemanse et al., 2012; Hadfield et al., 2007). A within-site correlation would be 
present when, for example, sites’ change in PD between replicate measurements between 
years correlated with sites’ change in FD between years. Because we calculated correlations 
from mixed-effect models, we consider instead, residual correlations (i.e., correlations be-
tween errors) after accounting for any fixed effects included in the model. After accounting 
for all fixed effects (here, land cover variables), the between-site residual correlation rep-
resents correlated deviations of site means from the expected value given shared relation-
ships with fixed effects alone, and the within-site residual correlation represents correlated 
deviations of observations from their site-level means. For example, if sites that have 
higher mean PD than predicted by land cover alone also have higher mean FD than ex-
pected by land cover alone, we would find a positive between-site residual correlation. 
Only the between-site residual correlations reflect relationships between site-specific fac-
tors (e.g., permanent environmental effects, shared history), and raw correlations based on 
single measurements (i.e., based on only one visit to each field site) reflect only between-
site correlations when within-site variation is low (Brommer, 2013). We refer interested 
readers to Pollock et al. (2014) for additional explanations of how to interpret shared envi-
ronmental relationships separately from residual species correlations in a multispecies co-
occurrence context. 

We checked our models for homoscedasticity and normally distributed residuals and 
assessed the fit of our regression models using root mean square error (RMSE). We pro-
jected our fitted biodiversity model across Nebraska for each biodiversity dimension, us-
ing the empirical cumulative distribution function of each dimension to rescale each to 
range from 0 to 1, making the metrics comparable, and then calculated their pairwise dif-
ferences spatially. Semivariograms did not indicate any residual spatial autocorrelation. 
 
3. Results 
 
3.1. Avian point counts 
We detected 141 species across 2641 visits at 781 unique sampling sites; 548 and 549 sites 
were sampled in 2016 (eight observers) and 2017 (five observers), respectively, with 415 
sites visited both years (Fig. 1). Site visitation averaged 2.4 ± 0.9 times per year. Of the 141 
species detected, 83 were detected in less than 1% of the visits, and only 16 species were 
detected in more than 10% of visits. Across sites, average raw SR of detections was 9.69 ± 
5.02 and 9.88 ± 3.90 in 2016 and 2017, respectively. 
 
3.2. Occupancy modeling 
Occupancy models for all 141 species attained visual convergence. Model fit for 124 species 
models was excellent (TSS > 0.7), 15 species models had good model fit (0.7 > TSS > 0.4), 
and two species models had poor model fit (TSS < 0.4). Across all sites, the simulated mean 
SR was 25.17 ± 2.39 species (not z-scored), mean PD was 845.44 ± 47.86 branch length (not 
z-scored), and mean FD was 1.03 ± 0.06 branch length (not z-scored). 
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3.3. Biodiversity modeling 
 
3.3.1. Scale selection 
Land cover varied across Nebraska, with grasses and row crops being the most abundant 
land cover variables across all scales, followed by grain, trees, CRP, and wetlands, respec-
tively (Table S.1). BLISS revealed substantial variation in scale selection both among land 
cover types within each biodiversity dimension and among biodiversity dimensions within 
land cover types (Fig. 2), ranging from the smallest candidate scale (0.5 km radius) to 20 
km radius. Probability distributions appeared largely unimodal; however, there were sev-
eral bimodal patterns (e.g., FD CRP, SR wetland; Fig. 2, respectively) indicating the poten-
tial for two important scales for predicting these biodiversity-land cover relationships, and 
uniform distributions (e.g., SR, PD, FD small grains; Fig. 2) suggesting scale-insensitivity 
(Stuber & Fontaine, 2019). 
 

 
 

Figure 2. Posterior probability distributions for phylogenetic diversity (PD), species rich-
ness (SR), and functional diversity (FD) of breeding birds in Nebraska, USA, across can-
didate spatial scales (in km) of land cover predictors: row crops, CRP, small grain, grasses, 
trees, and wetlands as estimated by Bayesian latent indicator scale selection (BLISS). Lines 
are for visualization purposes only. 
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BLISS selected larger spatial scales for PD than FD for all land cover types except for 
grassland and wetland, and larger spatial scales for PD than SR for small grain and trees. 
BLISS selected equal numbers of smaller, larger and equivalent spatial scales for FD and 
SR with most optimal scales being within 1km of one another except for FD having a much 
larger optimal scale than SR for small grains (Table S.5; Fig. 2). 
 
3.3.2. Land cover relationships 
Within their selected scales, SR, PD, and FD generally displayed similar relationships 
across land cover gradients (Fig. 2a–f and j–i). FD and SR had similar negative relationships 
with proportions of wetlands, while PD had no relationship with proportion wetlands (Fig. 
3g–i; Table S.5). While all metrics showed the same general relationships with the propor-
tions of row crop and grassland (inverse-U and U-shaped, respectively), their intercepts 
differed (Fig. 2a–f; Table S.5). The most similar land cover relationships were often between 
biodiversity metrics for which BLISS selected a similar spatial scale (Fig. 2; Table S.5). 
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Figure 3. Estimated response curves (depicting z-scores) of phylogenetic diversity (PD), 
functional diversity (FD), species richness (SR) across gradients of row crops, non-CRP 
grass, wetlands, and trees within a radius of the most informative spatial scale as selected 
by BLISS. Solid line represents mean land cover relationships and dashed lines represent 
95% credible intervals predicted out to the maximum range of that land cover within se-
lected scales found within our study extent. 



M I R O C H N I T C H E N K O ,  S T U B E R ,  A N D  F O N T A I N E ,  J O U R N A L  O F  B I O G E O G R A P H Y  4 8  (2 0 2 1 )  

13 

3.3.3. Biodiversity correlations 
Our trivariate mixed-effect model provided strong support for nonzero residual correla-
tions between biodiversity metrics that differed between the two hierarchical levels meas-
ured (between-site vs. within-sites). After accounting for shared responses to land cover 
covariates, sites that on average had higher biodiversity in any single metric than expected 
given the existing land cover, had lower than expected biodiversity scores in the remaining 
biodiversity metrics (i.e., negative between-site correlations in all pairwise biodiversity 
combinations; point estimates: −0.42, −0.43, and −0.60 for PD:FD, PD:SR, FD:SR, respec-
tively; Table S.5). However, after accounting for shared responses to land cover covariates, 
the within-site correlations were strongly positive (point estimates: 0.98). From year to 
year, sites that either increased or decreased in one dimension of biodiversity showed a 
corresponding increase or decrease in both other dimensions of biodiversity. 
 
3.3.4. Model checking 
Visual residual analysis did not indicate model assumption violations. RMSE values were 
18%, 17%, and 19%, for PD, FD, and SR, respectively. 
 
3.3.5. Biodiversity projections 
All three metrics were qualitatively similar across the grasslands of central Nebraska. Pre-
dicted PD, FD, and SR increased from west to east and all metrics had relatively high val-
ues in locations with relatively high percentage of woodland (e.g., eastern border of 
Nebraska; Fig. 4). Areas in the east, with the highest percent of agriculture in the state, 
were projected to have intermediate to high levels of all three biodiversity metrics. Based 
on land cover associations, when projected across Nebraska, values of biodiversity metrics 
were within 50% of each other with clusters of higher PD scattered in northwest and south-
east Nebraska. FD was predicted to be higher than PD in the southwest corner of the pan-
handle of Nebraska, which has a large grassland and following rivers where there are more 
forest areas. Wooded areas in central and eastern Nebraska were associated with relatively 
higher SR than FD and higher FD than PD (Fig. 5). 
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Figure 4. Map of predicted phylogenetic diversity (PD; blue (a)), functional diversity (FD; 
orange (b)), and species richness (SR; green (c)) of birds across Nebraska, USA. Results 
depict expected 2017 values based on estimated land cover relationship at the spatial 
scales selected by BLISS, using raster package (Hijmans 2017) in R. 
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Figure 5. Map of pairwise differences between predicted relative phylogenetic diversity 
(PD), functional diversity (FD), and species richness (SR) of birds across Nebraska, USA. 
We rescaled each metrics’ prediction map values to range from 0 to 1 and mapped the 
difference between each pair of biodiversity metrics in ArcMap (ESRI 2015). 
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4. Discussion 
 
Understanding whether and how environmental context affects different dimensions of 
biodiversity and the relationships among dimensions can help inform when biodiversity 
dimensions can be used as surrogates for one another, elucidate drivers of biodiversity, 
and improve predictions of biodiversity trends. Here, we quantified relationships among 
taxonomic, phylogenetic, and functional dimensions of biodiversity and their relationships 
with six land cover gradients using a hierarchical approach. We identified the appropriate 
scales-of-effect of land cover predictor variables and described biodiversity correlations at 
the between-site and within-site levels after accounting for shared responses to land cover. 
We demonstrate variation in the ecological neighborhoods that are influential in shaping 
biodiversity dimensions and variation in the estimated response curves representing habitat-
biodiversity relationships. Taken together, variation in scales-of-effect, habitat response 
curves, and correlations between biodiversity dimensions that were less than 1 translated 
to diverging predictions for each biodiversity dimension when projected onto a real land-
scape. Based on our findings, we suggest that surrogacy among biodiversity dimensions 
should be viewed with caution, particularly given negative correlations between biodiver-
sity dimensions at the between-site level which suggest constraints in a site’s ability to 
support maximal biodiversity in multiple dimensions and highlight the need for addi-
tional studies regarding the scale-dependence of response-environment relationships in 
biodiversity and conservation. 
 
4.1. Correlation and surrogacy 
Evidence for taxonomic metrics being adequate surrogates for phylogenetic and functional 
metrics is equivocal and typically indicate only partial congruence (Huang et al., 2012; 
Pavoine et al., 2013; Rodrigues & Gaston, 2002). When the response variables of interest 
can change over time (e.g., species richness and phylogenetic diversity both may fluctuate 
over time), any correlations calculated based on only a single observation will be influ-
enced by relationships at multiple hierarchical levels (i.e., the within- and between-subject 
levels). In our study, after accounting for shared responses to land cover covariates, three 
common biodiversity dimensions were positively correlated at the within-site level but 
negatively correlated at the between-site level. The general idea that biodiversity dimen-
sions can act as surrogates for one another rests on the assumption that positive raw cor-
relations specifically represent between-site correlations among biodiversity metrics, that is, 
sites with high average SR also have high average PD. However, positive raw correlations 
can also occur if biodiversity metrics are influenced by the same (unmeasured) environ-
mental factors that fluctuate over time (within-site correlation). That is, we may observe a 
positive raw correlation between biodiversity metrics if we happen to measure a site that, 
on average, has low SR during a low predation-pressure year where uncommon species 
were able to colonize, resulting in higher than average SR during that observation. In ob-
servational studies, environmental heterogeneity is largely uncontrolled for, such that 
within-site correlations should be accounted for because they might be the major factor 
shaping raw correlations. Indeed, here we observe strong positive raw correlations of pair-
wise biodiversity metrics (point estimates: 0.96, 0.97, 0.98, PD:FD, PD:SR, FD:SR, respectively; 
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Table S.5); however, this is partly driven by PD and FD being mathematically linked to SR 
and partly by shared responses to land cover variables (correlation point estimates from 
land cover-based predictions: 0.12, 0.60, 0.63, for PD:FD, PD:SR, and FD:SR, respectively; 
Table S.5) and strong positive within-site correlations, rather than between-site correla-
tions, which were negative (−0.42, −0.43, −0.60, PD:FD, PD:SR, FD:SR, respectively; Table 
S.5). Differences between raw correlations (i.e., not based on modeling) and correlations 
after adjusting for shared habitat responses and variation within and among study sites 
may be a general phenomenon. In particular, the opposing relationships we uncovered 
(i.e., differences in magnitude of correlations between biodiversity and land cover, and 
correlations that differed in direction at the within- and among-site levels) suggest that 
biodiversity studies, generally, should aim to collect repeated measurements of biodiver-
sity at sites over time and account for variation in biodiversity at both within- and among-
site levels to appropriately characterize variation in biodiversity. 

The opposing relationships we uncover at the between- and within-site levels, after ac-
counting for shared responses to land cover variables, suggest that different ecological 
processes may shape correlations at these two levels. Indeed, the processes that shape fluc-
tuations in biodiversity at a site may have little relevance for understanding site-mean bi-
odiversity values. Candidate mechanisms driving between-site correlations should be 
long-term, systematic environmental, ecological, or evolutionary factors that vary between 
sites and may be related to differential selection in past environments, species competition, 
or founder effects. Mechanisms driving within-site correlations may include fluctuations 
in local resources, local weather conditions, or correlated errors that unfold on shorter 
time-scales than the length of the study. The negative correlation among all biodiversity 
metrics at the between-site level, representing a trade-off, was masked in the raw correla-
tion, driven by effects of fluctuating unmeasured variable(s). This scenario is not uncom-
mon in life history studies in quantitative genetics (Reznick et al., 2000; Van Noordwijk & 
de Jong, 1986) and may be common in community ecology, although longitudinal investi-
gations that decompose trait variation into hierarchical components are rare (Lasky et al., 
2014). 

Our results suggest that a single biodiversity dimension can be an unreliable predictor 
of another, echoing the conclusions of others that caution against surrogacy (Mazel et al., 
2018; Pavoine et al., 2013). Although based on land cover alone we expect that “good” sites 
(i.e., with favorable land cover characteristics) will support relatively high biodiversity in 
multiple dimensions (land cover–only based biodiversity correlations: 0.12, 0.60, 0.63 for 
PD:FD, PD:SR, and FD:SR, respectively; Table S.5), negative between-site correlations sug-
gest that biodiversity conservation based on programs that maximize biodiversity in a sin-
gle metric likely do not represent maximal biodiversity in other metrics (e.g., while a site 
with “good” land cover characteristics may have relatively high expected PD and FD, un-
measured site-specific characteristics may result in higher than expected biodiversity in 
one dimension and lower than expected biodiversity in the remaining two dimensions). 
However, biodiversity conservation based on on-the-ground management action (e.g., 
through habitat restoration projects) could improve biodiversity simultaneously in multi-
ple dimensions, if such management actions are reflected in the underlying within-site 
correlations. Understanding multilevel biodiversity correlations can help guide conservation 
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actions given specific target goals and practical constraints that warrant further study in 
community ecology and conservation science. 
 
4.2. Scale selection 
Despite the importance of considering scales-of-effect in understanding ecological rela-
tionships, our study is among the first to address scale-of-effect dependency across biodi-
versity dimensions (Martin, 2018; Miguet et al., 2016). We found substantial differences in 
the scales at which land cover covariates explain variation in each biodiversity dimension 
(Fig. 2; Table S.5). Our approach generally selected the largest spatial scales for PD, fol-
lowed by FD, and then SR (Fig. 2; Table S.5). Although the study of scales-of-effect in bio-
diversity is relatively new, we might expect PD to respond to land cover covariates at 
larger spatial scales compared with FD and SR because the biological phenomena associ-
ated with changes in phylogenetic diversity likely occur over different temporal and spa-
tial scales than the biological phenomena associated with taxonomic and functional 
diversity (Holling, 1992; Jackson & Fahrig, 2014; Miguet et al., 2016). Phylogenetic biodi-
versity is a snapshot of the outcomes of evolutionary processes associated with speciation 
and extinction that operate across large spatial and temporal scales (Jackson & Fahrig, 
2014; Miguet et al., 2016; Swenson, 2011). In contrast, functional biodiversity is a snapshot 
of trait-based information that links species to ecological processes unfolding over rela-
tively smaller spatial and temporal scales compared with evolution (Miguet et al., 2016; 
Mouchet et al., 2010). Taxonomic diversity is an outcome of colonization and extinction 
events (in the meta-population sense), which we expected to act on intermediate temporal 
and spatial scales to functional and phylogenetic diversity, although our results here are 
equivocal. Scale-of-effect dependence of biodiversity dimensions is among the most un-
derstudied in scale-of-effect analyses in ecology and substantial work is needed to develop 
a predictive framework to understand how and why particular ecological neighborhoods 
are influential to different dimensions of biodiversity, and how these neighborhoods might 
change over time. 
 
4.3. Spatial predictions of biodiversity dimensions 
Although our finding that there are spatial differences among biodiversity dimensions is 
not novel (Brum et al., 2017; Devictor et al., 2010; Quan et al., 2018; Safi et al., 2011), our 
study is the first to our knowledge that has attempted to tease apart scales-of-effect and 
biodiversity response curves. After accounting for the scale-dependence of biodiversity-
habitat relationships, our results highlight response curves that are qualitatively similar 
between biodiversity metrics and the land cover variables investigated. Although the 
shapes of biodiversity–land cover relationships were broadly similar, the relationships 
manifested at different spatial scales, which can contribute to substantial differences in 
predicted biodiversity among different dimensions. When landscapes are homogenous 
across scale, we would expect to see similar biodiversity projections even when scales-of-
effect differ, but when landscapes are nonhomogenous across scales, we would expect to 
see larger predicted differences among biodiversity dimensions under different scales-of-
effect. Indeed, we saw larger differences among spatial predictions of biodiversity dimen-
sions in areas with heterogeneous land cover (e.g., eastern edge of Nebraska where there 
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are more interspersed forest habitats) compared to areas where land cover is relatively 
homogenous (e.g., central Nebraska, which is characterized by extensive grassland cover; 
Fig. 5). Much of Nebraska was scattered with small areas with a high degree of difference, 
most of which were associated with rarer land cover types such as trees or wetlands (dis-
cussed below). 
 
4.3.1. Landscape drivers of variation in biodiversity dimensions 
Agricultural intensification is a major driver of biodiversity loss worldwide, including in 
birds (Benton et al., 2003; Donald et al., 2001; Flynn et al., 2009). However, we find only a 
weak relationship between avian biodiversity and the amount of row crop in the land-
scape, although biodiversity does decline as the amount of row crop increases (Fig. 3a–c; 
Table S.5). Furthermore, CRP, a program often used as a tool to increase wildlife biodiver-
sity (Best et al., 1997; Johnson, 2005; Patterson & Best, 1996), showed a negative relationship 
with FD and SR (Table S.5). Species composition on CRP fields and other land cover types 
may also be influenced by climatic variation, interactions between surrounding habitat 
types, legacy effects, and the type and intensity of management (Johnson, 2005; King & 
Savidge, 1995), the inclusion of which may improve future models. Estimated land cover 
relationships may also vary between guilds of birds (e.g., species richness of grassland 
birds is expected to increase with addition of grassland, where richness of forest guild birds 
is not). Increasing the thematic resolution of land cover predictors (e.g., type of grassland, 
high/low stocked pasture, etc.) could increase the precision of our understanding of habi-
tat-biodiversity relationships and would help to tailor recommendations regarding habitat 
set-aside or management action plans. 
 
4.3.2. Rare land cover types 
Woodlands and wetlands were relatively rare in our system (Bishop et al., 2011; Table S.1) 
and subsequently increased habitat heterogeneity where they were found, which has been 
cited as a driving factor that increases biodiversity (Benton et al., 2003; Stein et al., 2014). 
We observed a positive relationship between percent woodland and all three biodiversity 
dimensions that appeared to plateau around 30% woodland cover within 3–5 km radius 
areas (Fig. 3j–l; Table S.5), suggesting that biodiversity increases in all dimensions as the 
proportion of woodland cover increases, but only up to 30% cover. However, we observed 
negative relationships between wetlands and both SR and FD and no relationship with PD 
(Fig. 3h,i,g, respectively; Table S.5). Here, wetlands may act as an environmental filter that 
selects for species that have specific functional traits (e.g., piscivores, dabblers), yet those 
species could have relatively distant evolutionary relationships (e.g., waterfowl, cranes, 
shorebirds; Benton et al., 2003). The assemblages around wetlands are predicted to show 
large differences between PD and FD, where PD is large and FD is small (Fig. 5a). Thus, 
not all increases in habitat heterogeneity led to higher biodiversity, and biodiversity di-
mensions may respond asynchronously to habitat heterogeneity. 
  



M I R O C H N I T C H E N K O ,  S T U B E R ,  A N D  F O N T A I N E ,  J O U R N A L  O F  B I O G E O G R A P H Y  4 8  (2 0 2 1 )  

20 

5. Conclusions 
 
Taxonomic, phylogenetic, and functional dimensions of biodiversity are lenses to examine 
different aspects of biological variation, yet the relationships among biodiversity dimen-
sions are not well understood and can lead to false inferences if we fail to account for multi-
scale, spatial, and hierarchical relationships when measuring or predicting biodiversity 
metrics. Our study is one of the first to take a multiscale, scale-of-effect optimization ap-
proach to characterize habitat-biodiversity relationships and thus one of the first to demon-
strate spatial scale-of-effect dependence across relationships between land cover predictor 
variables and taxonomic, phylogenetic, and functional biodiversity, and hierarchical de-
pendence of biodiversity correlations (i.e., opposing residual correlations at the between-
site and within-site levels) contributing to spatial differences among biodiversity metrics. 
Scale-dependence coupled with opposing multilevel correlations among dimensions pro-
vide strong evidence cautioning against the use of one metric as a surrogate for another. 
Rather, substantial work is needed to compile assessments of scales-of-effect and uncover 
the drivers of opposing between-site and within-site correlations in biodiversity-related 
responses such that general patterns may be documented and eco-evolutionary hypothe-
ses tested. 
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SUPPLEMENTARY MATERIALS 

Table S.1. Summary statistics of the proportion of land cover surrounding survey points at 
considered candidate scales in Nebraska, USA. 
 
 
Statistic Min Percentile (25) Median Percentile (75) Max Median St. Dev. 

 
Crop 0.5km 0 0 16 50 96 16 30.457 

Crop 1km 0 0 18 52 95 18 30.117 

Crop 2km 0 5 23 51 94 23 28.412 

Crop 3km 0 6 26 50.5 93 26 27.885 

Crop 4km 0 7 26 52 92 26 27.288 

Crop 5km 0 7 26 52 90 26 26.902 

Crop 10km 0 9 26 51 87 26 26.002 

Crop 15km 0 11 25 53 86 25 25.567 

Crop 20km 0 11 25 53.5 85 25 25.129 

CRP 0.5km 0 0 0 0 65 0 9.010 

CRP 1km 0 0 0 3 55 0 7.025 

CRP 2km 0 0 0 3 50 0 5.000 

CRP 3km 0 0 1 3 44 1 4.087 



2 
 

CRP 4km 0 0 1 3 33 1 3.480 

CRP 5km 0 0 1 3 33 1 3.211 

CRP 10km 0 0 1 3 27 1 2.599 

CRP 15km 0 0 1 3 22 1 2.220 

CRP 20km 0 0 1 3 20 1 2.039 

Grain 0.5km 0 0 0 4 96 0 18.637 

Grain 1km 0 0 0 9 95 0 18.735 

Grain 2km 0 0 0 10.5 91 0 17.897 

Grain 3km 0 0 1 11 91 1 17.590 

Grain 4km 0 0 1 12 88 1 17.255 

Grain 5km 0 0 1 13 88 1 16.884 

Grain 10km 0 0 1 14 76 1 15.605 

Grain 15km 0 0 1 15 71 1 14.610 

Grain 20km 0 0 1 14 62 1 13.540 

Grass 0.5km 0 13 43 75.5 100 43 32.334 

Grass 1km 0 16 43 72 100 43 31.250 

Grass 2km 0 17 40 70 100 40 30.006 



3 
 

Grass 3km 0 18 39 70 99 39 29.384 

Grass 4km 0 19 38 69 99 38 29.032 

Grass 5km 1 20 37 68.5 99 37 28.695 

Grass 10km 2 22 38 65 98 38 27.419 

Grass 15km 3 21 40 63 97 40 26.773 

Grass 20km 4 21 43 62 97 43 26.392 

Tree 0.5km 0 0 0 4 56 0 7.588 

Tree 1km 0 0 1 5 48 1 7.197 

Tree 2km 0 0 1 6 49 1 6.861 

Tree 3km 0 0 1 6.5 50 1 6.469 

Tree 4km 0 0 1 7 52 1 6.021 

Tree 5km 0 0 2 7 52 2 5.762 

Tree 10km 0 1 2 6 33 2 4.889 

Tree 15km 0 1 2 6 24 2 4.489 

Tree 20km 0 1 3 7 21 3 4.045 

Wetlands 0.5km 0 0 0 0 51 0 6.023 

Wetlands 1km 0 0 0 1 45 0 5.212 
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Table S.2. Species occupancy model used with JAGS to determine the occupancy and land cover 
associations for bird species detected in Nebraska, USA. 
 

model{ 

 # Land cover occupancy priors 

 betayear1 ~ dnorm(0,0.1) 

 betayear2 ~ dnorm(0,0.1) 

 betag ~ dnorm(0,0.1) 

 betag2 ~ dnorm(0,0.1) 

 betacrp ~ dnorm(0,0.1) 

 betagr ~ dnorm(0,0.1) 

 betagr2 ~ dnorm(0,0.1) 

 betat ~ dnorm(0,0.1) 

 betat2 ~ dnorm(0,0.1) 

 betaw ~ dnorm(0,0.1) 

Wetlands 2km 0 0 0 1 36 0 4.411 

Wetlands 3km 0 0 0 1 27 0 3.938 

Wetlands 4km 0 0 0 1 26 0 3.610 

Wetlands 5km 0 0 0 1 23 0 3.444 

Wetlands 10km 0 0 0 1 19 0 2.948 

Wetlands 15km 0 0 0 1 16 0 2.637 

Wetlands 20km 0 0 0 1 13 0 2.413 
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 # Detection probability priors    

 alpha0 ~ dnorm(0,0.1) 

 alphad ~ dnorm(0,0.1)  

 alphad2 ~ dnorm(0,0.1) 

 alphaw ~ dnorm(0,0.1)  

 alpham ~ dnorm(0,0.1) 

 alpham2 ~ dnorm(0,0.1) 

 alphat ~ dnorm(0,0.1) 

 alphat2 ~ dnorm(0,0.1) 

 alphac ~ dnorm(0,0.1) 

 

  #Hyperprior for random effect precision on observers in detection model 

        tau.observer~ dgamma(4,1) 

 

        #Random effect variance 

        sigma2.observer <- 1/tau.observer 

        sigma.observer <- sqrt(sigma2.observer) 

 

        #Random effect observer 

        for (o in 1:nobservers){ 

           u.observer[o] ~ dnorm(0, tau.observer) 

        } 

 # Occupancy model 

 for (y in 1:nyears) { 

         for (i in 1:npoints){ 
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            logit_occ[y,i] <- betayear1 * Year1[i] + betayear2 * Year2[i] + betag * grass500l[i] + 

betag2 * grass500q[i] + betacrp * crp500l[i] + betagr * grain500l[i] + betagr2 * grain500q[i] + betat * 

tree500l[i] + betat2 * tree500q[i]+ betaw * wet500l[i] 

 

            logit(occ[y,i]) <- logit_occ[y,i] 

            Psi[y,i] ~ dbern(occ[y,i])  

        } 

    } 

 

    # Detection probability model  

    for (j in 1:nsurveys) { 

        logit_pr[j] <- alpha0 + alphad * Season_Datel[j] + alphad2 * Season_Dateq[j] + alphaw * 

Windspeedl[j] +  alpham * Minutes_since_midnightl[j] + alpham2 * Minutes_since_midnightq[j] + alphat 

* Templ[j] + alphat2 * Tempq[j]+ alphac* Cloudsl[j]+ u.observer[Obs_n[j]] 

 

        logit(prob[j]) <- logit_pr[j] 

 

        # Occupancy * detection 

        mu_p[j] <- Psi[Year.id[j], Route.Point.id[j]] * prob[j]  

 

        # Observation model 

        Cluster[j] ~ dbern(mu_p[j]) 

    } 

} 
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Table S.3. Traits included in the creation of the functional dendrogram. 

Trait type 
 

Trait Value type 

Resource quantity 1 Body mass Continuous 

2 Clutch size Continuous 

3 Mean (no. clutches) Continuous 

4 Egg length Continuous 

5 Egg breadth Continuous 

Diet 6 Invertebrates Percent 

 
7 Mammals Percent 

 
8 Reptiles Percent 

 
9 Fish Percent 

 
10 Vertebrates (unknown) Percent 

 
11 Scavenge Percent 

 
12 Fruit Percent 

 
13 Nectar or pollen Percent 

 
14 Seeds Percent 

 
15 Other plant material Percent 

Foraging Strategy 16 Below water Percent 

17 On water Percent 

18 On ground Percent 

19 Below understory  Percent 

20 In middle levels of trees/ bushes Percent 

21 In canopy Percent 

22 Aerial Percent 

Foraging period 23 Nocturnal  Binary 
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Figure S.1. Phylogeny of the 141 species detected during point count surveys; phylogeny 
constructed in program BEAST and Fig Tree (v. 1.4.3). Branch lengths signify substitutions per 
site per unit time. 
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Figure S.2. Functional dendrogram of the 141 species detected during point count surveys. 
Branch lengths signify Gower distances among functional traits described in Table S. 1. 
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Table S.4. The trivariate biodiversity model used with JAGS to determine optimal spatial scales 
for each land cover type with BLISS and the biodiversity response curves at the optimal spatial 
scales. 
 

model{ 

  # Land cover coefficients for PD 

  alphayear1 ~ dnorm(0,0.1) 

  alphayear2 ~ dnorm(0,0.1)  

  alphag ~ dnorm(0,0.1) 

  alphag2 ~ dnorm(0,0.1) 

  alphacrop ~ dnorm(0,0.1) 

  alphacrop2 ~ dnorm(0,0.1) 

  alphacrp ~ dnorm(0,0.1) 

  alphagr ~ dnorm(0,0.1) 

  alphagr2 ~ dnorm(0,0.1) 

  alphat ~ dnorm(0,0.1) 

  alphat2 ~ dnorm(0,0.1) 

  alphaw ~ dnorm(0,0.1) 

   

  # Land cover coefficients for FD 

  betayear1 ~ dnorm(0,0.1) 

  betayear2 ~ dnorm(0,0.1)  

  betag ~ dnorm(0,0.1) 

  betag2 ~ dnorm(0,0.1) 

  betacrp ~ dnorm(0,0.1) 

  betacrop ~ dnorm(0,0.1) 

  betacrop2 ~ dnorm(0,0.1) 
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  betagr ~ dnorm(0,0.1) 

  betagr2 ~ dnorm(0,0.1) 

  betat ~ dnorm(0,0.1) 

  betat2 ~ dnorm(0,0.1) 

  betaw ~ dnorm(0,0.1) 

 

  # Land cover coefficients for SR 

  gammayear1 ~ dnorm(0,0.1) 

  gammayear2 ~ dnorm(0,0.1)  

  gammag ~ dnorm(0,0.1) 

  gammag2 ~ dnorm(0,0.1) 

  gammacrp ~ dnorm(0,0.1) 

  gammacrop ~ dnorm(0,0.1) 

  gammacrop2 ~ dnorm(0,0.1) 

  gammagr ~ dnorm(0,0.1) 

  gammagr2 ~ dnorm(0,0.1) 

  gammat ~ dnorm(0,0.1) 

  gammat2 ~ dnorm(0,0.1) 

  gammaw ~ dnorm(0,0.1) 

   

  # BLISS priors 

  scale.pd.grass ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.pd.grain ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.pd.crop ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.pd.tree ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.pd.wet ~ dcat(c(1,1,1,1,1,1,1,1,1)) 
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  scale.pd.crp ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

 

  scale.fd.grass ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.fd.grain ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.fd.crop ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.fd.tree ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.fd.wet ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.fd.crp ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

 

  scale.sr.grass ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.sr.grain ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.sr.crop ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.sr.tree ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.sr.wet ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

  scale.sr.crp ~ dcat(c(1,1,1,1,1,1,1,1,1)) 

   

  # covariance/precision priors 

  tau ~ dwish(R, 5) 

   

  # Bivariate response model  

  for (i in 1:npoints) { 

    mu_PD[i] <- alphayear1 * Year1[i] + alphayear2 * Year2[i]+ alphag * l_grass[i, scale.pd.grass] + 

alphag2 * q_grass[i, scale.pd.grass] + alphacrp * l_crp[i, scale.pd.crp] + alphacrop * l_crop[i, 

scale.pd.crop] + alphacrop2 * q_crop[i, scale.pd.crop] +alphagr * l_grain[i,scale.pd.grain] + alphagr2 * 

q_grain[i,scale.pd.grain] + alphat * l_tree[i,scale.pd.tree] + alphat2 * q_tree[i,scale.pd.tree] +alphaw * 

l_wet[i,scale.pd.wet] 
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    mu_FD[i] <- betayear1 * Year1[i] +betayear2 * Year2[i]+ betag * l_grass[i, scale.fd.grass] + betag2 * 

q_grass[i, scale.fd.grass] + betacrp * l_crp[i, scale.fd.crp] + betacrop * l_crop[i, scale.fd.crop] + 

betacrop2 * q_crop[i, scale.fd.crop] +betagr * l_grain[i,scale.fd.grain] + betagr2 * 

q_grain[i,scale.fd.grain]  + betat * l_tree[i,scale.fd.tree] + betat2 * q_tree[i,scale.fd.tree] + betaw * 

l_wet[i,scale.fd.wet] 

    mu_SR[i] <- gammayear1 * Year1[i] +gammayear2 * Year2[i]+ gammag * l_grass[i, scale.sr.grass] + 

gammag2 * q_grass[i, scale.sr.grass] + gammacrp * l_crp[i, scale.sr.crp] + gammacrop * l_crop[i, 

scale.sr.crop] + gammacrop2 * q_crop[i, scale.sr.crop] +gammagr * l_grain[i,scale.sr.grain] + gammagr2 

* q_grain[i,scale.sr.grain]  + gammat * l_tree[i,scale.sr.tree] + gammat2 * q_tree[i,scale.sr.tree] + 

gammaw * l_wet[i,scale.sr.wet] 

 

    mu[i,1] <- mu_PD[i] 

    mu[i,2] <- mu_FD[i] 

    mu[i,3] <- mu_SR[i] 

 

    diversity[i,] ~ dmnorm(mu[i,], tau) 

  } 

} 
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Table S.5. Selected spatial scale-of-effect for each land cover-diversity relationship, posterior 
probability associated with the selected spatial scale as estimated by BLISS, coefficient estimates 
(posterior mean) and their associated 95% credible intervals (CI) within the most informative 
spatial scale for phylogenetic diversity (PD), functional diversity (FD), and species richness 
(SR), and correlations between biodiversity dimensions. Coefficients are associated with 
orthogonal values of land cover for the biodiversity models and are not back transformed here. 
 

Diversity 

Spatial 
Scale 
(km) 

Scale Posterior 
Probability Coefficient Posterior mean (95% CI) 

PD 4 0.26 Crops 1.13 (-0.9, 3.07) 
   Crops² -0.88 (-2.44,0.63) 
 4 0.24 CRP -1.72 (-2.99, -0.42) 
 2 0.17 Grasses 0.72 (-1.45, 2.93) 
   Grasses² 1.62 (-0.25, 3.47) 
 20 0.14 Small Grains 0.12 (-1.04, 1.27) 
   Small Grains² -0.39 (-1.11, 0.33) 
 5 0.26 Trees 1.91 (0.65, 3.15) 
   Trees² -0.5 (-1.49, 0.51) 
 0.5 0.2 Wetland 0 (0, 0.01) 
 

  
Year 1 0.08 (-0.01, 0.16) 

 
  

Year 2 -0.08 (-0.17, 0.01) 
FD 3 0.18 Crops -0.11 (-2.29, 1.76) 
   Crops² -0.67 (-2.16, 0.76) 
 3 0.19 CRP -1.57 (-2.82, -0.32) 
 2 0.3 Grasses -0.71 (-2.98, 1.47) 
   Grasses² 2.06 (0.17, 3.9) 
 20 0.13 Small Grains -0.29 (-1.33, 0.79) 
   Small Grains² -0.53 (-1.2, 0.16) 
 4 0.39 Trees 2.65 (1.42, 3.85) 
   Trees² -0.65 (-1.64, 0.35) 
 1 0.25 Wetland -0.76 (-1.73, 0.25) 
 

  
Year 1 0.02 (-0.07, 0.1) 

 
  

Year 2 -0.02 (-0.11, 0.07) 
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SR 4 0.31 Crops -0.04 (-1.98, 1.74) 
   Crops² -0.72 (-2.22, 0.72) 
 4 0.32 CRP -1.78 (-2.99, -0.52) 
 2 0.22 Grasses -0.79 (-2.96, 1.36) 
   Grasses² 1.3 (-0.56, 3.12) 
 5 0.14 Small Grains -0.66 (-1.91, 0.57) 
   Small Grains² -0.34 (-1, 0.33) 
 3 0.35 Trees 2.24 (1.03, 3.47) 
   Trees² -0.69 (-1.63, 0.26) 
 1 0.22 Wetland -0.6 (-1.52, 0.34) 
 

  
Year 1 0.05 (-0.04, 0.13) 

 
  

Year 2 -0.05 (-0.14, 0.04) 
PD.FD 

  
Within-site 
correlation 0.977 (0.973, 0.981) 

   Between-site 
correlation -0.42 (-0.47, -0.35) 

PD.SR 
  

Within-site 
correlation 0.979 (0.975, 0.982) 

   Between-site 
correlation -0.43 (-0.49, -0.37) 

FD.SR     Within-site 
correlation 0.985 (0.982, 0.987) 

   Between-site 
correlation -0.59 (-0.64, -0.54) 
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