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 Species-habitat relationships are a central tenant to ecological theory and are 

critical in species management.  Yet, despite a long-standing tradition of utilizing 

species-habitat relationships in both theoretical and applied ecology, there remains to be 

no clear predictors of how species relate to habitat.  In order to further our understanding 

of the habitat selection process, we must begin to comprehend what spatial scales species 

form habitat decisions and what potential behavioral or life-history predictors underlie 

the scale of habitat decisions.  During 2010-2012, I conducted point counts for grassland 

birds across Nebraska and assessed habitat relationships over multiple spatial scales to 

construct predictive species distribution models.  Results indicated that landscape scale 

habitat variables drastically constrained or, alternatively, facilitated the positive effects of 

local land management for Ring-necked Pheasants.  Hierarchical theory suggests that 

ecological processes function concurrently over multiple spatial scales and not all scales 

may be appropriate in determining species occurrence.  I predicted that the spatial scale 

in which a species forms habitat decisions would correlate with body size, a predictor of 

life-history expression, if the scale is a function of how the species interacts with its 

environment.  I tested this hypothesis on 10 obligate grassland bird species in Nebraska, 

USA.  For seven species, I found evidence of a characteristic habitat selection scale, but 

no relationship to body mass.  To quantify local habitat quality, a predictor of species 



 

 

 

occurrence, I assessed the precision of five methods of measuring plant structure using 

ground-based imagery and processing techniques.  I recorded standing herbaceous cover 

using digital imagery at two locations in a mixed-grass prairie.  I compared the precision 

of the digital imagery vegetation analysis (DIVA) methods and quantified variability 

within each technique using the coefficient of variation.  Vertical herbaceous cover 

estimates varied among DIVA techniques but the precision of four of the five techniques 

was consistently high.  Overall, DIVA techniques are sufficient for measuring standing 

herbaceous cover and can adequately reduce measurement error associated with multiple 

observers. 
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Chapter 1: THE REALTOR’S DILEMMA: DOES THE NEIGHBORHOOD 

LIMIT CONSERVATION SUCCESS? 

 

Abstract: 

 The loss of biodiversity is an ever-increasing threat.  While habitat restoration is 

beneficial, management actions do not always demonstrate the desired outcome.  

Managers must understand why management actions fail; yet, past studies have focused 

on assessing habitat attributes at a single scale, and often fail to consider the importance 

of ecological mechanisms that act across scales.  I located survey sites across southern 

Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant 

abundance, an economically important species to the region, while simultaneously 

quantifying landscape effects using a geographic information system.  I assessed habitat 

relationships using a Bayesian binomial-Poisson hierarchical model to construct 

predictive species distribution models of relative abundance meant to identify suitable 

areas for allocating limited management resources.  Results indicated that landscape scale 

habitat variables severally constrained or, alternatively, facilitated the positive effects of 

local land management for Ring-necked Pheasants. 
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INTRODUCTION 

Habitat restoration and management is a fundamental component of conservation 

science (Leopold 1933; Griffith 1989; Wiens 1994; Didier & Porter 1999; Sinclair 2006) 

and is routinely identified as the primary means to improve population viability for 

species of social-economic (Cowardin et al. 1995; Didier & Porter 1999; Connelly et al. 

2000; Nielson et al. 2008) or conservation concern (Gibeau 1998; Kusak & Huber 1998; 

Miller et al. 2003).  Although habitat management success is often measured by the 

ability to obtain a particular suite of vegetative structure and composition, ultimately 

success must be gauged by the population responses of target species.  Unfortunately, 

despite our ability to routinely produce ‗suitable‘ vegetative conditions, habitat 

management actions too often fail to meet the population expectations of managers (e.g., 

McCoy et al. 1999; Henningsen & Best 2005; Rahmig et al. 2008; Wrbka et al. 2008).  

Understanding why populations fail to respond to apparently suitable habitat conditions 

represents a true conservation challenge which necessitates reconsidering the underlying 

mechanisms that drive species-habitat relationships. 

Recognizing that individuals select among available habitats based on a set of 

environmental cues is fundamental to habitat selection theory, and therefore useful in 

predicting habitat suitability (Hilden 1965; James 1971).  Utilizing conservation tools 

which translate ecological theory into spatial species-habitat relationships such as Species 

Distribution Models (SDMs) is therefore an effective population management strategy 

(Franklin 2009, Fletcher et al. 2010).  Although habitat preferences have evolved to 

predict habitat suitability, the spatial scale at which individuals select and use habitat 

varies based on life history and mobility (Peters 1983; Rosenzweig 1991; Holling 1992).  
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Unfortunately, while many studies have demonstrated the importance of site-level habitat 

attributes (Wiens 1973; Patterson & Best 1996; Fisher & Davis 2010), many have failed 

to recognize that communities and other biological interactions are influenced by 

ecological factors across multiple spatial scales (Best et al. 2001; Turner et al. 2001; 

Cunningham & Johnson 2006).  Ignoring the fact that ecological processes act across 

scales (Stephens et al. 2003) reduces the efficacy of habitat management and can drain 

limited financial and ecological resources, or worse, harm the species or community in 

consideration (i.e., ecological trap; Robertson & Hutto 2006).  Furthermore, public 

perception may change in concert with the success or failure of a management action, 

potentially dictating the future direction of policy and governance (Zinn et al. 1998; 

Bremner & Park 2007).  To improve management efficacy, management plans must 

incorporate ecological mechanisms, particularly ecological factors that constrain 

management success, and do so at scales relevant to the biology of the species or 

communities of interest.  Therefore, associating habitat variables with species occurrence 

or abundance on a spatial scale relevant to the species provides insight into how 

individuals make habitat decisions, and consequently, what constitutes suitable habitat 

(Rosenzweig 1991).        

Effective conservation practices maybe particularly important in highly altered 

systems, such as agro-ecosystems.  Over the past 50 years, agro-ecosystems throughout 

Europe and North America have been increasingly exposed to land-use intensification 

and development, causing extensive losses in ecosystem functions and corresponding 

species declines (Stoate et al.2001; Peterjohn 2003).  Farmland and grassland birds, for 

example, have declined significantly over the past half century (Donald et al. 2006; Sauer 
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et al. 2011), and therefore are at the forefront of agro-ecosystem conservation.  In North 

America, the Conservation Reserve Program (CRP) is one example of an agro-ecosystem 

conservation practice that is widely regarded to be beneficial to wildlife, including 

farmland birds (Peterjohn 2003; Giudice & Haroldson 2007; Nielson et al. 2008; Herkert 

2009).  Yet, despite significant successes surrounding the incorporation of CRP into the 

landscape, managers too often witness less-than-desirable management outcomes 

(McCoy et al. 1999; Rodgers 1999; Rahmig et al. 2008).  The dynamic nature associated 

with agriculturally dominated landscapes makes for a perfect opportunity to explore 

species-habitat relationships and identify why farmland birds fail to respond to apparently 

suitable habitat improvements.  To understand how farmland bird conservation efforts 

may be constrained, we must understand and address ecological interactions at both the 

land management level and in the surrounding landscape to ask the question: Is local 

habitat management constrained by the landscape habitat configuration and composition? 

 

METHODS 

STUDY SPECIES 

Originally introduced to the United States in the early 1900‘s (Allen 1956),  the 

Ring-necked Pheasant (Phasianus colchicus) prospered in the agro-ecosystems of the 

Midwest and Great Plains.  Pheasant populations thrived in landscapes containing a 

diversity of crop types established over a variety of field sizes (Taylor et al. 1978).  As 

pheasant populations grew, their importance as an upland game species increased 

throughout much of North America, providing prairie hunters a substitute for declining 

native grouse species.  However, despite being a generalist and relatively resilient to 



5 

 

 

human disturbance, Ring-necked Pheasant populations have experienced significant 

declines over the past 50 years (Sauer et al. 2011).  Given the social and economic value 

of Ring-necked Pheasants, the strong population decline has sparked intense research and 

conservation efforts from agencies and non-government organizations throughout the 

United States (Taylor et al. 1978; Perkins et al.1997; Schmitz and Clark 1999; Smith et 

al.1999; Leif 2005).  Still, despite considerable efforts to conserve Ring-necked Pheasant 

populations, often management activities have proven unsuccessful (Leif 1994; 

Robertson 1996; Rodgers 1999) and may be inhibited by the surrounding landscape 

(Clark et al. 1999).   

DATA COLLECTION AND PREPARATION 

During April through July of 2010 – 2012, I conducted aural surveys (n = 648, 

1161 and 1146) using a 500 m bounded distance sampling method (Blondel et al. 1981; 

Buckland et al. 2001) to estimate pheasant abundance at sites located throughout 17 

counties in Nebraska (Fig. 1).  Surveys began 15 minutes before sunrise and ended at 

10:00 a.m., when aural detection rates are most consistent across all species (Hutto et al. 

1986), and during which the maximum vocalization rate for Ring-necked Pheasants 

occurs (Luukkonen et al. 1997).  All surveys were conducted at locations with a 

minimum of a quarter section (64 hectares) of contiguous grassland, the minimum habitat 

size assumed necessary to support viable Ring-necked Pheasant populations at a local 

scale (Clark et al. 1999).  I randomly selected nine survey points at each site using a 

minimum spacing of 300 meters and sampled each point three times each season, leaving 

equally spaced time intervals between survey rounds.  I recorded every individual seen or 

heard during a 3-minute period and used a laser range finder to measure distance from 
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observer to suspected location.  Inclement weather, including fog, drizzle, prolonged rain, 

and wind greater than 20 km/h resulted in ending the survey prematurely.   

Land cover variables were derived from a Nebraska Landcover layer with a 30 x 

30 m resolution (Bishop et al. 2011).  Individual habitat types were generalized into six 

cover classes which were predicted a priori to influence Ring-necked Pheasant 

populations (Conservation Reserve Program grasses, grass, trees, small grains, row crops, 

and wetlands) and reclassified into binary raster layers, where 1 is ―habitat‖ and 0 is 

‗non-habitat‖.  I implemented the Circular Focal Statistics Tool in ArcGIS 10.0 (ESRI, 

Redlands, California) to assess cover type at both a land management (1 km radius) and 

landscape scale (5 km radius), which is roughly equal to the dispersal distance of a Ring-

necked Pheasant (Smith et al. 1999), and calculated the proportion of each land cover 

within the specified window size.  I quantified the relative elevation in the surrounding 

area by deriving an elevation index from a Nebraska digital elevation model (DEM) with 

a 30 x 30 m resolution.  The elevation index was equal to the standardized elevation of a 

township, where each individual raster cell was subtracted from the average elevation 

within a congressional township and was divided by the standard deviation of elevation 

within the political boundary.   

Habitat and topographic variables were measured at spatial scales relevant to the 

managed area and the landscape surrounding the management area.  Because there were 

differences in scale, all variables were standardized by subtracting the mean and dividing 

by the standard deviations from the mean (Bring 1994).  In addition, standardizing 

variables helps improve model convergence and allowed for the direct comparison of 

parameter estimates (Royle & Dorazio 2008).  Before including habitat and topographic 
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variables, I tested all variables for colinearity.  Any two variables having a Person‘s 

correlation over 0.6 were determined to be highly significant and I eliminated one of the 

correlated variables from the model. 

STATISTICAL MODEL 

I modeled pheasant relative abundance (Ni) at each survey site (i) using a 

binomial-Poisson hierarchical model (Royle 2004; Royle and Darozio 2008; Kéry 2010; 

Kéry and Royle 2010).  This model had the general form: 

      

 

 

 

 

which assumed a two-stage stochastic process.  The first stochastic process relates to the 

ecological processes involved in distributing individuals throughout the landscape 

resulting in site specific abundance, Ni.  I assumed that Ni was Poisson distributed which 

is an appropriate choice for count data (Zuur et al. 2007) and had a mean of λ.  I included 

habitat and topographic variables in the linear predictor for ecological process using a 

log-link function for λ.  Because survey locations were visited repeatedly and nested 

inside management area k, I added a random-intercept effect to account for potential 

spatial autocorrelation and variation among management areas (Zuur et al. 2007).  The 

second stochastic process in the model is the observation process, where the actual 

numbers of individuals detected (yij) at site i during the jth survey was the product of a 

binomial distribution given that there were Ni individuals present at site i and a 
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probability of detecting those individuals pij (Kery 2010).  I predicted that survey specific 

variables, time of day and Julian date, would influence the probability of detecting 

individuals and included them in the observation process using a logit-link function for 

pij.  Peak vocalization-rates have been previously identified (Luukkonen et al. 1997); 

therefore I added a quadratic term for time of day to allow for non-linear relationships in 

detection probability (Luukkonen et al. 1997). 

I ran the Bayesian analysis in WinBUGS (Lunn et al. 2000) using the 

R2WinBUGS package through the software R version 2.14.0 (R Development Core 

Team 2011).  Three Markov Chain Monte Carlo (MCMC) simulation chains were used to 

calculate the posterior distribution with 35,000 iterations in each chain.  Every 50
th

 

iteration was used to calculate the posterior distribution.   I treated the first 5,000 

iterations of the Markov Chain as a burn-in period and eliminated them from the 

calculation of the posterior distribution (Kery 2010).  I visually inspected Markov Chains 

and used the Gelman-Rubic diagnostic, which compares within-chain and between-chain 

variability to determine model convergence (Brooks and Gelman 1998).  Any parameter 

estimate with a Gelman-Rubic diagnostic below 1.1 was accepted as having successfully 

converged.    

Model fit was assessed using a posterior predictive check using a Chi-squared 

discrepancy test (Gelman & Hill 2007; Kery 2010).  I compared the lack of fit of the 

model fitted with the actual dataset with the lack of fit of a model fitted with replicated 

data generated from the parameter estimates obtained from the actual model.  A Bayesian 

p-value was calculated to further assess model performance, which quantifies the 
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proportion of times the discrepancy measure for the replicated dataset is greater than the 

discrepancy measure for the actual dataset (Kery 2010).   

DETERMINING SCALE  

Habitat variables were measured using a spatial scale relevant to management 

(314 ha) and the landscape (7854 ha), determined by the average between-season 

dispersal distance of a Ring-necked Pheasant.  Although previous studies have utilized 

various information-theoretic approaches (i.e., AIC, BIC, DIC) to identify the spatial 

scales and cover types important in explaining species occupancy or abundance (Franklin 

2009; Thogmartin et al. 2006),  unfortunately they are controversial and may lack in 

performance when applied to a Bayesian hierarchical model (Spiegelhalter et al. 2002; 

Bolker et al. 2009; Ward 2008).  Instead I used a hypothesis testing approach to build a 

final model, identifying which spatial scale habitat variables had the strongest influence 

on Ring-necked Pheasant distribution based on the parameter estimates (Gelman et al. 

1995).  I first modeled all of the variables measured at the management scale, created a 

second model with all of the variables measured at the landscape scale, and assessed 

which parameter estimates for a single habitat type better explained Ring-necked 

Pheasant abundance.  The spatial scale at which the habitat variable had a stronger 

parameter estimate was included in the final model (Table 1).  To allow for non-linear 

habitat relationships in the model, I added a quadratic term for all habitat variables 

measured within a 5km radius of the survey location.  I assumed all of the effects within 

the final model were present, circumventing the use of an information-theoretic approach 

in model selection (Gelman & Hill 2007; Bolker et al. 2009). 
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SPATIAL MODELING AND VALIDATION 

I created a predictive spatial model by combining geographic information systems 

(ArcGIS 10.0, Environmental Systems Research, Redlands, CA) grid layers of land cover 

classes and topographic variables based on their parameter estimates.  Cover types and 

topographic variables were multiplied by the parameter estimates and un-standardized 

using the means and standard deviations of each variable in the ArcGIS Spatial Analyst 

calculator.  The resulting weighted raster layers were summed together and added to the 

intercept, producing a species distribution model for Ring-necked Pheasants in Nebraska 

(Thogmartin et al. 2006).   

In modeling Ring-necked Pheasant distributions and extrapolating beyond the 

study region, I recognized that habitat relationships did not make biological sense based 

on the biology of the species and the ecotypes of the region.  In order to correct the 

species distribution model for Ring-necked Pheasants, I assumed that landscape variables 

may not adequately identify non-linear relationships and added an additional term (cubic 

term) for small grains and row crop.  I identified the correction term by back-solving the 

equation with the assumption of zero Ring-necked Pheasants at 100 percent small grains 

or row crop agriculture in the surrounding landscape (Fig. 2; Best et al. 1995; Best et al. 

2001).  The resulting correction terms were added to a corrected species distribution 

model for Ring-necked Pheasants.   

I validated the spatial models using an independent dataset.  In 2012 I established 

10 roadside transects outside of the main study area, each containing 15 survey locations, 

where each location was spaced roughly 5 km apart (Fig. 1).  Because it was unlikely 

home range would significantly change during the breeding season (Leif 2005) and each 
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transect was visited three times, I used the maximum number of individuals detected over 

the three visits for each survey location as the observed dataset.  I extracted values of 

both the fitted spatial model and ―corrected‖ spatial model to the survey points of each 

transect using ArcGIS (Murray et al. 2008).  I calculated Spearman‘s rho statistics for 

rank correlation (rs) between the observed dataset and the predicted datasets in using the 

statistical software program R.  In order to visually inspect model performance, I used 

standardized observed abundance and standardized predicted abundance to fit a least-

squares regression line and 95% confidence limits (Murray et al. 2008).  

 

RESULTS  

Of the seven topographic and habitat variables I investigated, the proportion of 

CRP and grass best explained the variability in pheasant abundance at the management 

scale (Fig. 3), with pheasant populations responding positively to each.  In contrast, row 

crop agriculture, small grains and trees best explained the variability in pheasant 

abundance at the landscape scale (Fig. 4).  With pheasant populations responding 

positively to the proportion of row crop and small grains in the landscape, but negatively 

to the amount of trees such that as few as 15% trees in the landscape severely limited the 

population (Fig. 5).  When combined in the final model the landscape variables better 

predicted Ring-necked Pheasant abundance than local variables relevant to management 

actions (Table 1).   

Overall the assessment of model fit for the Bayesian binomial-Poisson mixture 

model, which included a combination of variables quantified at local and landscape 

scales, indicated a well preforming model (Bayesian P-value = 0.57). Visual assessment 

of the chi-squared discrepancy test indicated that the lack-of-fit of the fitted model was 
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comparable to the lack-of-fit of the replicated data generated from the parameter 

estimates.   

Based on the corrected species distribution model, Ring-necked Pheasant 

populations were predicted to be most abundant in the southern and southwestern regions 

of Nebraska (Fig. 6).  Concentrations of abundance also occurred around Alliance, 

Nebraska, located in the panhandle region of the state.  Spearman‘s rho correlation 

statistics for the SDM based on the fitted model (rs = 0.60) and the SDM based on the 

corrected habitat relationships (rs = 0.64) indicated that both models adequately predicted 

pheasant abundance across Nebraska including outside the primary study area (Fig. 7).    

The mean and max values of the dataset used to fit the statistical model did not 

adequately account for the entire range of habitat in the landscape.  By establishing non-

linear relationships based on knowledge of pheasant biology, the ―corrected‖ habitat 

relationships slightly improved the predictability of the species distribution model. 

 

DISCUSSION 

The influence of local habitat conditions, and thus habitat management on 

population viability and productivity is clear (Wiens 1973; Fisher & Davis 2010; Riley 

1995; Eggebo et al. 2003; Nielson et al. 2008).  However, while local conditions are 

obviously important, species are likely to respond to ecologically relevant conditions 

across multiple spatial scales (Hutto 1985; Holling 1992; Fletcher & Koford 2002; 

Stephens et al. 2003).  For Ring-necked Pheasant, not only did I find that populations 

were responding to unique ecological conditions at different spatial scales, I clearly 

demonstrate the capability of large scale conditions to both facilitate and constrain local 

habitat benefits.  For example, while it is not surprising that the availability of grassland 
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habitats at the local level had a positive influence on pheasant abundance (Fig. 3), the 

strength of these habitat relationships were significantly constrained by habitat 

relationships at the landscape scale (Fig. 5).  Thus while several studies have previously 

suggested that local habitat management is critical for pheasant populations (Patterson & 

Best 1996; Eggebo et al. 2003), the ―if you build it, they will come‖ approach, my 

findings show the benefits of these actions are constrained by presence of trees in the 

landscape and facilitated by the availability of row crop and small grains, at least to a 

point (Fig. 5).   

The presence of small grains, for example, is widely known to influence breeding 

success of Ring-necked Pheasants (Robertson et al. 1993; Robertson 1996), often 

accounting for a significant proportion of productivity even when limited in availability 

in the landscape (Baxter & Wolf 1973).  In agriculturally dominated landscapes where 

nesting habitat is significantly limited, the early green-up and ‗grass-like‘ habitat created 

by small grains such as winter wheat may significantly increase breeding opportunities, a 

major factor limiting pheasant populations (Baxter & Wolfe 1973; Snyder 1984).  Still 

while small grains are beneficial as nesting cover (Fig. 5), they have limited benefits for 

brood rearing as arthropod food resources are generally reduced by agriculture practices 

(Benton et al. 2002), and the winter cover afforded by grain stubble is significantly less 

than native warm season grasses (Lyon 1954, but see Rodgers 2002) .  Similar trade-offs 

are apparent for row crop habitats which produce ideal winter food resources (Fried 

1940; Bogenschutz et al. 1995), but have limited benefits as breeding or winter cover 

(Lyon 1954; Best et al. 2001).   
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The inability of small grain and row crop cover classes to fulfill all the life history 

requirements of pheasants underlies my assumption that at some point the benefits 

associated with increasing dominance of agriculture in the landscape are offset by the 

costs, creating a normal distribution around some ideal availability of small grain and row 

crop.  Based on the fitted relationships for row crop and small grain habitat types, the 

initial Ring-necked Pheasant SDM was inflated in areas where extremely high 

proportions of habitat existed in the landscape.  This ―run-away‖ regression error was 

largely an artifact of extrapolating beyond the study region, where extreme habitat values 

were not used in fitting the statistical model (Fig. 2).  It is acknowledged that modeling 

the spatial distribution and abundance of species is largely an ad hoc process 

(Thogmartin et al. 2006) and by introducing habitat relationships based on the biology of 

the species, I was able to correct the fitted relationships for landscape variables and 

improve the performance of the SDM (Fig. 7).  This approach bridges the gap between 

habitat suitability indices and regression-based species distribution modeling, where 

habitat suitability indices are largely based on a priori knowledge of the species of 

interest and expert opinion (Franklin 2009).  It is widely held that probabilistic modeling 

is required in order to adequately model species distributions (Latimer et al. 2006); yet, I 

have demonstrated that by combining both a conceptual and empirical approach to 

species distribution modeling, we can predict species abundance and distribution based 

on known ecological trade-offs.  Moreover, these trade-offs highlight the cross-scale 

interactions apparent in my model and demonstrates the importance of ecological 

processes which act across spatial scales.       
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An example of an ecological process that works across spatial scales and which is 

highlighted by the findings of my model is nest predation (e.g., Chalfoun & Martin 

2007).  Nest predation is the primary cause of reproductive failure for most birds 

(Ricklefs 1969; Martin 1995) and, thus, represents an important factor limiting pheasant 

populations.  In the grassland ecosystems of Nebraska the primary nest predators limiting 

pheasant nest success are mesopredators (e.g., raccoon, skunk, possum) (Errington & 

Hamerstrom, Jr. 1937; Riley et al. 1998; Renfrew and Ribic 2003), most of which are 

limited by the availability of adequate winter and breeding habitats afforded by large 

trees (Chalfoun et al. 2002a; Chalfoun et al. 2002b; Disney et al. 2008).  Thus while other 

studies have suggested that mature woody cover benefits pheasants (e.g., Leif 2005), I 

found that even limited woody cover in the landscape has strong negative consequence to 

pheasant populations (Fig. 4).  This finding is likely driven by anthropogenic impacts to 

the landscape that alters predator-prey interactions, particularly predator search strategies.  

In highly altered and intensively managed agroecosystems nesting cover is generally 

limited, allowing highly mobile nest predators to converge and concentrate search effort 

(Mankin & Warner 1992).  Thus even small increases in nest predator populations, 

mediated by small increases in woody cover, have detrimental and lasting impacts on 

pheasant populations.  Improving nest success requires reducing nest predator 

populations (e.g., Garretson & Rohwer 2001; Rohwer et al. 2004), potentially by 

removing trees, or reducing nest predator efficacy (Emmering & Schmidt 2011).  Indeed, 

the latter possibility likely underlies the positive impact of small grains in the landscape, 

which increase predator search area and likely nest dispersion, both of which reduce the 

positive feedback-loop inherent in predator search effort (Martin 1988).  Clearly, the 
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complex factors driving nest success and consequently pheasant abundance are mediated 

by multiple ecological factors working across multiple scales.    

The rate of decline in populations of grassland and farmland birds is alarming 

(Donald et al. 2006; Sauer et al. 2011); however despite increasing conservation efforts 

over the last thirty years, particularly local habitat management (Peterjohn 2003; Geudice 

& Haroldson 2007; Herkert 2009), most populations continue to decline.  As 

conservation efforts are increasing perceived as failures (McCoy et al. 1999; Rodgers 

1999; Rahmig et al. 2008), and sources of funding become more limited and increasingly 

coveted by alternative needs (Newburn et al. 2005; Possingham & Wilson 2005; Knight 

& Cowling 2007; Stephens et al. 2008), a loss of public support may underlie a reduction 

in future conservation efforts (Zinn et al. 1998; Bremner & Park 2007).   To improve 

management efficacy and ensure the long-term sustainability of conservation, requires 

identifying the ecological factors that constrain management success.  The importance of 

the landscape effects suggests that local land management is not likely the driving factor 

influencing pheasant populations.  The high performance of the pheasant SDM supports 

this conclusion, as I was able to predict a completely independent dataset of observed 

pheasant numbers based on a model fitted from data collected only on managed lands 

(Fig. 7).  By identifying and understanding how species select habitat and at what scales, 

I was better able to predict species distribution and pinpoint how populations may 

respond to management decisions on a local level.  Although many species may respond 

to habitat characteristics at spatial scales too small to identify using GIS technology, here 

I demonstrated the importance of identifying spatial relationships in order to better 
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understand and predict species distribution and ultimately improve the management 

outcome for species responding to habitat beyond the boundaries of management area. 

MANAGEMENT IMPLICATIONS 

 These finding contribute to our ability to effectively manage for Ring-necked 

Pheasant populations in Nebraska by increasing our understanding of how populations 

respond to management efforts.  Assuming there are no other landscape features 

surrounding managed sites, pheasants responded positively to local habitat management 

such as CRP enrollment (Fig. 3).  However, the landscape context surrounding 

management areas had drastic ramifications on the outcomes of local management efforts 

(Fig. 5).  For instance, my findings demonstrate that areas in the landscape containing a 

high proportion of trees may in fact inhibit any benefits of local management efforts on 

Ring-necked Pheasants.  Alternatively, managing habitat in areas suitable for Ring-

necked Pheasant populations, such as in landscapes containing a high proportion of small 

grains, will enhance the benefits of local management (Fig. 5).   

Understanding and accounting for potentially complex species-habitat 

relationships can be challenging.  However, through the use of SDMs, managers can 

visually identify ―hot-spots‖ that pin-point areas in the landscape that have the highest 

likelihood of a successful outcome given a management action, and thus potentially 

improving their success rate at maintaining and increasing species populations (Fig. 6).  

As conservation resources become increasingly limited, targeted prescribe management is 

necessary in order to get the most bang for the conservation dollar.  
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TABLES AND FIGURES 

Table 1. Parameter estimates of habitat and topographic variables measured at the management (1 km radius) and landscape scales (5 

km radius), and the final model with habitat variables measured at both the management and landscape spatial scales. 

Variable 
 Management scale 

estimates 
Landscape scale 

estimates 
Final model 
estimates SD 

95% credible interval Final scale 
(km radius) 2.5%   97.5% 

intercept 2.98 2.84 3.07 0.60 1.86 
 

4.10 - 

CRP 0.44 0.10 0.23 0.08 0.08 
 

0.38 1.00 

grass 0.39 0.22 0.13 0.08 -0.03 
 

0.29 1.00 

wetland 0.21 -0.22 -0.10 0.09 -0.28 
 

0.06 5.00 

trees -0.11 -0.44 -0.55 0.13 -0.79 
 

-0.27 5.00 

trees2 - - 0.13 0.08 -0.02 
 

0.29 5.00 

row crop 0.46 0.65 0.51 0.18 0.16 
 

0.87 5.00 

row crop2 - - -0.05 0.09 -0.22 
 

0.15 5.00 

small grains 0.22 0.42 0.45 0.14 0.18 
 

0.72 5.00 

small grains2 - - -0.04 0.05 -0.14 
 

0.06 5.00 

elevation index -0.09 -0.03 -0.07 0.05 -0.17 
 

0.04 - 

year -0.09 -0.11 -0.16 0.13 -0.38   0.11 - 
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Figure 1.  Ring-necked Pheasant abundance was recorded at 405 survey sites distributed throughout 45 state Wildlife Management 

Areas located in southern Nebraska (red points).  Survey data was used to fit statistical models, which were validated using an 

independent testing dataset consisting of 150 survey sites evenly distributed across 10 road-transects (green points). 
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Figure 2.  Fitted habitat relationships for Ring-necked Pheasants indicated a positive response to small grains (a) and row crops (b) in 

the landscape (dark line), but failed to predict pheasant response in areas containing a higher proportion of either cover class located 

outside of the study region.  Vertical lines represent the minimum (dotted), mean (solid), maximum (dotted) values of the data used to 

fit relationships between Ring-necked Pheasant abundance and cover type.  Assuming that too much row crop or small grains in the 

landscape would be detrimental to pheasants, dashed lines represent the corrected relationships used to create the final spatial model of 

Ring-necked Pheasant abundance in Nebraska. 
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Figure 3.  Ring-necked Pheasant populations respond positively to the proportion of CRP 

(a) and grassland habitat (b) at the local management level (1 km radius).  Solid line 

represents habitat relationships and the dashed lines represent the 95% credible intervals.     

 

(a) (b) 
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Figure 4.  Ring-necked Pheasant populations respond positively to the proportion of row crop agriculture (a) and small grains (c) 

within the landscape (5 km radius), but negatively to the proportion of trees (b) in the landscape.  Solid line represents habitat 

relationships and the dashed lines represent the 95% credible intervals.     

 

(a) (b) (c) 
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Figure 5.  CRP enrollment increases pheasant abundance; however the benefits of CRP 

are inhibited by trees (a) in the surrounding landscape while aided by small grains (b). 

(a) 

(b) 
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Figure 6.  Predicted Ring-necked Pheasant species distribution model for Nebraska
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Figure 7.  Standardized predicted values of Ring-necked Pheasant abundance compared 

to observed abundance indicated that both the original spatial model and the corrected 

spatial model perform well.  The solid black line represents the fitted least-squares 

regression line and the two dashed lines represent the 95% confidence intervals.  The 

dotted line on a 45 degree angle identified where a perfect fit would occur between 

predicted pheasant abundance and observed abundance. 
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Chapter 2: ASSESSING RELATIONSHIPS OF BODY MASS AND SPATIAL 

SCALE: A BIRD’S EYE VIEW 

 

Abstract: 

Hierarchical theory suggests that ecological processes operate simultaneously 

over multiple spatial scales, and not all scales may be suitable in predicting species 

occurrence.  Although past studies have demonstrated that the spatial scale at which 

species form habitat decisions is correlated with body size, habitat decisions are not 

exclusively based on ecological context, but rather indirect cues, predictive of the habitat 

condition.  I assessed predictors of species characteristic selection scale by looking across 

a body size continuum of migratory birds.  I hypothesized that the spatial scale at which a 

species forms habitat decisions is correlated with body size if the scale is a function of 

how the species interacts with its environment.  I tested this hypothesis on 10 obligate 

grassland bird species in Nebraska, USA.  For each species, I quantified habitat across 20 

spatial scales and created models based on species occurrence and abundance to 

determine if a species characteristic selection scale exists.  For seven species, I found 

evidence of a characteristic scale, but there was no relationship between the scale at 

which species form habitat decisions and body mass.  My results also indicated that there 

is no relationship between species mobility and the species characteristic section scale.  
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INTRODUCTION 

Predicting the distribution and abundance of species is a central tenant of 

biogeography with a longstanding history in both theoretical and applied ecology 

(Leopold 1933; MacArthur 1960; Brown 1984; Austin 2002; Elith & Leathwick 2009).  

The presence or absence of a species has obvious implications for understanding local 

community dynamics and subsequently ecosystem resilience (Holling 1973; Peterson et 

al. 1998), but unfortunately the processes that predict species distribution and abundance 

are complex and vary widely among species and environments (Van Dorp & Opdam 

1987; Howell et al. 2000; Fisher & Davis 2010).  For example, access to food, mates, 

refuge from predators, and appropriate climatic conditions clearly shape species 

occurrence (Whithman 1978; Rosenzweig 1991; Chase & Leibold 2003), but subtle 

differences in life-history expression, even among closely related species, may result in 

significant differences in species assemblages (Schoener 1974; Bonsall et al. 2004).  

Despite these challenges there continues to be an interest in developing overarching 

‗rules‘ that predict the presence or absence of a species across broad landscapes. 

Among animal species, body size is highly correlated and predictive of life-

history expression (Schoener 1974; Peters 1983; Brown & Maurer 1987; Holling 1992; 

Fisher et al. 2011), and therefore often used as a surrogate for the ecological processes 

that shape species occurrence and community composition (Werner & Gilliam 1984; 

Pyron 1999; Fisher et al. 2011).  Geographical patterns between species size and 

distribution abound (Gaston & Blackburn 1996; Pyron 1999; Murray & Hose 2005; 

Fisher et al. 2011), but despite the presence of numerous body size ‗rules‘ (Bergmann 

1847; Yom-Tov and Nix 1986; Foster 1964; McNab 2010), predicting the occurrence of 
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individual species based on body size, and subsequent life-history expression, remains 

enigmatic.  In part this may be due to how species perceive and respond to ecological 

conditions.  Hierarchy theory suggest that ecological processes operate simultaneously at 

different spatial scales (Johnson 1980), and not all scales may be equal in determining 

species presence (Levin 1992).  The presence of one species may be largely determined 

by landscape attributes such as patch size or connectivity (i.e., Helzer 1999) while for 

other species, local vegetative structure may be the deterministic factor of habitat use 

(Wiens 1973; Patterson & Best 1996; Fisher and Davis 2010).  The notion that one scale 

may better describe habitat selection for a species has been demonstrated across a wide 

range of taxa (Roland & Taylor 1997; Holland et al. 2004; Mowat 2006; Nams et al. 

2006; Fisher et al. 2011) and is formally termed the species characteristic selection scale 

(Holland et al. 2004).  Recent evidence suggests that like many other behavioral and life-

history traits, the scale at which species make habitat decisions may be correlated with 

body size (Fisher et al. 2011).  Clearly many of the ecological conditions that influence 

life-history expression after individuals select habitats are correlated with body size 

(Werner & Gilliam 1984; Lima 1986; Iriarte et al. 1990; Blanckenhorn 2000; McNab 

2010); therefore finding a correlation between body size and species characteristic 

selection scale is not surprising.  Still the generality of the relationship between body size 

and habitat decisions remains unclear as there are numerous exceptions to body size rules 

(McNab 2010).  By considering the subtleties of the habitat decision process we may 

begin to understand why some species fail to follow the rules.        

While ecological conditions such as predation risk or food availability generally 

scale with body size (Werner & Gilliam 1984; Lima 1986; Werner & Hall 1988; Chase & 
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Leibold 2003), habitat decisions are not solely based on ecological context (Whithman 

1978; Rosenzweig 1981).  For most species habitat selection decisions are manifested 

through indirect cues, that while predictive of ecological conditions, may act 

independently (Hildén 1965; James 1971; McGrath et al. 2008).  When cues act 

independently from selection agents, the spatial scale at which species form habitat 

decisions may not be related to the scale at which ecological conditions shape life-history 

expression, but rather at the spatial scales of the cues that most easily predict those 

conditions.  As such species characteristic selection scales may evolve uniquely for 

individual species based on the scale at which ecologically important selection agents act, 

the scale at which those selection agents are assessed, or some combination of the two.  

In any event it is likely that the correlation between body size and species characteristic 

selection scale is lost when body size is not associated with the ability to assess important 

sources of selection.  If this assumption is true, then correlations between body size and 

the scale of habitat decision should be strongest for species that assess ecological 

conditions at the same spatial scale as the conditions act, and weakest for species that 

have the capability of assess conditions at markedly different scales. Unfortunately, for 

most species sensory scale and body size are likely highly correlated, as mobility, one 

indicator of sensory scale, is highly correlated with body size (Bowman et al. 2002; 

Jenkins et al. 2007).  Thus identifying the mechanism underlying the species 

characteristic selection scale and the causation of outliers to the body size scale 

relationship has proven difficult.  

Here I investigate predictors of species characteristic selection scale by taking 

advantage of a unique system that allows us to separate the scale of sources of selection 
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from the scale at which species can potentially assess ecological conditions.  By looking 

across a body size continuum of migratory and non-migratory birds, some of which are 

clearly capable of assessing ecological conditions across a large range of spatial scales, 

independent of body mass (Hutto 1985; Wiens 1994; Stephens et al. 2003; Thogmartin et 

al. 2006; Cornell & Donovan 2010), we can independently assess the relationship 

between body size and habitat decisions.  I predict that if the characteristic scale of 

species‘ habitat selection is a function of how a species interacts with its environment, 

then the scale of habitat decisions will increase as function of body size.  However if the 

spatial scale of habitat selection is a function of the scale at which a species can assess 

these relationships, then I expect no correlation with body mass, but possibly a 

relationship with relative mobility.   

 

METHODS 

DATA COLLECTION  

 During April through July of 2010 – 2012, I recorded species abundance of 

grassland birds (n = 648, 1161 and 1146) throughout 17 counties in Nebraska, USA using 

a distance sampling method where the maximum detection distance was bounded at 500 

m (Blondel et al. 1981; Buckland et al. 2001).  Surveys began 15 minutes before sunrise 

and ended at 10:00 a.m., when aural detection rates are most consistent across all species 

(Hutto et al. 1986).  Surveys were conducted along road transects (n = 10) and at points 

within wildlife management areas (n = 45).  Road transects consisted of 15 stop locations, 

where each stop was spaced roughly 8 km apart.  Wildlife management areas were 

selected based on having a minimum size of 64 hectares of contiguous grassland, a 
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common land unit in rural Nebraska, USA.  I randomly selected nine survey points at 

each management area using a minimum spacing of 300 meters.  Points in both the 

transects and wildlife management areas were sampled three times in random order 

during the course of the breeding season, leaving equally spaced time intervals between 

survey rounds.  I recorded every individual seen or heard during a 3-minute period and 

used a Nikon Prostaff 550 Laser Rangefinder (Nikon, Melville, NY) to measure distance 

from observer.  Inclement weather, including fog, drizzle, prolonged rain, and wind 

greater than 20 km/h resulted in ending the survey prematurely.   

Land cover variables were derived from a landcover layer of Nebraska with a 30 x 

30 m resolution (Bishop et al. 2011).  Grassland and woodland habitat types, which are 

two cover classes that have been consistently reported to influence both occupancy and 

abundance for the range of species considered (Chapter 1, Patterson & Best 1996; Bakker 

et al. 2002; Buskirk & Willi 2004; Kelsey et al. 2006), were reclassified into binary raster 

datasets, where 1 is ―habitat‖ and 0 is ‗non-habitat‖.  I implemented the Circular Focal 

Statistics Tool in ArcGIS 10.0 (ESRI, Redlands, California) to assess habitat at multiple 

spatial scales (250 m, 500 m, 750 m, 1000 m, 1250 m, 1500 m, 1750 m, 2000 m, 2250 m, 

2500 m, 2750 m, 3000 m, 3250 m, 3500 m, 3750 m, 4000 m, 4250 m, 4500 m, 4750 m 

and 5000 m radii) and calculated the proportion of habitat within the specified window 

size.  In order help with model convergence, all variables were standardized by 

subtracting the mean and dividing by the standard deviations from the mean (Bring 

1994).  For each spatial scale, I tested grassland and woodland habitat variables for 

collinearity prior to entering them into a model.  I determined that any two variables 
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having a Person correlation coefficient greater-than or equal-to 0.6 were highly correlated 

and were not included within the same model. 

STATISTICAL ANALYSIS 

I modeled species occupancy and abundance, quantifying individual and 

population responses at each survey site in relation to the proportion of woodland and 

grassland habitat in the landscape.  I used N-mixture models to model species abundance 

as a function of habitat (Royle 2004) and occupancy models to model the probability of a 

species occurring as a function of habitat (MacKenzie et al. 2005).  All models were 

fitted using the statistical package ‗Unmarked‘ (Fiske & Chandler 2011) supported 

through the software program R version 2.14.0 (R Development Core Team 2011).   

Both the occupancy and N-mixture models break down a complex joint 

probability distribution for two processes, the detection process, and the ecological 

process, through a series of conditional probability distributions.  I was primarily 

interested in the ecological process (i.e., what is truly driving species occupancy or 

abundance), which distributes individuals throughout the landscape.  I included grassland 

and woodland habitat variables in the linear predictor for ecological process using a log-

link function in the N-mixture models or a logit-link function in the occupancy models.  I 

added the respective quadratic term of each habitat variable in the linear predictor for 

every model in the model set to allow for non-linear species-habitat relationships.  The 

year was added as a site-specific covariate for every model to account for annual 

variation.  For each model set, I included a null model that contained year as the only 

site-specific covariate.  I predicted that survey specific variables (i.e., time of day and 

Julian date) would influence the probability of detecting individuals and included them in 
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the linear predictor for the observation process using a logit-link function (Royle 2004; 

MacKenzie et al. 2005).  Peaks in song bird singing rates have previously been identified 

(Hutto 1986); therefore I added a quadratic term in for time of day to allow for non-linear 

relationships in detection. 

DETERMINING SPATIAL SCALE 

I ran 20 models per model set – one model set for each obligate grassland bird 

species – where each model in a candidate set included a single scale in which I measured 

grassland and woodland habitat cover.  In order to identify which spatial scale best 

described the variation in species-habitat relationships, I used a model selection criterion, 

AICc, which included a correction factor to account for small sample size.  The model 

with the lowest AICc score was considered the best-fit model (Burnham & Anderson 

2002).  I assumed that the species characteristic selection scale determined by the top-

ranked model was the scale in which species began to form habitat selection decisions.  

For all obligate grassland birds in the study, the AICc weights calculated for each model 

were plotted against the spatial scale at which each model was fitted (following Fisher et 

al. 2011).   

I used least-squares regression to test whether the spatial scale best supported 

based on AICc weights was a function of average female body mass or a species‘ 

mobility (Holling 1992; Fisher et al. 2011).  For all species, average female body mass 

data was retrieved from The Birds of North America Online resource (Lanyon 1995; 

Yasukawa and Searcy 1995; Vickery 1996; Brennan 1999; Martin and Parrish 2000; 

Giudice and Ratti 2001; Temple 2002; Carey et al. 2008; Houston et al. 2011).  I 

estimated migration distance for six of the 10 species by calculating the latitudinal 
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difference between the centroids of the species‘ breeding grounds and wintering grounds 

using the Haversine formula (Sinnott 1984).   For the additional four species I obtained 

an estimate of migration or mean dispersal distance from the literature (Table 1).  To 

visually quantify potential relationships with habitat selection, I plotted the species 

characteristic selection scale against body mass and migration distance.   

 

RESULTS 

I obtained adequate detections for 10 obligate grassland bird species throughout 

Nebraska.  Resident species included Northern Bobwhite (Colinus virginianus) and Ring-

necked Pheasant (Phasianus colchicus).  I detected six short distance migrants, including 

Eastern Meadowlark (Sturnella magna), Field Sparrow (Spizella pusilla), Grasshopper 

Sparrow (Ammodramus savannarum), Lark Sparrow (Chondestes grammacus), Red-

winged Blackbird (Agelaius phoeniceus) and Western Meadowlark (Sturnella neglecta).  

Dickcissel (Spiza americana) and Upland Sandpiper (Bartramia longicauda) made up the 

two long distance migrants.   

 Based on occupancy, multiple species had evident peaks in AICc weights, 

including Dickcissel, Eastern Meadowlark, Grasshopper Sparrow, Northern Bobwhite 

and Western Meadowlark with scales ranging from 250 m – 5000 m radii (Fig. 1).  Field 

Sparrow and Lark Sparrow had less drastic peaks in AICc weights (AICc weight under 

0.6), indicating less support for a single characteristic scale of habitat selection.  There 

were two species, the Ring-necked Pheasant and Upland Sandpiper, that showed limited 

evidence for a characteristic scale and displayed a bimodal response pattern (Fig.1).   
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 Based on abundance, there were seven species displaying strong response to a 

single spatial scale.  Dickcissel, Eastern Meadowlark, Grasshopper Sparrow, Northern 

Bobwhite, Red-winged Blackbird, Ring-necked Pheasant and Western Meadowlark all 

had peak AICc weights above 0.8 for a specific spatial scale.  A range of scales were 

attributed in explaining Upland Sandpiper and Lark Sparrow abundance (Fig. 2). 

 Between models of occurrence and abundance, several species responded to 

difference spatial scales (Table 2).  For species where their characteristic selection scale 

changed based on the modeling approach, abundance tended to be explained by cover 

types measured at larger spatial scales (Table 2).  In opposition to the predictions, there 

was not a significant correlation between species characteristic habitat selection and 

female body mass for both occupancy (r
2
 = 0.175, P = 0.127) and abundance (r

2 
= 0.110, 

P = 0.184; Figs. 3 & 4).  I also found no significant relationships between the 

characteristic selection scale and migration for both occupancy (r
2 

= -0.009, P = 0.365) 

and abundance models (r
2 

= -0.120, P = 0.859; Figs. 5 & 6). 

 

DISCUSSION 

The exploration of a species characteristic selection scale has led to several 

conclusions.   Of the 10 species I conducted analysis on, seven demonstrated evidence of 

a characteristic spatial scale of habitat selection in both occupancy and abundance (Figs. 

1 & 2).  Peaks in AICc weights at specific spatial scales suggests that a characteristic 

selection scale likely exists, a notion supported by various other studies (Holland et al. 

2004; Mowat 2006; Nams et al. 2006; Fisher et al. 2011).  Based on my results, several 

species responded to cover types at larger spatial extents when fitted using abundance 
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rather than occupancy as function of land cover (Figs. 1 & 2), which may be indicative of 

a species‘ population response to macro-habitat rather than an individual response to a 

habitat cue.  In addition, the results support the concept that some scales are better suited 

at explaining ecological processes (Weins 1989; Levin 1992), solidifying the concept of 

scale dependency in habitat selection.  Failing to consider the appropriate spatial scale 

when exploring ecological relationships can jeopardize a researcher‘s ability to reach 

conclusions and make inference based on the outcome of a study.   

Although previous studies have stated the importance of landscape level habitat 

attributes on habitat selection for grassland birds (Bergin et al. 2000; Soderstrom & Part 

2000; Ribic & Sample 2001; Bakker et al. 2002), many of which indicated that these 

species are particularly sensitive to fragmentation throughout the landscape (Cunningham 

& Johnson 2006), my results showed no evidence for any single characteristic selection 

scale universally important for all obligate grassland bird species.  Even though multiple 

species may be responding to the same habitat features (i.e., woody structure), species 

respond to the structure independently at various spatial extents (Soderstrom & Part 

2000; Best et al. 2001; Ribic & Sample 2001; Cunningham & Johnson 2006).  These 

results have strong implications to species conservation and management, where 

managing for one species may not provide adequate habitat at the appropriate spatial 

scale to support another.  In regards to grassland birds, a species guild that has 

demonstrated drastic declines since European settlement (Samson & Knopf 1994; Herkert 

et al. 2003), careful consideration should be taken prior to managing grassland habitats, 

making certain that all species-habitat relationships and their respective characteristic 

selection scales are considered before implementing habitat management.   
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For a select number of species, individuals showed little to no indication of a 

single spatial scale explaining habitat selection (Figs. 1 & 2).  For these species, habitat 

selection may be explained by multiple scale-dependent habitat selection processes.  

Theory predicts that multiple spatial and temporal scales work collectively to determine 

how a species selects habitat (Hutto 1985; Holling 1992).  In selecting a nesting site, a 

species may step down from selecting an area to settle, down to a suitable patch, and 

further downward to a nesting location with suitable foraging needs which in turn defines 

a territory (Holling 1992).  This step-down approach to habitat selection may explain why 

certain species seem to respond to multiple spatial extents (Figs. 1 & 2).  Furthermore, a 

species may respond to a cover class at one spatial extent and to another at a different 

scale (Chapter 1), which may explain the bimodal relationships of the species 

characteristic selection scale to the AICc weights for Ring-necked Pheasant and Upland 

Sandpiper (Fig. 1).  Alternatively, a species portraying a multi-scalar response to habitat 

features may be merely an artifact of the landscape composition.  If a species responds to 

a feature on the landscape at extremely large spatial scales, the multiple extents in which 

I measured the ecological process may not be independent from one another (Holling 

1992).  Self-similar landscapes may explain why Upland Sandpipers respond to grassland 

and woody structure over a gradient of spatial scales (Figs. 1 & 2), when in reality the 

scale-dependent processes of an animal of its size is likely to be explain by much larger 

spatial extents and at larger breaks, such as a log scale (i.e., 10 m, 100 m, 1000 m, 10000 

m).  Other studies have supported this notion and indicating that migratory grassland 

birds potentially respond to landscape level processes out to 80,000 ha (Thogmartin et al. 

2006).   
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I found no significant correlation between body size and a species‘ characteristic 

selection scale for either occupancy or abundance models (Figs. 3 & 4).  Theory would 

predict that scale-dependent processes, such as territory size, dispersal, and migration, are 

relative to body mass and therefore correlated with the spatial extent in which a species 

selects habitat (Holling 1992).  However, when species form habitat decisions based on 

indirect cues that act independently from the processes shaping life-history expression, 

they may perceive cues at larger spatial scales that are best suited for predicting local 

ecological conditions, as may be the case with migratory birds which travel extreme 

distances to and from breeding and wintering grounds on a bi-annual basis.  My results 

support the notion that migratory birds perceive biological cues at spatial scales well 

beyond the bounds of the selection agents acting on life-history expression (Figs.3 & 4),  

which are generally correlated with body size (Bowman et al. 2002; Jenkins et al. 2007).   

Given that many grassland obligate bird species are highly mobile, some of which 

migrate over extreme distances (table 1), I anticipated that mobility would be a better 

predictor of a species‘ characteristic selection scale than body size.  My results did not 

support this hypothesis as migration distance did not show any correlation with a species‘ 

characteristic selection scale (Figs. 5 & 6).  Perhaps one explanation may be that the 

mobility represented by migratory birds is well beyond the ‗perception‘ threshold 

indicative of habitat selection process such that any distance traveled outside that 

threshold does not impede or enhance their ability to perceive habitat cues.  Furthermore, 

the lack of relationship between migration distance and a species‘ characteristic selection 

scale may be explained by hierarchical theory.  For instance, theory predicts that a 

hierarchy of scales exists in which species form habitat decisions, and processes 
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occurring at smaller spatial scales are dependent on those occurring at large spatial 

extents (Weins 1973; Johnson 1980).  For instance, the processes affecting a species 

choice to settle their home range is dependent on the processes that directed them to the 

breeding grounds during migration.   Therefore by the time an individual reaches its 

breeding grounds, habitat selection decisions are being made at smaller spatial extents 

unexplained by migration distance.   

My results demonstrate the potential significance of landscape composition on 

habitat selection and the variability in which species form habitat decisions.  My results 

also suggest the importance of considering multiple species and how they may select 

areas for breeding prior to conservation management.  In addition, migratory birds may 

not form habitat selection decisions in ways theory would predict, but rather on a species-

specific basis.  These decisions may be based on life-history, site fidelity, or other 

extrinsic factors such as conspecific attraction.   
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TABLES AND FIGURES 

Table 1. Migration distances as a measurement of mobility for each individual species determined by the latitudinal difference 

between the breeding and wintering grounds described in the references.  Four of the 10 species had direct estimates of mobility 

obtained from their respective references. 

Species Distribution (Latitude) Distance (km) Source 
 

 

Breeding Wintering 

   Dickcissel 39° 36' 12"N 8° 55' 34"N 3411.2 Temple 2002 * 
Eastern Meadowlark - - 1000.0 Lanyon 1995 

 Field Sparrow 43° 22' 32"N 31° 15' 51"N 1346.7 Carey et al. 2008 * 
Grasshopper Sparrow 42° 02' 35"N 19° 54' 08"N 2461.9 Vickery 1996 * 
Lark Sparrow 40° 58' 09"N 20° 08' 55"N 2315.1 Martin and Parrish 2000 * 
Northern Bobwhite - - 3.0 Townsend et al. 2003 

 Red-winged Blackbird - - 1000.0 Dolbeer 1982 
 Ring-necked Pheasant - - 0.5 Smith et al. 1999 
 Upland Sandpiper 44° 32' 12"N 24° 24' 18"S 7666.0 Skagen et al. 1999 * 

Western Meadowlark 43° 38' 07"N 24° 13' 56"N 2157.5 Davis and Lanyon 2008 * 
* Migration distance was calculated using the Haversine formula and the latitudinal difference between the estimated centroid of the breeding distribution 
and the centroid of the wintering distribution.   
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Table 2. Characteristic scales (radii) determined by modeling habitat in the surround 

landscape. Habitat was measured at 20 scales.  The best-supporting model based on AICc 

weights among the 20 models determined the characteristic scale. 

Species Characteristic scales (meters) Body mass (g) 

  Occupancy Abundance   

Dickcissel 250 250 25.2 
Eastern Meadowlark 5000 5000 100.1 
Field Sparrow 1000 1500 13 
Grasshopper Sparrow 750 1000 17 
Lark Sparrow 1250 5000 30.7 
Northern Bobwhite 500 500 170 
Red-winged Blackbird 1750 1750 43.8 
Ring-necked Pheasant 3750 5000 917 
Upland Sandpiper 1250 3000 164 
Western Meadowlark 1000 1250 89.4 
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Figure 1.  AICc weights of grassland bird occurrence for 10 species against cover types 

measured across 20 spatial scales (250 - 5000 m radii) around each survey site.  The null 

model in each model set, which contains no cover class measurements, is represented at 

zero on the x-axis.
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Figure 2.  AICc weights of grassland bird abundance for 10 species against cover types 

measured across 20 spatial scales (250 - 5000 m radii) around each survey site.  The null 

model in each model set, which contains no land cover measurements, is represented at 

zero on the x-axis.
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Figure 3. Characteristic scales, based on species occurrence, where not significantly 

correlated with female body mass.  The spatial scale in which species respond to habitat 

(determined by AICc weight from occupancy models) modeled against the natural log of 

average female body mass of 10 species of grassland birds. 
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Figure 4. Characteristic scales, based on species abundance, were not significantly 

correlated with female body mass.  The spatial scale in which species respond to habitat 

(determined by AICc weight from N-mixture models) modeled against the natural log of 

average female body mass of 10 species of grassland birds. 
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Figure 5. Characteristic scales, based on species occurrence, were not significantly 

correlated with migration distance.  The spatial scale in which species respond to habitat 

(determined by AICc weight from occupancy models) modeled against estimated 

migration distance of 10 species of grassland birds. 
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Figure 6. Characteristic scales, based on species abundance, were not significantly 

correlated with migration distance.  The spatial scale in which species respond to habitat 

(determined by AICc weight from N-mixture models) modeled against the estimated 

migration distance of 10 species of grassland birds. 
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Chapter 3: CHOOSING A DIVA: A COMPARISON OF EMERGING DIGITAL 

IMAGERY VEGETATION ANALYSIS TECHNIQUES 

 

Abstract: 

Herbaceous plant structure plays an important role in shaping community 

composition and thus is widely measured to understand species-habitat relationships.  

However, traditional ocular techniques for estimating plant structure are subjective, and 

may introduce measurement error in study designs dependent upon multiple observers or 

multiple years of data collection.  Fortunately, recent advances in digital imagery and 

processing techniques have led to new methods with the potential to eliminate 

measurement error, but the precision of these methods remains largely unknown.  I 

assessed the precision of five methods of measuring plant structure using ground-based 

digital imagery and processing techniques.  I recorded vertical herbaceous cover using 

digital imagery techniques at two distinct locations in a mixed-grass prairie.  The 

precision of five ground-based digital imagery vegetation analysis (DIVA) methods for 

measuring plant structure was tested using a split-split plot analysis of covariance.  

Variability within each DIVA technique was estimated using coefficient of variation of 

mean percent cover. Vertical herbaceous cover estimates differed among DIVA 

techniques.  Additionally, environmental conditions affected the vertical vegetation 

obstruction estimates for certain digital imagery methods, while other techniques were 

more adept to handle various conditions.  Overall, visual obstruction values differed 

among techniques, but the precision of four of the five techniques were consistently high 

indicating that DIVA procedures are sufficient for measuring various heights and 
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densities of standing herbaceous cover.  Moreover, digital imagery techniques can reduce 

measurement error associated with multiple observer standing herbaceous cover 

estimates, allowing for greater opportunity to detect patterns associated with vegetative 

structure. 
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INTRODUCTION 

In terrestrial ecosystems, estimates of vegetative characteristics are an important 

means of predicting species-habitat relationships (Daubenmire 1959; Wiens 1969; Robel 

et al. 1970; Wiens 1973; Nudds 1977; Fisher & Davis 2010) with implications to how 

natural systems are managed (Catchpole & Wheeler 1992; Ganguli et al. 2000; Ammann 

& Nyberg 2005; Davies et al. 2008).  Although collecting and weighing vegetation 

provides the most precise estimates of vegetative cover, it has limited application in 

large-scale ecological studies or when destructive sampling is not an option (Harmoney et 

al. 1997; Benkobi et al. 2000; Vermeire & Gillen 2001).  As such, visual obstruction 

estimates are widely used to quantify plant structure (e.g., Robel et al. 1970) and are 

successful in a variety of systems (Robel et al. 1970; Ganguli et al. 2000; Vermeire & 

Gillen 2001; Vermeire et al. 2002; Uresk & Juntti 2008; Schmer et al. 2010; Toledo et al. 

2010).  Despite their ubiquity, traditional visual obstruction techniques that rely on ocular 

estimates are often criticized as being unstandardized (Fisher & Davis 2010) and subject 

to observer error that may mask important ecological patterns (Gotfryd & Hansell 1985; 

Collins & Becker 2001; Higgins 2005; Limb et al. 2007).  A lack of confidence in 

traditional visual obstruction estimates has led to the development of new techniques 

using ground-based digital photography (Vanha-Majamaa et al. 2000; Boyd & Svejcar 

2005; Limb et al. 2007; Carlyle et al. 2010).  Rather than depending upon ocular 

estimates of vegetation density and structure, digital imagery vegetative analysis (DIVA) 

techniques often rely upon the ability of computer software to ―count‖ the number of 

pixels in a digital photograph associated with vegetation and produce a digital estimate of 

visual obstruction.  Analysis of digital imagery from satellite or aerial photography is a 
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long-standing and common practice in large-scale ecological studies (e.g., Lefsky et al. 

2002; Welch et al. 2002; Horning et al. 2010), but DIVA has only recently gained favor 

as a means to differentiate small-scale vegetative variation (Booth et al. 2005; Booth et 

al. 2006; Luscier et al. 2006; Seefeldt & Booth 2006; Limb et al. 2007; Cagney et al. 

2011).  In theory, quantifying visual obstruction by means of digital processing could 

reduce observer error and increase the accuracy, precision and repeatability of visual 

obstruction estimates (Booth et al. 2005; Limb et al. 2007).  

The DIVA technique has produced remarkably accurate and precise results 

relative to traditional methods such as the Robel Pole or the Nudds cover board (Limb et 

al. 2007) and illustrates the potential for this new technique to become a common method 

for analyzing vegetative characteristics in ecology.  Despite the apparent benefits, the 

interpretation and classification of digital imagery is susceptible to error from different 

sources, a number of which are novel in ecological study.  For example, differences in 

cloud cover or overhead vegetation, date or time, and/or camera settings or sensor 

sensitivity among samples may alter the degree to which shadows and highlights occur, 

which potentially causes misclassified pixel values.  Similarly, light conditions may 

influence the degree to which pixel values associated with vegetation merge with the 

backdrop.  Such inconsistencies in reflectance can lead to misclassification of pixels by 

image processing software and severely reduce the accuracy and precision of estimates.  

Although previous examinations of DIVA techniques have explored the benefits of 

reduced observer error (e.g. Limb et al. 2007), the importance of other sources of error 

remain largely unknown.  Moreover, the ever expanding number of image processing 

programs and processing techniques, each with varying levels of cost, effort required, and 
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degree of accuracy and precision, makes choosing a DIVA approach increasingly 

challenging.  Determining which methods are acceptable and cost efficient is essential if 

DIVA techniques are to be widely implemented.  Here I test five ground-based DIVA 

techniques to evaluate differences among methods in 1) estimates, 2) measurement error, 

and 3) time and cost. 

 

METHODS 

STUDY SYSTEM AND PHOTO STATIONS 

I examined five visual obstruction digital imagery and processing techniques 

during November of 2010 in a mixed-grass prairie in Lincoln, Nebraska, U.S.A.  The 

study site is located 358 m above sea level and has an average monthly precipitation 

range of 0.63 – 4.77 in annually.  I constructed photo stations using 1 x 1 m backdrops 

constructed from tempered hardboard (0.476 cm thick, spray painted black) and white 

fiberglass reinforced wall paneling (Fig. 1).  In order to capture sufficient variation in 

visual obstruction, I randomly placed two pairs of cover boards, each pair containing one 

black and one white board, in areas with variable grass height.  Backdrops were secured 

vertically in a fixed position, facing south to maximize light exposure.  A metal rod was 

driven into the ground, extending 1 m from the ground and positioned 4 m directly south 

of each board, creating a permanent reference point to stabilize the cameras (following 

Robel et al. 1970 and Limb et al. 2007).    

I recorded digital images of the standing vegetation in front of the backdrops 

using four Polaroid® t1031, 10.0 megapixel digital cameras (one camera for each 

observer) with standardized settings at each of the four photo stations over a two week 
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period.  The locations of the backdrops and the four photo stations remained constant for 

the duration of the study.  Because the vegetation was in senescence the amount of 

vegetation within the confines of the backdrop was assumed to remain constant 

throughout the two week period.  Four observers visited each photo station 21 times, 

taking a total of 84 photos.  Visits were distributed evenly throughout the day in order to 

measure the influence of lighting and temporal conditions on estimates.  I recorded time 

of day, wind speed and cloud cover.  Images were imported into Adobe Photoshop® CS3 

(Adobe Systems Inc, San Jose, CA, US) and cropped such that only the 1  x 1 m 

backboard was visible in the image (as outlined by Limb et al. 2007).  

IMAGE PROCESSING 

Image processing was completed using three software programs, Adobe Photoshop® 

(Adobe Systems Inc, San Jose, CA, US), Intelligent Perception Pixcavator® (Intelligent 

Perception Co., Huntington, WV, US), and GNU Image Manipulation Program® (GIMP) 

(Kimball & Mattis 2006, an open-source software package).  A total of five DIVA 

techniques were analyzed: Grid, Photo Training, Threshold, GIMP, and Pixcavator.  For 

each technique I estimated the per photo effort based on time and cost of analyzing 100 

photos.   

GRID 

Using Adobe Photoshop®, I overlaid an evenly spaced 50 x 50 lattice grid on 

each image and visually determined the number of cells that contained >50% vegetation 

present (similar to cover board estimates; Jones 1968).  Visual obstruction was estimated 

as the number of cells containing >50% vegetation divided by the total number of cells.  
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Because of the large degree of time and effort required, I sampled a random subset of 11 

of the 21 images per backdrop for a total of 55 images.   

THRESHOLD 

I followed the threshold method as outlined by Limb et al. (2007), with the 

addition of using both white and black boards as backdrops.  Using the Adobe 

Photoshop® software threshold function, images were converted to binary form (i.e., 

either 1 or 0) based on a standardized luminance threshold value of 128, such that all 

pixels above 128 were converted to white, and all pixels below 128 were converted to 

black.  Photos containing white backdrops converted vegetation to black pixels, while 

photos with black backdrops converted vegetation to white pixels (Fig. 2).  I obtained the 

percent vegetative cover by placing the cursor over the center of the histogram window in 

Adobe Photoshop® and recorded the percentage of black pixels comprising the image.  

For images containing black backdrops, the histogram window provided the inverse of 

percent vegetative cover; therefore I subtracted the value from 1 in order to obtain the 

percent cover estimates.     

PHOTO TRAINING 

I utilized a photo training technique to account for potential variability associated 

with temporal and environmental factors, which may have inadvertently caused the 

threshold approach to convert vegetation to the same pixel values as the backdrop, 

potentially introducing measurement error into the analysis.  I used the replace color tool 

in Adobe Photoshop® to classify, or train the program to identify which pixel values in 

each photo were associated with vegetation, and which ranges were associated with the 

backdrop.  In order to train the program with minimum effort, I limited the sampling to 
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five photos randomly chosen from each photo station.  With larger photosets, it may be 

advantageous to include additional photos in a subset in order to sufficiently train the 

program to differentiate unique vegetation samples from the backdrop.  To begin the 

training process, I selected a photo from one of the photo subsets for each station and 

imported it into Adobe Photoshop®.  With the replace color tool window open and the 

fuzziness value set to 30 (the fuzziness value sets the degree of tolerance in which the 

pixel values similar to the values selected will be included in the selection process), I 

selected vegetation using the eyedropper tool, highlighting areas in the image associated 

with the value range specific to the vegetation.  I selected the remaining vegetation in the 

photo that was not currently highlighted by using the eyedropper plus tool, accumulating 

additional color ranges to the selection (Fig. 3).  Areas where the backdrop was 

inadvertently included in the selection were corrected with the eyedropper minus tool by 

clicking on the region of the image where the error occurred, deselecting the specific 

pixel value range associated with the backdrop.  Once all of the vegetation was included 

in the selection, I moved the lightness adjustment bar to the left, turning all of the pixels 

containing value ranges associated with vegetation to black.  After all of the vegetation in 

each image was completely black, the replace color settings were saved to a separate 

folder as a layer mask.  I imported a new photo into Adobe Photoshop® and reopened the 

replace color tool window.  Within the window, the previous layer mask was imported 

and applied to the current photo by selecting load file.  Any unselected pixel values 

associated with vegetation were added to the previous selection by employing the 

eyedropper plus tool.  Once all of the vegetation in the image was selected and turned 

black, I resaved the new layer mask containing the newly added pixel values, replacing 
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the previous file.  The procedure for the backdrop was identical except that lightness 

adjustment bar was moved to the right, ensuring that the pixels comprising the backdrop 

were completely white.  Thus, I ended up with two layer masks, one to classify the 

backdrop and one to classify the vegetation.  The entire process was identical for the 

black backdrops with the exception that I classified the vegetation as white and the board 

as black.   

Once the layer masks were constructed, I imported a cropped image into Adobe 

Photoshop® and opened the actions panel.  An action is simply a means of applying a 

technique to an image using a prerecorded series of commands.  To create an action, I 

clicked the ‗record actions‘ button in the actions panel.  Once the action was recording, I 

preceded with analysis.  I loaded and applied the ―replace board‖ and ―replace 

vegetation‖ layer masks to the photo via the replace color tool window.  I implemented 

the threshold tool, with a standardized luminance threshold value of 128, to classify any 

remaining pixel values within the RGB range to black or white.  The image was saved to 

a new folder and closed out of Adobe Photoshop®.  I clicked the stop recording button in 

the action panel, completing the training process.  I repeated the procedure creating two 

actions, one for the white boards and one for the black boards.  A droplet was created 

using the appropriate action for each board color (A droplet enables the user to ―drop‖ 

entire folders containing multiple images onto the icon, processing each image using an 

action).  For each backdrop color, a new folder was made and filled with the appropriate 

cropped images.  I dropped each folder of cropped images onto their respective droplet, 

enabling the program to repeat the analysis for every photo within the folder, saving them 

in binary format to a designated location.  I imported each binary photo into Adobe 
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Photoshop® and recorded the percentage of black pixels utilizing the histogram window 

(similar to Limb et al. 2007), indicating the percentage of vegetative cover in the image.  

For images containing black backdrops, the histogram window provided the inverse of 

percent vegetative cover; therefore I subtracted these values from 1 in order to obtain the 

percent vegetative cover estimates (Fig. 3).     

GIMP 

Carlyle et al. (2010) devised a vegetative cover assessment method using the open 

source image program GNU Image Manipulation Program® (Kimball & Mattis 2006), 

which I modified to fit the study design.  Using the color select tool on each individual 

image, I selected all pixels that matched the cover board.  Different lighting conditions 

caused the cover board in each image to have a range of black or white hues, so I utilized 

a similarity threshold of 40.0 (Carlyle et al. 2010) and employed the add to selection 

option by selecting multiple pixel values in each image.  The number of selected pixels 

was then subtracted from the total number of pixels in each image, resulting in the 

number of pixels representing vegetation.  Visual obstruction was calculated for each 

image as the ratio of vegetation pixels to total pixels. 

PIXCAVATOR 

The last approach I tested used Pixcavator IA Standard Edition.  Pixcavator 

identifies edges and objects in images based on changes in value of each pixel.  Cropped 

photos of the black backdrop were selected in the Analysis tab and analyzed in the Green 

color channel using a Shrink factor of 3 to allow for faster processing.  In the Output tab, 

the settings were reduced to zero for the object size, maximal contrast, border contrast, 

average contrast, and the intensity, light adjustments.  The variable setting was the 
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Intensity, dark adjustment (Intensity, dark sets the threshold at which all objects are 

separated into light and dark categories).  This value was increased or decreased until the 

pieces of vegetation were identified as light colored objects or there was enough ―false 

vegetation‖ to make up for the real vegetation not identified as light.  Because Pixcavator 

analyzes images based on pixel values that are displayed using an RGB presentation, 

some areas of the board are counted as light objects (e.g. glare).  I called this ―false 

vegetation‖ and tried to minimize its occurrence.  The Hide contours and Display channel 

buttons were helpful when determining when the Intensity, dark was appropriate.  When 

an acceptable level had been reached, the percentage of the total area of dark objects was 

given in the Review summary section of the output.  I recorded the Intensity, dark value 

and total area of dark objects.  The total vegetation coverage was obtained by subtracting 

the area of dark objects from 100.  In some cases, it was necessary to analyze half of a 

picture at a time in order to reduce the total number of objects within an image.  Photos 

containing the white backdrops were analyzed in a similar manner with the exception that 

vegetation cover was the total dark area, thus there was no need to subtract from 100. 

STATISTICAL ANALYSES 

In analyzing the data, my goal was to quantify the variation within DIVA 

techniques and compare among each.  Thus, the variability within each DIVA technique 

was estimated using coefficient of variation (CV) of mean percent cover.  The coefficient 

of variation is a normalized measure of dispersion from the mean (CV = standard 

deviation/mean), which is a particularly useful measurement when comparing the 

dispersion of two or more variables when their means are substantially different 

(Shahbaba 2012).  For each survey location, a CV of percent obstruction was calculated 
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for each board color within the analysis technique.  CV values were plotted and visually 

inspected to compare precision among DIVA techniques.   

The measurement variability among DIVA techniques and locations was tested 

using a split-split plot analysis of covariance (Pinheiro & Bates 2000; Pinheiro et al. 

2012).  Prior to analysis, I assessed normality and applied an arcsine square root 

transformation on percent cover to help normalize the response variable (normality was 

met; Gotelli & Ellison 2004).  In the model, each black and white board combination was 

treated as a block, where board color and DIVA technique were considered to be the 

split-plot and split-split plot respectively.   

I considered the Grid method as the null DIVA technique, which has previously 

been credited by other studies using similar methods to successfully quantify vegetation 

structure (Jones 1968; Peterson & Cooper 1987; Maxson & Riggs 1996; Coates & 

Delehanty 2010; Fisher & Davis 2010).  I used a random intercept model 

parameterization at each of the block, split-plot, and split-split plot levels to account for 

the nesting of the experimental design (Pinheiro & Bates 2000).  Because board color 

(split-plot) and DIVA technique (split-split plot) were nested as random effects inside 

block, I was also able to consider them as fixed effects in trial models to test for 

systematic differences in percent cover (Pinheiro & Bates 2000).  I added environmental 

and temporal variables to the model as fixed effects, specifying time of day, wind speed, 

and Julian date as continuous variables and cloud cover as a factor with three levels 

(sunny, partly sunny, and cloudy).  I included two-way interactions between DIVA 

techniques and environmental and temporal conditions.  Non-significant terms and 

interactions from trial models were excluded from the final model.  Post-hoc two-way 
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comparisons of DIVA techniques were conducted using Tukey's honest significance test 

(Hothorn et al. 2008).  All statistical analyses were done using R (R Foundation for 

Statistical Computing, Vienna, Austria). 

 

RESULTS 

The DIVA techniques provided different estimates of percent cover, even after 

accounting for nested effects in the study design (DIVA: F4,12=22.34, P<0.001).  

Environmental effects of cloud cover did not have an effect on percent cover estimates 

(cloud cover: F2, 350=2.15, P=0.12), but the interaction between DIVA technique and 

cloud cover was statistically significant (DIVA * cloud cover: F8, 350=2.05, P= 0.04; 

Table 1).  

Of the five DIVA techniques, the Threshold method had the lowest mean percent 

cover estimate after accounting for variation in the random and fixed effects, and differed 

significantly from the other methods, but there were no differences among the other four 

methods (Table 2; Fig. 4).   

Within each DIVA technique, the Threshold method preformed the worst, with 

the highest averaged CV values of 27.87% and 58.56% for the black and white backdrops 

respectively.  The Pixcavator method had the lowest average CV values of 5.74% and 

5.65% for the black and white backdrops (Fig. 5). Levels of variation (CV) did differ 

among cover estimates from the Photo Training, Pixcavator, GIMP, and Grid methods, 

but each performed better than the Threshold method, with average CV values below 

20% (Fig. 5). 
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Cost of the software packages varied significantly by DIVA technique (Table 3).  

Of the five techniques, the GIMP and the Grid methods were the most cost effective, 

utilizing open-source software packages such as the GNU Image Manipulation Program.  

The Photo Training technique was the most expensive method, costing roughly $700 

(USD) for the full Adobe Photoshop license.  However, a month-to-month license can be 

purchased from Adobe for a more economical approach ($49 per month).      

Field measurements and photo cropping were rapid, about 90 seconds per photo, 

but the per photo processing time based on a batch size of 100 photos varied greatly 

among DIVA techniques (Photo Training ~0.6 sec.; Threshold 1 min.; GIMP 1-3 min.; 

Pixcavator 2-3 min.; Grid 10-15 min.). 

 

DISCUSSION 

Although visual obstruction estimates varied among the five image processing 

techniques in the study (Fig. 4), all but the Threshold technique measured visual 

obstruction consistently, regardless of backdrop color or vegetation height (Fig. 5).  Low 

measurement variation is ideal for multi-year studies, eliminating the variability 

associated with multiple observers and ocular estimation.  However, DIVA estimates 

were sensitive to lighting conditions as noted by the significant effects of the interaction 

between DIVA technique and cloud cover, which may lead to the high CV values for 

some approaches (Fig. 5).  Shadows increase measurement variation by introducing 

overlap between vegetation and backdrop pixel values.  Using a set value for the 

threshold function within the Adobe Threshold technique made it especially sensitive to 

lighting conditions as overexposed photos were prone to misclassify vegetation as non-
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vegetation on white backboards and underexposed photos were prone to misclassify the 

backboard as vegetation.  The similar but opposite pattern occurred if the backboard was 

black instead of white.  The level of error associated with the threshold technique is 

somewhat surprising given that others have found it reliably predicts clipped herbaceous 

biomass (Limb et al. 2007), but the previous work controlled for environmental and 

temporal variation by recording all images in ―rapid sequential order‖ (Limb et al. 2007), 

an approach which is highly impractical in field studies.  Because the analysis was done 

across a range of conditions, the use of a set threshold caused pixel values associated with 

vegetation (or the backdrop) to shift back and forth over this value, increasing the 

measurement error (Fig. 5).  Other image processing techniques, such as the Pixcavator, 

Photo Training, and GIMP methods, were better equipped to handle variable light 

conditions by allowing the user to correct for the level of exposure.   

Tradeoffs between precision and processing time are important to consider when 

choosing any sampling method as available time and resources may limit processing 

choices.  Fortunately, with the exception of the threshold technique all the DIVA 

methods I tested were relatively precise, enabling users to focus on the time and costs 

constraints associated with each methodology.   Not surprisingly, at up to 15 minutes per 

photo, the Grid method was the most time consuming, but it was also the easiest of the 

techniques to explain to personnel.  Moreover, although I used Adobe Photoshop, this 

method could be implemented in a variety of software packages, some of which are 

inexpensive or even free (i.e., Adobe Photoshop Elements 10; GNU Image Manipulation 

Program (GIMP); PhotoScape Image Editing Software 3.5).  The Pixcavator method was 

considerably faster (2-3 minutes per photo), but did require more time to learn and is 
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dependent on a for-cost software package (Intelligent Perception Pixcavator®, $29/mo).   

The Threshold and GIMP techniques were faster yet, averaging 1 min per photo, but low 

precision made the Threshold technique undesirable.  By contrast, the GIMP technique 

was precise and also the least expensive of the DIVA methods as the GNU Image 

Manipulation Program® is available online as a free, open-source software package.  

Maybe the most interesting of the DIVAs from a logistics perspective was the Photo 

Training technique.  Although it was dependent on costly software (Adobe Photoshop 

CS5®, ~$700), by automating the photo analysis process and utilizing batch-processing 

techniques, the Adobe Photo Training method took considerably less time and was 

capable of making precise estimates of percent cover at a rate of 100 photos per minute.  

Automation enabled the software to analyze the entire folder of cropped photos in a 

matter of seconds, making it convenient for the investigator to quickly open the image in 

Adobe Photoshop®, click on the histogram and identify the percent cover.  The capability 

to analyze numerous photos rapidly may be particularly advantageous for large studies, 

but it is important to note that less expensive versions of Photoshop (Adobe Photoshop 

Elements 10, ~$100) do not have the capability to allow the user to record ―actions‖ for 

batch processing which adds considerable time to processing large numbers of photos.   

 In addition to processing approaches, field implementation is also important to 

successfully record visual obstruction.  The size, shape and construction of backdrops 

must be considered prior to field work.  A black or white 1 x 1 m board was sufficient for 

the study design and was capable of quantifying a range of vegetation heights associated 

with mixed-grass prairie.  In other systems it may be more appropriate to use smaller or 

larger board sizes depending on vegetation height and the variation in height among 
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samples.  Rigidity is also important, as a rigid backdrop can be propped upright on a set 

of posts, enabling the investigator to quickly move to and from each survey plot.  In 

addition, a rigid backdrop minimizes shadows caused by sagging of the top edge and is 

capable of surviving being carried through thick vegetation over a course of multiple 

field seasons.  A white fiberglass reinforced wall paneling was excellent at maintaining 

its structural integrity throughout the investigation and was completely waterproof.  On 

the other hand, tempered hardboard was more prone to warping when wet and dried 

repeatedly.  Other studies have used bed sheeting (Limb et al. 2007) or painted plywood 

(Boyd & Svejcar 2005) as effective backdrops, but these may be more or less mobile 

depending on the type of vegetation.   

 The techniques outlined in this study are a sample of the potential ways to analyze 

visual obstruction using digital processing techniques (see Booth et al. 2005; Booth et al. 

2006; Luscier et al. 2006; Seefeldt & Booth 2006; Cagney et al. 20011), of which many 

are suitable for estimating vegetation quickly and effectively.  My results suggest that the 

multiple techniques assessed in this study are sufficient for measuring visual obstruction 

in a variety of grassland ecosystems.  By using DIVA techniques to estimate visual 

obstruction, error commonly associated with multiple observer visual obstruction 

estimates can be reduced greatly.  Minimizing variation will allow greater opportunity to 

detect patterns associated with vegetative structure and increase the power of a study.   
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TABLES AND FIGURES 

Table 1. A split-split plot analysis of covariance (ANCOVA) table.   

Variable Numerator df Denominator df F-value p-value 

intercept 1 350 32.2098 <.0001 
DIVA technique 4 12 22.34465 <.0001 
cloud cover 2 350 2.15094 0.1179 
DIVA technique:cloud cover 8 350 2.05396 0.0397 
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Table 2. A Tukey post-hoc multiple comparison test indicates that the Threshold method 

provides significantly different estimates of percent vegetative cover when compared to 

the rest of the DIVA techniques.  

Comparison Estimate Std. Error z value value Pr(>|z|) 

GIMP - Grid  0.04653 0.04729 0.984 0.04653 0.863 
Pix - Grid 0.01167 0.04729 0.247 0.01167 0.999 
Thresh - Grid -0.30311 0.04729 -6.41 -0.30311 <0.001 
Train - Grid 0.08229 0.04729 1.74 0.08229 0.409 
Pix - GIMP -0.03486 0.04546 -0.767 -0.03486 0.94 
Thresh - GIMP -0.34964 0.04546 -7.692 -0.34964 <0.001 
Train - GIMP 0.03576 0.04546 0.787 0.03576 0.935 
Thresh - Pix -0.31478 0.04546 -6.925 -0.31478 <0.001 

Train - Pix 0.07062 0.04546 1.554 0.07062 0.527 
Train - Thresh 0.3854 0.04546 8.478 0.3854 <0.001 
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Table 3.  The software packages options and estimated costs (U.S. Dollars, February 2012), as well as the processing time of the five 

digital imagery vegetation analysis (DIVA) techniques. 

DIVA Technique Software Options Software Cost 

 

Minutes per 100 

photos 

 

Batch 

processing  

GIMP GNU Image Manipulation Program $0 100 No 

Grid 

Adobe Photoshop Elements 10 

GNU Image Manipulation Program 

PhotoScape Image Editing Software 3.5 

$0 

$0 

$100 

1500 

No 

No 

No 

Photo Training  Adobe Photoshop CS5 

 

$700
*
 

 

~ 1 Yes 

Pixcavator Intelligent Perception Pixcavator  

 

$300
*
 

 

200 No 

Threshold 
Adobe Photoshop Elements 10 

Adobe Photoshop CS5 

$100 

$700
*
 

100 
No 

Yes 

*
Monthly license available 



95 

 

    

 

Figure 1. An example showing the medal rod placement and backdrop set-up for a digital 

imagery vegetation analysis. 
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Figure 2. An example of two digital images, black backdrop (A) and white backdrop (C), 

and their respective binary images (B and D) which were converted using digital imagery 

vegetation analysis (DIVA) techniques. 
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Figure 3. The flowchart describes the process of creating a layer mask, adjusting the 

image and developing a droplet for batch processing while using the photo training 

technique to estimate percent vegetative cover.  Readers may refer to Adobe Photoshop‘s 

help document for additional instruction on the replace color tool, recording actions, and 

developing droplets. 
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Figure 4.  Percent vegetation cover estimates differed among the digital imagery 

vegetation analysis (DIVA) techniques.  Columns represent the estimated marginal 

means after controlling for nested random effects in the study design and variation in 

cloud cover.  Columns denoted by different letters are significantly different at the 0.05 

level according to a Tukey post-hoc multiple comparison test. 
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Figure 5.  The amount of variation within the Threshold method was considerable and differed 

between digital imagery vegetation analysis (DIVA) techniques and backdrop colors.  Columns 

represent the coefficient of variation (CV) in percent vegetative cover estimates for each DIVA 

technique and backdrop color (black bars = black backdrop, grey bars= white backdrop).     
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