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Walleye Sander vitreus and white bass Morone chrysops are among the most 

popular sportfish in the reservoirs of the Great Plains.  Despite considerable effort by the 

Nebraska Game and Parks Commission stocking walleye and managing reservoirs for 

walleye and white bass, populations of walleye and white bass in southwest Nebraska 

reservoirs are dynamic, as erratic recruitment has led to “boom and bust” fisheries for 

these two species.  We investigated 1) factors regulating walleye and white bass 

recruitment during an 18-year period at five reservoirs, and 2) walleye spawning ecology 

at two reservoirs that differ in their degree of environmental variability.  The variables in 

the candidate model sets for walleye were most-often related to water-level drawdown.  

The variables in the candidate model sets for white bass were most-often related to adult 

white bass abundance and condition, and to factors affecting over-winter mortality of 

juvenile white bass.  Despite significant differences in female body and liver masses 

between reservoirs that differ in environmental variability, we found no difference in 

reproductive investment measured by egg size and fecundity, which is counterintuitive to 

life-history theory.  
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Chapter 1: INTRODUCTION 

Theoretical framework 

Species adapt and evolve in different environments, within varying biotic and 

abiotic constraints and variables, and therefore exhibit life-history traits that allow them 

to prosper in those environments.  Existing in a variable environment is something with 

which most organisms must contend.  Environmental variability may occur on an hourly 

or daily temporal scale, or may occur over a much longer period, on the order of seasons, 

years, or even decades or centuries.  Accordingly, seasonal configurations are inherently 

present in the evolution and ontogeny of many species (Winemiller 1989; Nylin 1992).  

For organisms living in these variable environments, production of offspring at the proper 

time is crucial to ensuring the survival of those offspring and the successful passing of 

genes (Cohen 1966; James and Shine 1985; Seeley and Visscher 1985; Dietz et al. 1994; 

Komdeur 1996).  Thus, one must consider the life history of a species when making 

inferences about reproductive success.   

Recruitment limitations, or “bottlenecks,” are environmental conditions that 

prohibit or constrain reproductive success, typically exerting influence over larval and 

juvenile organisms (Werner and Gilliam 1984; Coleman and Fausch 2007).  These 

bottlenecks can be both biotic and abiotic in nature, often relating to the presence and 

abundance of predators (Köster and Möllmann 2000), availability of prey (Persson and 

Greenberg 1990), or climatological variables such as temperature and precipitation 

(Coleman and Fausch 2007).  Life-history theory predicts that when an organism inhabits 

an environment with unfavorable conditions for growth and survival of its offspring, the 
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organism should produce few offspring that are large, as opposed to many offspring that 

are small (e.g., Johnston and Leggett 2002).  Thus, organisms that live in unpredictably 

variable systems should exhibit different life-history strategies than conspecifics from 

more predictably variable systems. 

 

The reservoir environment 

 The idea of impounding water for human use is not a new one; the earliest known 

record of humans utilizing reservoirs is in 3000 B.C. near Girnar, India (Rodda and 

Ubertini 2004).  Generally, reservoirs are dynamic systems, often prone to unpredictable 

and extreme water-level fluctuations (e.g., June 1977).  Unfortunately for anglers and 

fish, management of water levels in reservoirs is typically guided by hydrological and 

economic factors (e.g., flood control, hydropower generation, and crop irrigation), with 

little consideration given to fish populations (Sammons et al. 1999; Sammons and Bettoli 

2000).  This unpredictable variability can cause pronounced changes in availability of 

spawning and rearing habitat (Beam 1983; Miranda et al. 1984; Ploskey 1986; Willis 

1986), turbidity (Martin et al. 1981), and zooplankton abundance (Willis 1986; Naselli-

Flores and Barone 1997).  Therefore, because of  this inherent unpredictability, reservoir 

fishes often experience large fluctuations in annual survival rates of larvae and juveniles, 

which leads to large fluctuations in abundance of the adult spawning stock.   
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Ecology of fish reproduction 

 The primary goal of any organism is to perpetuate the species by passing along its 

individual genetic material to future generations.  Fishes typically have discrete spawning 

seasons that ensure the greatest chance of survival for their young (Wootton 1990).  

Many fishes take cues from their environment to determine when to spawn (de Vlaming 

1972).  These cues include water temperature (Graham and Orth 1986; Webb and McLay 

1996; Carscadden et al. 1997), lunar or tidal period (Middaugh 1981; Middaugh and 

Takita 1983), water discharge and velocity (Trépanier et al. 1996), and photoperiod 

(Duston and Bromage 1986). 

 Fishes also employ different reproductive strategies to optimize the number of 

surviving offspring.  Fishes are renowned for their fecundity; individuals of most species 

are capable of producing thousands to millions of eggs every year (Hoar 1969).  These 

eggs are usually either demersal or pelagic (Balon 1975; Wootton 1990), though 

strategies other than egg laying do exist.  Pelagic spawners broadcast semi-buoyant eggs 

into the water column where they are carried along by currents, whereas demersal 

spawners scatter eggs near the substrate, sometimes into constructed nests, where they 

can adhere to vegetation or substrate, or merely settle on the bottom.  Demersal spawners 

also vary in the amount of parental care or guarding they devote to their brood (Smith and 

Wootton 1995).   

Different biotic and abiotic factors may inhibit egg survival of demersal spawners.  

Cool water temperature increases egg incubation time (Busch et al. 1975), which in turn 

can expose eggs to a longer period of predation risk (Schaeffer and Margraf 1987; 
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Steinhart et al. 2004; Steinhart et al. 2005).  Wind can cause eggs to become dislodged 

and stranded (Busch et al. 1975).  Suspended fine sediments may diminish the number of 

eggs laid (Burkhead and Jelks 2001) and impair the hatching of eggs (Auld and Schubel 

1978).  Deposited fine sediments may smother fish eggs, causing mortality (Lisle 1989; 

Kock et al. 2006).  Low oxygen levels in the water may also impair egg survival (Auer 

and Auer 1990). 

 Challenges for fish to recruit are exacerbated by water-level variability (Carline 

1986).  This is particularly true in irrigation reservoirs, some of which experience 

unpredictable and often amplified summer draw-downs in response to unpredictable 

extremes in abiotic conditions (Quist et al. 2003b; Olds et al. 2011).  Changing water 

levels can affect availability of adequate spawning habitat, as well as deposit sediment on 

eggs or larvae in nests (Miranda et al. 1984; Ploskey 1986; Guy and Willis 1995; Waters 

and Noble 2004).    

 

Fish recruitment 

From a fishery standpoint, recruitment refers to the supply of fish that becomes 

available (1) at some particular stage in their life history (often considered to be the age 

of reproductive viability), or (2) to the commercial or recreational harvest gear used in 

the fishery (Everhart et al. 1975).  Success of recruitment, often considered the relative 

contribution of annually spawned (or stocked) fish to the population, is generally 

discussed in terms of year-class strength.  Variability in year-class strength is often 

related to early-life stage survival, typically resulting from interactions of biotic and 
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abiotic factors dealing with size and ontogeny of larval and juvenile fish (Miller et al. 

1988; Cushing 1990; Leggett and DeBlois 1994, DeBoer et al. 2013).  Year-class strength 

is also often inherently linked to adult population numbers (Gulland 1982; Sissenwine 

1984).   

For teleost fishes, natural mortality is often greatest during early-life stages (i.e., 

larval and juvenile, May 1974; Houde 2002).  Understanding factors affecting growth and 

survival during these stages may be crucial for understanding fish recruitment (Miller et 

al. 1988; Bremigan and Stein 1994).  Successful recruitment is often considered to be a 

function of successfully navigating a series of sequential events (Neill et al. 1994); a 

“gauntlet” of sorts.  Survival and growth in the larval and juvenile stages are often 

positively correlated to food availability and avoidance of predation, and negatively 

correlated to habitat unpredictability, which is itself inherently linked to unpredictability 

in weather patterns (Houde 1987; Mion et al. 1998; Hoxmeier et al. 2004).  Food 

availability can be related to several factors, including simple prey abundance (Ritchie 

and Colby 1988; Peterson et al. 2006), overlap with prey availability (the 

“match/mismatch hypothesis”, Cushing 1969; 1975; 1990), conspecific competition 

(Partridge and DeVries 1999; Knoll 2007), and interspecific competition (Michaletz et al. 

1987; Roseman et al. 1996; Garvey and Stein 1998).  Predation sources include 

cannibalistic conspecifics (Chevalier 1973; Fox 1975; Polis 1981; Knoll 2007), as well as 

interspecific predators (Pope et al. 1996; Quist et al. 2003).  Interestingly, one study 

points to the benefit of a “shading effect” due to higher plankton counts as being an 

important survival mechanism for larval fish, not only due to increased food availability 
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for larval fish, but also due to reduced predation on larval fish (Fiksen et al. 2002).  

Habitat unpredictability also affects survival of early-life stages, as changes in factors 

such as temperature (Rutherford and Houde 1995), turbidity (Chesney 1989), and 

dissolved oxygen (Breitburg 1994) can have substantial effects on survival of larval and 

juvenile fish. 

 In theory, first-year survival, and therefore year-class strength, is inherently less 

consistent in systems with a high incidence of seasonal and annual unpredictability.  Fish 

in reservoirs are especially vulnerable during early-life stages, often due to unpredictable 

water fluctuations for which reservoirs are known (June 1977).  Irrigation reservoirs in 

particular, with their history of annual drawdown, can pose a serious challenge to 

recruitment.  Reservoirs often have high ambient levels of turbidity (Bremigan 1997; 

Gido and Matthews 2000) that can increase even more during periods of high inflow 

(Mion et al. 1998); these changes can exert direct (mortality) and indirect (stressors) 

control over larval and juvenile fish.   In addition to abiotic challenges, reservoirs can 

pose other problems for fish during early-life stages.  Seasonal changes in reservoir 

flushing rate can cause changes in zooplankton and phytoplankton abundance; high 

flushing rate can lead to low zooplankton abundance (sensu Watson et al. 1996; Kalff 

2003), which could reduce food availability for larval fishes at a critical stage.  Although 

most larval fishes are initially zooplanktivorous (Turner 1984), many species transition to 

different food sources during growth and development.  This size-mediated transition is 

known as an ontogenetic niche shift, a change in habitat or resource use as an organism 

increases in size (Werner and Gilliam 1984).  Failure to secure enough energy may 
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inhibit fish growth during early-life stages, which may prevent ontogenetic shifts that are 

necessary for continued growth and survival.   

Reservoirs are often stocked with fishes that do not share a common evolutionary 

history or similar native range.  If two species evolved in different regions, one species 

may be at a disadvantage when the two are introduced into the same system.  This lack of 

co-evolution can pose serious problems in terms of predation and competition, 

particularly in early-life stages (Galinat et al. 2002; Olson et al. 2007).  That is, the biotic 

influence of one species can constrain recruitment of a second species, even when abiotic 

conditions are suitable for recruitment of the second (i.e., Biotic-Abiotic-Constraining 

Hypothesis, Quist et al. 2003). 

 

Study area 

 The Republican River is an impounded tributary to the Kansas River; the 

Republican River basin is contained within three states in the Great Plains region of the 

USA (Figure 1.1).  Bliss and Schainost (1973) identified 37 fish species in the watershed, 

and 729 km (~40%) of streams were classified as being environmentally degraded, with 

the primary effects being related to water withdrawal for irrigation.  As a result of 

agricultural over-development (i.e., over-appropriation of groundwater wells for cropland 

irrigation) in the region, current groundwater and surface water flows are substantially 

reduced compared to circa-1970 levels throughout the Republican River basin (Szilagyi 

1999; 2001).  This reduction in flow has been attributed to cropland irrigation, changes in 

vegetative cover, water conservation practices, and construction of reservoirs and 
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artificial ponds in the basin, all of which increase the amount of water lost to evaporation 

over the basin (Szilagyi 1999; 2001).   

Forty percent of the Republican River basin is in Nebraska (USDA 1978), where 

the basin drains nearly 25,000 km2 of primarily rangeland and cropland into 1,826 km of 

streams and rivers (Bliss and Schainost 1973).  Catastrophic flooding in 1935 prompted 

the construction of five large multipurpose reservoirs in the Republican River basin in 

Nebraska: Enders Reservoir, Harlan County Lake, Medicine Creek Reservoir (Harry D. 

Strunk Lake), Red Willow Reservoir (Hugh Butler Lake), and Swanson Reservoir.  

Harlan County and Swanson reservoirs are on the mainstem of the Republican River, 

whereas Enders, Medicine Creek, and Red Willow reservoirs are on separate tributaries 

to the Republican River.  As a result of the reduction in groundwater and surface water 

flows, only Medicine Creek Reservoir delivers water for irrigation on an annual basis; the 

other reservoirs deliver water for irrigation only sporadically when there is sufficient 

inflow (Table 1.1).   

 

Enders Reservoir 

 Enders Reservoir is impounded by Enders Dam, constructed during 1947-1951 on 

Frenchman Creek, a tributary of the Republican River.  Enders Reservoir drains a 

watershed of 2,841 km2, with an active conservation pool elevation of 948.6 m above sea 

level.  Sportfish present in the reservoir include channel catfish Ictalurus punctatus, 

common carp Cyprinus carpio, crappie Pomoxis spp., flathead catfish Pylodictis olivaris, 

hybrid striped bass Morone saxatilis x M. chrysops, largemouth bass Micropterus 
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salmoides, northern pike Esox lucius, smallmouth bass M. dolomieu, walleye Sander 

vitreus, and white bass Morone chrysops.  Walleye fingerlings and fry were stocked 

routinely from 1985 to 2011 (Table 1.2), and white bass has never been stocked by the 

Nebraska Game and Parks Commission (NGPC) in Enders Reservoir. 

 

Swanson Reservoir 

 Swanson Reservoir is impounded by Trenton Dam, constructed during 1949-1953 

on the mainstem of the Republican River.  Swanson Reservoir drains a watershed of 

22,326 km2, with an active conservation pool elevation of 838.8 m above sea level.  

Sportfish present in the reservoir include blue catfish Ictalurus furcatus, channel catfish, 

common carp, crappie, flathead catfish, freshwater drum Aplodinotus grunniens, hybrid 

striped bass, walleye, and white bass.  Walleye fingerlings and fry were stocked regularly 

from 1985 to 2011 (Table 1.2), and white bass has never been stocked by NGPC in 

Swanson Reservoir. 

 

Red Willow Reservoir 

 Red Willow Reservoir (Hugh Butler Lake) is impounded by Red Willow Dam, 

constructed during 1960-1962 on Red Willow Creek, a tributary of the Republican River.  

Red Willow Reservoir drains an area of 1,890 km2 (Ferrari 1998), and has an active 

conservation pool elevation of 801.0 m above sea level.  A fissure in the dam at Red 

Willow Reservoir necessitated an extreme drawdown to ensure the safety of the dam; 

during November and December 2009, the water level dropped 5.7 meters over a 45-day 
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period.  Sportfish present in the reservoir include common carp, channel catfish, crappie, 

flathead catfish, hybrid striped bass, largemouth bass, northern pike, smallmouth bass, 

walleye, and white bass.  Walleye fingerlings and fry were stocked routinely from 1985 

to 2010 (Table 1.2), and white bass has never been stocked by NGPC in Red Willow 

Reservoir. 

 

Medicine Creek Reservoir 

 Medicine Creek Reservoir (Harry D. Strunk Lake) is impounded by Medicine 

Creek Dam, constructed during 1948-1949 on Medicine Creek, a tributary of the 

Republican River.  Medicine Creek Reservoir drains an area of 2,279 km2, with an active 

conservation pool elevation of 721.2 m above sea level.  Sportfish present in the reservoir 

include channel catfish, flathead catfish, crappie, walleye, largemouth bass, white bass, 

hybrid striped bass, and common carp.  Walleye fingerlings and fry were stocked 

routinely from 1985 to 2011 (Table 1.2), and white bass has never been stocked by 

NGPC in Medicine Creek Reservoir. 

 

Harlan County Lake 

 Harlan County Lake is impounded by Harlan County Dam, constructed on the 

mainstem of the Republican River during 1952.   Harlan County Lake drains an area of 

18,555 km2, with an active conservation pool elevation of 593.1 m above sea level.  

Sportfish present in the reservoir include channel catfish, crappie, flathead catfish, hybrid 

striped bass, northern pike, walleye, and white bass.  Walleye fingerlings and fry were 
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stocked routinely from 1985 to 2011 (Table 1.2); Harlan County is the only reservoir of 

the five in which white bass has been stocked, with 1.5 million fry stocked during May of 

1993. 

 

Study fishes 

 As we have stated, year-class strength, and thus recruitment, of fishes in 

unpredictably dynamic systems such as irrigation reservoirs can vary considerably on an 

inter-annual basis.  In southwest Nebraska irrigation reservoirs, year-class strength and 

recruitment of walleye and white bass are highly variable (DeBoer et al. 2013).  

Moreover, walleye and white bass are both top-level predators that often flourish in 

Midwestern reservoirs, have similar life expectancy, and also have similar feeding 

strategies at multiple life stages.  Thus, we chose to study the recruitment dynamics of 

these two species to make inferences about and gain a broader understanding of 

recruitment dynamics of fishes in unpredictably dynamic systems.   

 

Walleye 

 Walleye is a member of the Percidae family, which includes sauger Sander 

canadensis and yellow perch.  Walleye typically inhabits lakes, reservoirs, and large 

rivers; its native range encompasses much of the eastern half of North America, including 

Nebraska, where walleye is found in the Republican, Missouri, and Platte River 

watersheds (Scott 1967; Morris et al. 1972; Scott and Crossman 1973; Williams 1995).  

As with many species in the USA, its range has been expanded through stocking and 

transplanting to enhance sportfishing opportunities, particularly in reservoirs (Scott and 
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Crossman 1973; Colby et al. 1979).  In Nebraska, walleye is the preferred species of the 

majority of anglers (Hurley and Duppong-Hurley 2005). 

 Male walleye become sexually mature at a smaller size and usually a younger age 

than do female walleye; most male walleye become sexually mature at age 2 or 3, 

whereas most female walleye become sexually mature at age 3 or 4 (Carlander 1997).  

Annual maturation of adult walleye gonads requires water temperatures below 10°C 

(Colby and Nepszy 1981).  If water temperatures are not sufficiently cold enough for a 

long enough duration, walleye will skip spawning and reabsorb their gametes over the 

next season.  Ova reabsorption interferes with development of the next generation of 

oocytes, leading to skipping of the next spawning period (Colby et al. 1979).  Thus, 

failure to spawn in one season (due to elevated water temperature during winter) may 

lead to failure to spawn in the following season, leading to the loss of back-to-back year 

classes.  

Females (and their eggs) are usually the limiting factor in natural reproduction.  

However, female walleye may be harvested by anglers prior to reaching sexual maturity 

(Spirk 2012), which may limit natural reproduction.  Compared to smaller (i.e., younger) 

female walleye, larger (i.e., older) female walleye produce more eggs (Johnston et al. 

2007) and also larger, higher quality eggs (Johnston 1997; Wiegand et al. 2004) that 

survive better, and also produce larger fry (Johnston et al. 2007).  Thus, it is vital to have 

an abundance of large female walleye in the population in order to have an increased 

chance of successful natural reproduction and recruitment (Venturelli et al. 2010).  

Walleye egg diameter can range from 1.37 to 2.12 mm (Colby et al. 1979), and is 
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negatively affected by poor environmental quality (e.g., low resource abundance, high 

competition, and high predation; Johnston and Leggett 2002).  There is greater egg size 

variability, both within and among females, when environments are less predictable; thus, 

females are using variability in egg size to offset the cost of imperfect information when 

producing smaller eggs (Koops et al. 2003). 

Walleye spawn in many different areas, including sandy, gravelly, or rocky wave-

washed shallows and shoals in lakes (Scott 1967; Becker 1983), lake tributaries (Pflieger 

1997), and riverine upper portions of reservoirs (Quist et al. 2004).  Walleye also spawn 

on the riprap on the face of dams (Grinstead 1971; Morris et al. 1972; Martin et al. 2012), 

which may not be beneficial to the survival of eggs, and is therefore in conflict with life-

history theory.  It is possible that dams offer too much depth, pitch, fetch, and cold water 

to be well-suited for successful natural reproduction, as well as potentially being a long 

distance from acceptable nursery habitat (sensu Jones et al. 2003).   

Male walleye typically spawn for longer periods than do female walleye (Ellis 

and Giles 1965), and arrive at spawning sites up to one month before female walleye 

(Pflieger 1997).  Walleye spawn soon after ice-out, when water temperatures are between 

5 and 15°C, with peak spawning between 7 and 12 °C in general (Scott 1967; Pitlo 1989), 

and between 7 and 10 °C in Nebraska (Morris et al. 1972).  Walleye are nocturnal 

spawners, and eggs and milt are released over substrate in shallow water (Ellis and Giles 

1965; Priegel 1970) where the eggs are fertilized and subsequently abandoned; walleye 

exhibit no parental care (Fahy 1954).  Individual females usually spawn in one night 

(Ellis and Giles 1965). 
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Walleye eggs are initially adhesive, but will harden after a few hours in the water, 

and are susceptible to displacement by wind and wave action (Priegel 1970).  Constant 

post-spawn water levels in reservoirs are important for survival of walleye eggs (Groen 

and Schroeder 1978).  In addition, increases in reservoir spring water level are positively 

correlated with year-class strength of walleye (Cohen and Radomski 1993), and rapidly 

warming water temperature during incubation leads to better survival of eggs (Colby et al 

1979).  Hatching can occur as quickly as 7 days, though typically takes longer (12-21 

days) depending on water temperature; colder temperatures, like those near dams in 

reservoirs, can delay hatching (Becker 1983; Pflieger 1997).  Delayed hatching subjects 

eggs to increased risk of predation and sedimentation (Schaeffer and Margraf 1987; Lisle 

1989; Steinhart et al. 2004; Kock et al. 2006). 

After hatching, larval walleye feed on zooplankton and macroinvertebrates 

(Hoxmeier et al. 2004), spending much of their time high in the water column 

(Bulkowski and Meade 1983).  Upon attaining 25 mm in total length, juvenile walleye 

will occupy coves adjacent to the main water body (Grinstead 1971; Becker 1983).  

Young-of-year walleye compete for resources with young-of-year individuals of other 

species, including gizzard shad Dorosoma cepedianum (Michaletz et al. 1987; Quist et al. 

2004), yellow perch, (Michaletz et al. 1987) white bass (Michaletz et al. 1987; Beck et al. 

1998), and black crappie (Pope et al. 1996; Galinat et al. 2002).  In addition to 

competitive constraints, young-of-year walleye may also face predation from black 

crappie (Pope et al. 1996; Galinat et al. 2002), white crappie (Quist et al. 2003), rainbow 

smelt Osmerus mordax (Carpenter et al. 2007) and other piscivorous species. 
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As a result of reduced inflows, some of these reservoirs do not refill annually, and 

therefore do not regularly release water for irrigation (Table 1.1).  This disparity in 

refilling and irrigation drawdown leads to seasonal and annual differences in flushing rate 

within and among reservoirs.  Seasonal changes in flushing rate can cause changes in 

zooplankton and phytoplankton abundance; high flushing rate can lead to low 

zooplankton abundance (sensu Watson et al. 1996; Kalff 2003), which could reduce food 

availability for larval fish.  Likewise, harvest of walleye (Aggus and Bivin 1982), and 

standing crop, natural reproduction, and spawning success of walleye (Willis and Stephen 

1987) were better in reservoirs with low flushing rate (i.e., retention time > 1 year); 

walleye may not be suitable for stocking into a reservoir with high flushing rate because 

of a high propensity of being entrained through the dam (Willis and Stephen 1987; 

Johnson et al. 1988).   

 

White bass 

White bass is a member of the Moronidae family (also known as “temperate 

basses”), which includes white perch M. americana, yellow bass M. mississippiensis, and 

striped bass M. saxatilis.  Similar to walleye, white bass inhabits lakes, large rivers and 

streams, and reservoirs (Scott 1967).  Unlike walleye, little research has targeted white 

bass, therefore far less is known about its ecology, especially in reservoirs (Guy et al. 

2002).  Although its’ native range once included much of the eastern and central USA, 

including Nebraska, white bass has been introduced in water bodies outside its’ native 

range for sportfishing (Scott and Crossman 1973).  As with walleye, white bass can be 
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found in Nebraska in the Missouri, North Platte, and Republican River watersheds 

(Morris et al. 1972).   

Male white bass become sexually mature at a younger age than do female white 

bass; most male white bass mature at age 2 or 3, whereas female white bass mature at age 

3 or 4 (Carlander 1997).  However, female white bass may be harvested by anglers prior 

to reaching sexually maturity (Spirk 2012), and therefore may limit natural reproduction.  

Thus, it is important to have an abundance of large female white bass in the population 

for any chance of successful natural reproduction.   

White bass spawn during the spring in tributaries or upper portions of reservoirs 

when water temperatures are between 12 and 15°C (Webb and Moss 1967; Scott and 

Crossman 1973; Quist et al. 2002).  They spawn in shallow areas with sand, gravel, or 

cobble for substrate (Scott and Crossman 1973; Willis et al. 2002), with males arriving 

before females (Pfleiger 1997).  Eggs are adhesive, and eggs and milt are broadcast over 

coarse substrate; like walleye, white bass also exhibits no parental care (Pfleiger 1997).  

In reservoirs, high spring water levels translate to increased available spawning habitat, 

which can have a direct benefit on year-class strength (Beck et al. 1997; Pope et al. 1997; 

DiCenzo and Duval 2002).  Alternatively, spring inflow rates that are too high (Quist et 

al. 2002) or too low (DiCenzo and Duval 2002) can preclude access to ideal spawning 

habitat.  Although white bass eggs are subject to predation and other mortality factors 

(Steinhart et al. 2004; Kock et al. 2006), they hatch more quickly than do walleye eggs 

(in as little as 2 days, Scott and Crossman 1973), and thus, are subject to potential threats 
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for a shorter period.  Morone larvae with longer hatch times are larger, but have, on 

average, 58% less yolk at hatch (Lochmann et al. 2009). 

After hatching, larval white bass will form schools and feed primarily on 

zooplankton, though they will utilize insects and fish as the summer progresses, including 

age-0 gizzard shad (Michaletz et al. 1987; Schultz et al. 2002; Willis et al. 2002).  

Growth of white bass is positively correlated to water temperature and food abundance 

(Ruelle 1971).  Young-of-year white bass compete for resources with young-of-year 

individuals of other species, including walleye (Michaletz et al. 1987; Beck et al. 1998) 

and yellow perch (Michaletz et al. 1987).  However, in certain systems or years, 

competition with walleye may be limited, depending on selective feeding traits (Bulkley 

et al. 1976) or diet divergence (Willis et al. 2002).  In addition to competitive constraints, 

young-of-year white bass likely face predation from similar species as walleye, although 

specific predators of larval white bass are, as yet, undocumented.  White bass populations 

naturally show high annual variability in year-class strength (Bettoli et al. 1993). 

 

Need for study 

 Walleye and white bass are popular sportfish in the reservoirs of the Great Plains 

states (Stone 1996; Burlingame 1998; Bauer 2002); in a recent angler survey conducted 

in Nebraska, walleye were the preferred sportfish of the majority of respondents (Hurley 

and Duppong-Hurley 2005).  As such, NGPC dedicates considerable resources for 

stocking and managing programs for walleye, particularly in these five Southwest 

reservoirs.  However, even though augmented by stocking, walleye year-class strengths 
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in these systems are variable (DeBoer et al. 2013).  Likewise, white bass are typically not 

stocked in these systems, and their year-class strengths are also variable (DeBoer et al. 

2013).  Irrigation reservoirs are inherently perturbed systems; compounding the difficulty 

of this assessment, even fish populations in unperturbed systems tend to fluctuate in 

abundance (Kelso and Bagenal 1977).  Hinch et al. (1991) stated a need for more large-

scale, multi-lake studies; abiotic variance is problematically reduced with smaller spatial 

and temporal scales.  A multi-reservoir, multi-year study designed to gain a better 

understanding of walleye and white bass recruitment in these reservoirs will help fishery 

managers determine proper courses of action, and will provide information on 

recruitment of fishes in semi-arid regions like the Great Plains. 

 

Research question 1 

What are the biotic and abiotic factors that lead to fluctuations in annual recruitment of 

walleye in southwest Nebraska irrigation reservoirs? 

 

Objectives 

1. Identify biotic and abiotic factors that influence age-0 walleye abundance in 

southwest Nebraska irrigation reservoirs. 

2. Quantify differences in walleye reproductive condition between two 

southwest Nebraska irrigation reservoirs. 

3. Describe the phenology of walleye spawning at two southwest Nebraska 

irrigation reservoirs. 
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Research question 2 

What are the biotic and abiotic factors that lead to fluctuations in annual recruitment of 

white bass in southwest Nebraska irrigation reservoirs? 

 

Objectives 

4. Identify biotic and abiotic factors that influence age-0 white bass abundance 

in southwest Nebraska irrigation reservoirs. 

 

Data collection and use, by chapter 

 Each of the subsequent chapters is intended to stand alone.  Chapter 2 is an 

analysis of 18 years of NGPC standardized sampling data, with which we model abiotic 

and biotic factors influencing walleye and white bass recruitment in all five Republican 

River reservoirs in Nebraska.  We used data from NGPC, U.S. Bureau of Reclamation, 

and the National Oceanic and Atmospheric Administration’s National Climatic Data 

Center (see Table 2.2).  Chapter 3 is an analysis of the differences in spawning ecology of 

female walleye between two reservoirs, Swanson and Medicine Creek, which we 

perceive have differences in environmental quality.  We used adult fish data collected 

during the spring of 2012 for this chapter.  Chapter 4 is a summary of management 

recommendations and “big picture” contextualization of the preceding chapters. 
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Table 1.1.  Annual reservoir discharge (millions of m3) during irrigation season (June 

through September) from 1993 through 2012. 

            

Year 
Enders 

Reservoir 
 Swanson 
Reservoir 

Red 
Willow 

Reservoir 

Medicine 
Creek 

Reservoir 

Harlan 
County 
Lake 

1993 14.4 18.9 7.8 40.4 61.0 

1994 18.2 62.7 11.6 32.5 121.4 
1995 19.6 70.7 13.6 41.0 207.5 
1996 14.7 45.9 9.3 15.2 243.6 
1997 20.3 63.3 14.4 39.1 131.9 

1998 19.0 59.0 13.5 36.8 124.7 
1999 15.2 44.1 10.7 28.2 121.2 
2000 18.7 56.2 12.9 33.5 176.7 
2001 11.5 25.6 16.0 31.9 106.8 

2002 5.7 12.6 12.3 37.0 119.8 
2003 3.0 0.3 1.2 27.0 63.3 
2004 0.9 0.3 1.2 29.4 0.0 
2005 0.9 0.3 1.2 23.7 0.0 

2006 0.9 0.3 12.1 29.5 15.1 
2007 2.6 0.3 1.2 47.2 26.2 
2008 1.5 0.3 7.0 37.6 99.9 

2009 1.5 29.0 8.0 25.5 73.9 

2010 1.5 24.9 8.3 25.7 123.9 
2011 1.5 24.6 8.9 31.5 69.6 
2012 1.3 40.9 1.8 32.4 123.4 
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Table 1.2.  Annual stocking data for walleye in the five Nebraska reservoirs of the 

Republican River.  Fish stocked were 2.5-5.0-cm fingerlings, unless otherwise noted.   

 

Red Medicine Harlan 

  Enders Swanson Willow Creek County 

Year  Reservoir Reservoir Reservoir Reservoir Lake 

1986 96240 35000 169310 C 99974 B 0 

1987 76927 153855 5733 7900 270000 

1988 7304 95000 46812 C 54180 C 0 

1989 0 72416 7539 7539 0 

1990 43648 106731 57816 110783 316479 

1991 51712 150979 45420 87314 5000000 A 

1992 47820 75000 800000 A 1400000 A 164724 

1993 101714 284288 86948 101184 374823 

1994 125964 302850 153894 188786 0 

1995 0 0 81400 92015 516288 

1996 78325 256570 0 0 0 

1997 0 0 81400 95700 616318 

1998 89000 252504 0 0 0 

1999 0 0 81389 92855 651300 

2000 84000 249000 0 0 60000 

2001 0 0 83750 92500 684950 

2002 85400 250000 0 0 200000 

2003 0 0 1042000 A 93120 209221 

2004 37600 59400 1037000 A 33125 7423000 A 

2005 0 59400 1028000 A 0 0 

2006 909000 A 5693125 A 2333000 A 1457500 A 127271 

2007 1567800 A 2653200 A 1192500 A 2650000 A 11250000 A 

2008 1006250 A 6031250 A 2641100 A 1342750 A 4168000 A 

2009 1762600 A 2612425A 1224000 A 2723400 A 9770200 A 

2010 1024020A 6330971A 13923 1911500A 15918000A 

2011 1637506A 3477940A 0 93556 11389430A 

       
A Fry 
B 10.1-12.7-cm fingerlings 
C 2.5-5.0- and 10.1-12.7-cm fingerlings 
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Figure 1.1.  Map of the Republican River basin in Colorado, Kansas, and Nebraska, USA, 

and the five irrigation reservoirs in Nebraska. 
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Chapter 2: ENVIRONMENTAL FACTORS REGULATING THE 

RECRUITMENT OF WALLEYE SANDER VITREUS AND WHITE BASS 

MORONE CHRYSOPS IN IRRIGATION RESERVOIRS 

 

This chapter has been published in Ecology of Freshwater Fish with the following 

citation: 

DeBoer, J. A., K. L. Pope, and K. D. Koupal.  2013.  Environmental factors regulating 
the recruitment of walleye Sander vitreus and white bass Morone chrysops in 
irrigation reservoirs.  Ecology of Freshwater Fish.  22:43-54. 

 

Abstract 

Understanding the environmental factors that regulate fish recruitment is essential 

for effective management of fisheries.  Generally, first-year survival, and therefore 

recruitment, is inherently less consistent in systems with high intra- and interannual 

variability.  Irrigation reservoirs display sporadic patterns of annual drawdown, which 

can pose a substantial challenge to recruitment of fishes.  We developed species-specific 

models using an 18-year data set compiled from state and federal agencies to investigate 

variables that regulate the recruitment of walleye (Sander vitreus) and white bass 

(Morone chrysops) in irrigation reservoirs in southwest Nebraska, USA.  The candidate 

model set for walleye included only abiotic variables (water-level elevation, minimum 

daily air temperature during winter prior to hatching, annual precipitation, spring 

warming rate and May reservoir discharge), and the candidate model set for white bass 

included primarily biotic variables (catch per unit effort (CPUE) of black crappie 

(Pomoxis nigromaculatus), CPUE of age-0 walleye, CPUE of bluegill (Lepomis 
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macrochirus) and CPUE of age-3 and older white bass), each of which had a greater 

relative importance than the single abiotic variable (minimum daily air temperature 

during winter after hatching).  Our findings improve the understanding of the recruitment 

of fishes in irrigation reservoirs and the relative roles of abiotic and biotic factors. 
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Introduction 

Game management is often predicated on the desire to maintain predictable 

populations that can sustain consistent harvest over multiple years (Rosenberg et al. 

1993; Heino 1998).  Unfortunately, in many systems, population variability is the norm 

rather than the exception (Gaston and McArdle 1994).  For example, recruitment – often 

considered to be the most influential factor governing fish populations (May 1974; 

Gulland 1982; Donald 1997; Houde 2002) – is inherently less consistent in systems with 

high intra- and interannual variability.  Fish are especially vulnerable during early life 

stages, particularly in reservoirs where unpredictable water fluctuations are common 

(June 1977; Beam 1983; Maceina and Stimpert 1998), as habitat constancy is inherently 

linked to constancy in weather patterns (Houde 1987; Mion et al. 1998; Hoxmeier et al. 

2004).  Challenges for fish to recruit are exacerbated by water-level variability (Carline 

1986), especially in irrigation reservoirs that experience unpredictable and often 

amplified summer draw-downs in response to sporadic extremes in abiotic conditions 

(Quist et al. 2003b; Olds et al. 2011).   

Abiotic and biotic factors are known to regulate the recruitment of fishes, but 

specific factors regulating individual species are more difficult to ascertain.  Abiotic 

conditions such as temperature, light, salinity, and oxygen clearly regulate growth rate 

(Brett 1979) and in some cases survival (Oliver et al. 1979; Post and Evans 1989; Fox 

and Keast 1991; Johnson and Evans 1991).  However, biotic conditions are often equally 

important although generally more complex.  For example, survival and growth generally 

covary with food availability (Persson and Greenberg 1990; Leggett and DeBlois 1994), 
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which is influenced by prey abundance (Ritchie and Colby 1988; Peterson et al. 2006), 

temporal and spatial overlap of predator hatching with prey availability (i.e., 

match/mismatch; Cushing 1990; Chick and VanDenAvyle 1999; Kaemingk et al. 2011), 

intraspecific competition (Partridge and DeVries 1999; Knoll 2007), and interspecific 

competition (Michaletz et al. 1987; Roseman et al. 1996; Garvey and Stein 1998; 

Kaemingk et al. 2012).  Similarly, predation also regulates recruitment (Leggett and 

DeBlois 1994; Köster and Möllmann 2000), and is influenced by cannibalistic 

conspecifics (Chevalier 1973; Fox 1975; Polis 1981) and interspecific interactions (Pope 

et al. 1996; Quist et al. 2003b).  Ultimately, understanding fish population dynamics, 

particularly in environments with strong periodic cycles in fish abundance, requires 

understanding the extent to which biotic and abiotic factors interact to limit fish 

recruitment.    

Walleye Sander vitreus and white bass Morone chrysops are among the most 

popular sportfish in the reservoirs of the Great Plains, USA (Stone 1996; Bauer 2002; 

Hurley and Duppong-Hurley 2005).  Despite considerable effort by the Nebraska Game 

and Parks Commission (NGPC) stocking walleye and managing reservoirs for walleye 

and white bass, populations of walleye and white bass in southwest Nebraska (USA) 

reservoirs are dynamic (Huber 2010a-d; Newcomb 2010), as erratic recruitment has led 

to “boom and bust” fisheries for these two species.  Although analyses from regionally 

similar systems provide some insight (Quist et al. 2002; 2003b), differences exist among 

systems, and specific reasons for the dynamic nature of these populations are largely 

unknown.  Thus, further knowledge of the factors regulating walleye and white bass 
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recruitment in irrigation reservoirs is required to understand the ecology of these fishes in 

the semi-arid Great Plains region.   

 

Methods 

Study area and reservoirs 

The Republican River is an impounded tributary to the Kansas River; the 

Republican River basin is contained within three states (Figure 1.1) in the Great Plains 

region of the United States of America.  Forty percent of the basin is in Nebraska (USDA 

1978), where it drains nearly 25,000 km2 of primarily rangeland and cropland into 1,826 

km of streams and rivers (Bliss and Schainost 1973).  Catastrophic flooding in 1935 

prompted the construction of five large multipurpose reservoirs (Table 2.1; Figure 1.1) in 

the Republican River basin in Nebraska:Enders Reservoir, Harlan County Lake, 

Medicine Creek Reservoir (Harry D. Strunk Lake), Red Willow Reservoir (Hugh Butler 

Lake), and Swanson Reservoir.  Harlan County and Swanson reservoirs are on the 

mainstem of the Republican River, whereas Enders, Medicine Creek, and Red Willow 

reservoirs are on separate tributaries to the Republican River.  Species commonly present 

in these reservoirs include black crappie Pomoxis nigromaculatus, bluegill Lepomis 

macrochirus, channel catfish Ictalurus punctatus, common carp Cyprinus carpio, 

freshwater drum Aplodinotus grunniens, flathead catfish Pylodictis olivaris, gizzard shad 

Dorosoma cepedianum, hybrid striped bass M. chrysops × M. saxatilis, largemouth bass 

Micropterus salmoides, northern pike Esox lucius, smallmouth bass Micropterus 

dolomieu, walleye, white bass, and white crappie Pomoxis annularis.  Most of the species 
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present in the reservoirs are indigenous to the drainage; nonindigenous species include 

black crappie, common carp, hybrid striped bass, largemouth bass, and smallmouth bass 

(USGS 2009). 

As a result of agricultural over-development (i.e., over-appropriation of 

groundwater wells for cropland irrigation) in the region, flows are substantially reduced 

compared to circa-1970 levels throughout the Republican River basin (Szilagyi 1999; 

2001).  This reduction in flow has been attributed to cropland irrigation, changes in 

vegetative cover, water conservation practices, and construction of reservoirs and 

artificial ponds in the basin, all of which increase the amount of water lost to evaporation 

over the basin (Szilagyi 1999; 2001).  Thus, only Medicine Creek Reservoir delivers 

water for irrigation on a regular basis; the other reservoirs deliver water for irrigation 

only sporadically when there is sufficient inflow. 

 

Data collection  

Data for walleye, white bass, bluegill, black crappie, white crappie, freshwater 

drum, and gizzard shad were obtained from standardized experimental gillnet surveys 

conducted by NGPC during autumn 1993-2010.  A standard survey consisted of 4-8 

gillnets that were set overnight once in each reservoir during autumn of each year.  

Gillnets were 45.6 m long and 1.8 m deep, with 6 7.6-m panels consisting of 1.9, 2.5, 3.2, 

3.8, 5.1, and 7.6 cm bar mesh.  We used catch per unit effort (CPUE; number per gillnet 

night) as an index of abundance.  Although trapnets are the standard gear for assessing 

bluegill and crappie populations, use of the experimental gillnet dataset provided us with 



42 
 

 

both longer-term data and more complete data than use of the trapnet dataset.  Ages of 

captured walleye and white bass were determined by a single reader from NGPC, using 

scales pressed into acetate slides and a microfiche reader (Smith 1954).  Age was not 

assigned to other fishes.  Autumn age-0 fish are often considered an acceptable stage to 

measure recruitment (Willis 1987); however, here we considered age-1 walleye and age-1 

white bass from autumn gillnets to be recruited to the population, as age-1 abundance is a 

more conservative estimate that considers overwinter mortality (sensu Pratt and Fox 

2002), among other factors.  Furthermore, experimental gillnets do not accurately sample 

young-of-year walleye or white bass.  We obtained hydrological data for reservoirs (e.g., 

water elevation, irrigation fluctuation, and precipitation; see Table 2.2) for 1993-2009 (1-

calendar-year advance of age-1 walleye and age-1 white bass data) from the U.S. Bureau 

of Reclamation (USBR 2010).  We obtained air temperature data (Table 2.2) unique to 

each reservoir for 1993-2009 (1-calendar-year advance of age-1 walleye and age-1 white 

bass data) from the National Oceanic and Atmospheric Administration’s National 

Climatic Data Center (NCDC 2010).   

 

Statistical analyses 

We used 1-way ANOVA to test for differences in minimum monthly air 

temperature between the months of April and May during 1994-2009 to verify that 

minimum air temperature did in fact increase during spring.  Likewise, we used 1-way 

ANOVA to test for differences in extent of range of monthly air temperature (maximum 

monthly temperature minus minimum monthly temperature during a given year) between 
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the months of April and May during 1993-2009 to verify that temperature fluctuations 

decreased as spring progressed.  We used independent Durbin-Watson tests to test for 

temporal autocorrelation on residuals in the candidate model sets.  We loge-transformed 

(ln[x + 1]) CPUE of each species, and transformed independent variables when 

appropriate.  Out of 79 available year-by-reservoir combinations, there were 12 instances 

of zero catch of age-1 walleye, and 7 instances of zero catch of age-1 white bass (Figure 

2.2).  All independent variables were assigned a 1-calendar-year advance, so as to model 

their effect on age-0 walleye and age-0 white bass.  From the 51 independent variables 

(43 for each species, Table 2.2), we developed multiple-linear regression models that best 

described ln(CPUE) during 1994-2010 for age-1 walleye and age-1 white bass 

independently (Figure 2.1), using reservoir as a fixed factor.  We developed a model set 

using stepwise multiple linear regression, with variables added based on their adjusted 

R2.  Each model produced by an iteration of the stepwise selection process was included 

in the model set until a maximum of adjusted R2 for each model set was determined.  We 

then selected a subset of candidate models from among the set of developed models using 

Akaike’s Information Criterion (Akaike 1987) corrected for small sample size (AICc, 

Hurvich and Tsai 1989).  We excluded models with a ∆AICc > 2 from the subset of 

candidate models (Royall 1997).  We assessed relative variable importance (RVI) by 

summing the AICc weights over all models including the explanatory variable.  We 

compared the RVI for all variables included in the candidate model set to evaluate our 

hypothesis.  We conducted statistical analyses using SAS (Version 9.2, SAS Institute 
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Inc., Cary, NC) and R (Version 2.14.0, The R Foundation for Statistical Computing; 

Vienna, Austria).   

 

Results 

Durbin-Watson tests for temporal autocorrelation on model residuals were not 

significant.  The minimum temperature in this region during April (-7.5 ± 2.8 °C, mean ± 

SD) was significantly less (1-way ANOVA, F = 337.3, df = 156, p <0.0001) than during 

May (0.1 ± 2.4 °C).  Furthermore, the mean monthly extent of temperature range during 

April (37.6 ± 4.4 °C) was significantly greater (1-way ANOVA, F = 28.56, df = 156, p 

<0.0001) than during May (33.9 ± 4.5 °C). 

The candidate model set for walleye (Table 2.3) included two models with a 

∆AICc ≤ 2.  There were 5 abiotic and no biotic variables present in the candidate model 

set; reservoir was also present in the walleye candidate model set.  The mean (± SE) 

adjusted R2 for the walleye candidate model set was 0.67 ± 0.01.  Four variables in the 

candidate model set had an RVI > 0.9; three variables had an RVI > 0.99 (Table 2.4).   

The candidate model set for white bass (Table 2.5) included three models with a 

∆AICc ≤ 2.  There were 4 biotic variables and 1 abiotic variable present in the candidate 

model set; reservoir was not present in the white bass candidate model set.  The mean 

adjusted R2 for the white bass candidate model set was 0.33 ± 0.02.  Two variables in the 

candidate model set had an RVI > 0.9 (Table 2.4).   
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Discussion 

Walleye recruitment 

The most important variable in the candidate model set for walleye was maximum 

reservoir water level, which was negatively related to year-class strength of walleye.  

Quist et al. (2003b) also found year-class strength of walleye to be negatively correlated 

with reservoir elevation, though they were unable to explain the mechanism behind these 

trends; they hypothesized it may have to do with small (i.e., 1-2 m) increases in reservoir 

water level during low-water years providing increased spawning habitat or increased 

production of prey species.  In our study reservoirs, high reservoir water levels generally 

indicated sufficient volume in the reservoir for irrigation discharge.  Another variable in 

the candidate model set was May reservoir discharge, which was also negatively related 

to year-class strength of walleye.  However, annual precipitation was also included in the 

candidate model set, but it was positively related to year-class strength of walleye.  

Sufficient volume for irrigation discharge was generally only present in years with 

abundant annual precipitation, though irrigators need to apply less water in wet years.  

Thus, discharge was at a lower volume and typically started later in the year, after some 

of the age-0 walleye had moved away from the dam.  Nonetheless, high discharge can 

entrain age-0 walleye through the dam leading to a direct reduction in the number of 

potential recruits in the reservoir (Walburg 1971).  High discharge levels during May 

could also lead to low zooplankton abundance (sensu Watson et al. 1996; Kalff 2003), 

which could reduce food availability for larval walleye at a critical stage.  Furthermore, 

previous studies indicate that harvest (Aggus and Bivin 1982), standing crop, natural 
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reproduction, and spawning success of walleye (Willis and Stephen 1987) is greater in 

reservoirs with low discharge (i.e., retention time > 1 year); as such, larval walleye may 

not be suitable for stocking into reservoirs with high discharge (Willis and Stephen 1987; 

Johnson et al. 1988).   

The second-most important variable in the candidate model set for walleye was 

maximum winter temperature (experienced by sexually mature adult walleye prior to 

spawning), which was negatively related to year-class strength of walleye; recruitment is 

weak the following year when winter temperatures are warm (Colby and Nepszy 1981).  

Annual maturation of adult walleye gonads requires water temperatures below 10°C, thus 

if water temperatures are not sufficiently cold enough for a long enough duration, walleye 

may skip spawning and resorb their gametes over the next season (Colby and Nepszy 

1981).  Ova resorption interferes with development of next generation of oocytes, leading 

to skipping of the next spawning period (Colby et al. 1979).  Thus, failure to spawn in 

one season because of elevated winter water temperature may lead to failure to spawn in 

the following season, leading to the loss of back-to-back year classes (this was 

unaccounted for in our models).  

The number of spring growing-degree days was positively related to year-class 

strength of walleye.  Warm spring water temperatures may accelerate spawning and 

shorten egg incubation time (Busch et al. 1975; Colby et al. 1979), and result in greater 

growth rates for larval walleye (Busch et al. 1975; Colby et al. 1979).  These factors 

allow larval walleye to accelerate their development, switching to piscivory earlier, and 

therefore increasing their resource intake and ultimately increasing recruitment (sensu 
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Quist 2003a).  In previous studies, both spring warming rate (Busch et al. 1975; 

Madenjian et al. 1996) and mean spring temperature (Quist et al. 2003b) were positively 

related to recruitment of walleye.   

Reservoir, included in the models as a fixed factor, was present in the candidate 

model set for walleye.  Thus, there may be differences among these reservoirs in walleye 

recruitment.  Although age-0 walleye abundance was present in the candidate model set 

for white bass, age-0 white bass abundance was not present in the candidate model set for 

walleye.  This is most likely because the abiotic factors mentioned above had a greater 

influence on walleye recruitment.  Moreover, we believe the stocking of walleye 

potentially confounds the relationship between walleye recruitment and abundance of 

age-3 and older walleye, which is why it was not present in our candidate model set.   

Ultimately, these abiotic conditions not only influence walleye, they also 

influence the entire reservoir community, which in turn affects the walleye population.  

Thus, it is likely that these abiotic factors act both directly and indirectly on walleye 

recruitment.  If early-season storms or abrupt changes in temperature (an abiotic factor) 

influence larval walleye production, they likely also influence the production of 

zooplankton (a biotic factor), in particular the phenology and abundance.  Changes in 

zooplankton composition and abundance could also affect many other age-0 and adult 

fishes, thus complicating the nature of the relationship between abiotic and biotic factors 

influencing walleye recruitment.   
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White bass recruitment 

The most important variable in the candidate model set for white bass was black 

crappie abundance, which was positively related to year-class strength of white bass.  The 

second-most important variable in the candidate model set for white bass was age-0 

walleye abundance, which was also positively related to year-class strength of white bass.  

Given that larval white bass compete for resources with other age-0 fishes, including 

walleye (Michaletz et al. 1987; Beck et al. 1998) and black crappie (Pope et al. 1996; 

Galinat et al. 2002), it is likely that resource conditions (e.g., abundant zooplankton and 

reservoir inflow) that favor recruitment of one of these species will also benefit the other 

two.   It is also possible that adult crappie and age-0 walleye predation on abundant age-0 

gizzard shad (Michaletz 1997; Quist 2003a) reduces competition between age-0 white 

bass and age-0 gizzard shad for zooplankton (Michaletz et al. 1987).  Alternatively, it is 

possible that large abundances of age-0 walleye may provide a “shading effect” (as 

alternative prey, sensu Forney 1976) for age-0 white bass.  White bass, black crappie, and 

saugeye Sander vitreus × S. canadensis also respond similarly to reservoir hydrology, 

producing weak year classes in dry years and strong year classes in wet years (Sammons 

and Bettoli 2000).  As we discussed with walleye, the distinction between abiotic or 

biotic factors as regulators of recruitment of white bass is complicated.   

The third-most important variable in the white bass candidate model set was 

bluegill abundance, which was negatively related to year-class strength of white bass.  

Age-0 white bass consume both zooplankton and invertebrates before becoming 

piscivores (Matthews et al. 1992, Quist et al. 2002).  Age-0 bluegill consume primarily 
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zooplankton (Kaemingk et al. 2012) and age-1 and older bluegill consume primarily 

macroinvertebrates (Olson et al. 2003).  This could create scenarios where bluegill and 

age-0 white bass compete for food resources, which could explain the negative 

correlation in our model.  However, given that year-class strength of white bass was 

positively correlated to both black crappie abundance and age-0 walleye abundance and 

negatively correlated to bluegill abundance, further investigation of species-specific 

interactions in these systems is needed. 

Another variable in the white bass candidate model set was abundance of age-3 

and older white bass, which was positively related to year-class strength of white bass.  

Abundance of age-3 and older white bass was used as a surrogate metric for abundance 

of spawning adults, as no evaluation of the condition of white bass gonads was performed 

in the field during sampling.  The coefficient (≈ 0.3) for this stock-recruit regression 

(log[WHB]-log[WHB_3_PLUS]) is less than 1; thus, there is likely a density-dependent 

mechanism that is influencing white bass recruitment.  Spawning activity of white bass is 

positively related to reservoir inflows during spring (Quist et al. 2002), however there 

was no evidence in these reservoirs of a white bass spawning migration during the spring 

(Martin et al. 2009) likely because of limited inflows in most of the years studied.  

Spawning adult abundance is generally considered to be positively related to year-class 

strength of most fishes (Myers and Barrowman 1996).  However, unlike walleye 

populations, which are regularly augmented by stocking, white bass populations in these 

systems are self-sustaining, thus leading to the presence of a relationship between white 

bass recruitment and abundance of age-3 and older white bass.   
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Minimum winter air temperature (winter after hatching) was the only abiotic 

variable included in the white bass candidate model set; the relationship was positive, 

indicating white bass recruitment is positively influenced by milder (i.e., warmer 

minimum temperatures) winters.  Predation and starvation are important overwintering 

factors for age-0 white perch Morone americana (Fitzgerald et al. 2006).  In another 

study, 71% of age-0 white perch died at 2.5° C versus only 11% at 4.0° C, a finding 

linked to the white perch remaining active but not feeding at 2.5° C, maintaining their 

basal metabolic rate while reducing their energy intake leading to a net energy deficit 

(Johnson and Evans 1991).  Size-dependent over-winter mortality was also a factor; 

smaller white perch (Johnson and Evans 1991) and smaller striped bass Morone saxatilis 

(Hurst and Conover 1998; Sutton and Ney 2001) died before larger conspecifics of the 

same cohort.  Other abiotic factors have been related to white bass recruitment, including 

spring precipitation and air temperature in eastern South Dakota glacial lakes (Pope et al. 

1997), spring air temperature in a northwestern South Dakota reservoir (Phelps et al. 

2011), and spring inflow in Kansas reservoirs (Quist et al. 2002; Schultz et al. 2002) 

 

Interspecific differences in spawning period 

There is a need to refine existing knowledge about factors that regulate 

recruitment of fishes, particularly in changing environments (Baccante et al. 2011).  Early 

spawning species are likely more subjected to adverse abiotic conditions because weather 

in this region is typically more volatile during early spring (i.e., greater likelihood of cold 

fronts and greater temperature variability during early spring than during late spring; 
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Coupland 1958).  In contrast, late spawning species are likely less subjected to adverse 

abiotic conditions and likely more subjected to adverse biotic conditions because many 

species, including numerically dominant common carp and gizzard shad, spawn during 

this period, and zooplankton abundance declines during this period (Sullivan et al. 2012) 

and could become limited.   

The candidate-model set for walleye (Table 2.3) included only abiotic variables, 

and the candidate-model set for white bass (Table 2.5) included mostly biotic variables, 

each of which had a greater relative importance than the single abiotic variable in the 

candidate-model set.  Essentially, we believe earlier-spawning species like walleye spawn 

during a period typified by predictable biotic conditions and unpredictable abiotic 

conditions, whereas later-spawning species like white bass spawn during a period typified 

by unpredictable biotic conditions and predictable abiotic conditions.  In most of the 

reservoirs we studied, walleye was one of the first, if not the first, species to spawn each 

year; only northern pike spawn earlier among the suite of common species.  Thus, in a 

given year, larval walleye are typically the first to emerge and feed in an environment 

that is biotically predictable.  However, walleye in these systems spawn during a period 

where early spring storms and cold fronts produce strong winds that can dislodge or 

damage walleye eggs, increase water turbidity, or present a lingering decrease in air 

temperature, all of which can negatively affect walleye recruitment.  Furthermore, 

changing temperatures could also lead to reduced hatching success, or alter adult 

behavior and thus the duration or periodicity of spawning activity.   
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Alternatively, white bass spawn approximately a month after walleye (Carlander 

1997), and the larvae emerge into a dramatically different environment.  There are 

several species that spawn approximately the same time as white bass, including 

smallmouth bass, black crappie, white crappie, and freshwater drum (Carlander 1977; 

Bur 1984).  Furthermore, common carp and gizzard shad, which also spawn 

approximately the same time as white bass (Quist et al. 2004), can numerically dominate 

the age-0 fish community in these systems (Sullivan et al. 2011).  Larval white bass must 

compete for zooplankton with other fishes, in particular hyper-abundant common carp 

and gizzard shad larvae.  Furthermore, zooplankton abundance declines during this 

period (Sullivan et al. 2011), and could become limited.  Therefore, the emergence of 

these fishes within a short period creates an environment that is biotically unpredictable 

as compared to when walleye larvae emerged.  However, the abiotic environment during 

this later period is more predictable than when walleye spawn, with milder temperatures 

and more consistent temperature fluctuations. 

We believe that these scenarios offer the most plausible interpretation of the 

observed patterns.  Alternatively, it is possible that adhesive eggs are more vulnerable to 

abiotic conditions than semi-buoyant eggs, or that demersal spawning activities may be 

regulated by abiotic factors and pelagic spawning activities may be regulated by biotic 

factors.  However, it is also plausible that abiotic factors regulate recruitment of both 

walleye and white bass, with white bass recruitment being regulated indirectly by the 

abundance of other species that are regulated by abiotic conditions.  Additional research 
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from other regions and species is needed to provide further evidence and to fully explore 

inherent complexities. 

 

Conclusions 

Our study provides essential information regarding factors regulating recruitment 

of walleye and white bass in irrigation-reservoir ecosystems, and indicates that variability 

in the fish’s environment within and among years may be influential in determining the 

nature of those factors.  Our models could be used by biologists and managers to better 

understand recruitment of walleye and white bass in irrigation reservoirs throughout the 

southern Great Plains.  Understanding the recruitment of fishes is a critical step in 

improving our knowledge of their ecology, not only in this region, but throughout semi-

arid regions of the world. 
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Table 2.1.  Hydrological characteristics of the Republican River reservoirs in Nebraska, 

USA.  Surface area and maximum depth are based on active conservation pool elevation.  

Annual fluctuation was the mean ± SE during 1993-2009. 

          

Reservoir 
Surface  
area (ha) 

Maximum  
depth (m) Basin (ha) 

Annual  
fluctuation (m) 

Enders 485 18.3 284,100 2.6 ± 1.5 
Harlan County 5,362 15.2 1,855,500 2.9 ± 1.8 
Medicine Creek 737 13.7 227,900 4.3 ± 1.8 
Red Willow 659 15.8 189,000 2.3 ± 1.2 
Swanson 2,023   14.6 2,232,600   2.4 ± 1.6 
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Table 2.4.  Relative variable importance (RVI) for variables (Table 2.2) present in the 

candidate models sets for recruitment of walleye (Table 2.3) and white bass (Table 2.5) to 

age 1.  Data were from the Republican River basin, Nebraska, USA 1993-2009.   

Variable RVI 

Walleye 

ACP_MAX 0.999 
WIN_TMAX_ED 0.997 
RES 0.991 
PRECIP_YR 0.939 
SPRING_GDD 0.872 
Q_MAY 0.642 

  
White bass 

BLC 0.950 
WAE 0.948 
BLG 0.824 
WHB_3PLUS 0.731 
WIN_TMIN_OWM 0.604 
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Figure 2.1.  Loge-transformed (ln[x + 1]) catch per unit effort (ln(CPUE); number per 

gillnet night) of age-1 walleye and age-1 white bass during 1994-2010 from the five 

reservoirs of the Republican River basin in Nebraska, USA.   
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Chapter 3: COUNTERINTUITIVE LIFE-HISTORY EXPRESSION IN A 

HIGHLY VARIABLE ENVIRONMENT 

 

Abstract 

 Differing life-history strategies may act as a constraint on reproductive expression 

that ultimately limits the ability of individual species to respond to changes in the 

magnitude or frequency of environmental variation, and potentially underlies the 

variation that is often inherent in phenotypic and evolved responses to anthropogenic 

change.  Alternatively, differential expression of life-history strategies may represent 

differences in the adaptive capacity to optimize current reproductive value given 

variation in environmental conditions, if there are environmental cues that predict 

reproductive potential.  We compared several aspects of walleye Sander vitreus spawning 

ecology at two reservoirs that differ in environmental variability (i.e., annual water-level 

fluctuation) to identify the capacity of phenotypic expression and the corresponding 

association with age.  Despite significant differences in female body and liver masses 

between reservoirs that differ in environmental variability, we found no difference in 

reproductive investment measured by egg size and fecundity.  Thus, walleye in a highly 

variable environment appear to exhibit reproductive traits more typical of a short-lived 

life-history strategy, which may be resultant from the interaction of several factors, 

including environmental and anthropogenic pressures.  This finding emphasizes the need 

to identify the degree to which life-history expression represents physiological constraints 
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versus ecological optimization, particularly as anthropogenic change continues to alter 

environmental conditions.  
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Introduction 

Life-history theory predicts that environmental variability in resource availability 

will lead to differential allocation in reproduction (Williams 1966; Trivers 1972; Roff 

1992; Stearns 1992); however, relative allocation among species is not equivocal given 

the same environmental conditions.  Along a continuum of slow to fast life-history 

strategies (e.g., long-lived and low-fecundity versus short-lived and high-fecundity; 

Stearns 1992), slow-living species are expected to allocate resources to survival and 

future reproduction, whereas fast-living species are expected to allocate resources to 

current reproduction (Charlesworth 1980).  Differing life-history strategies may thus act 

as a constraint on reproductive expression that ultimately limits the ability of individual 

species to respond to changes in the magnitude or frequency of environmental variation, 

and potentially underlies the variation that is often inherent in phenotypic responses to 

anthropogenic change (e.g., Kramer 1995; Post and Stenseth 1999; Walther et al. 2002; 

Schneider et al. 2010).  Alternatively, rather than representing a constraint that is 

optimized among competing physiological functions, differential expression of life-

history strategies among species may represent differences in the adaptive capacity to 

optimize current reproductive value given variation in environmental conditions (i.e., 

learning; Boag and Grant 1984).  Assuming longevity facilitates the matching of 

phenotypic expression to ecological conditions through learning (sensu Buchanan et al. 

2013), on the whole, slow-living species exposed to variable environments may express 

more conservative reproductive strategies that more closely match the benefits of future 

reproductive investment, whereas fast-living species exposed to variable environments 
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may express more aggressive reproductive strategies that more closely match the benefits 

of current reproductive investment (Forbes 1991; Bårdsen et al. 2008).    

Irrigation reservoirs across the Great Plains are stocked with walleye Sander 

vitreus to provide a recreational fishery for anglers.  Walleye evolved in the relatively 

stable and predictable environs of glacial lakes and rivers (Scott and Crossman 1973; 

Bailey and Smith 1981), but the abiotic conditions of irrigation reservoirs are highly 

variable and unpredictable, often based on the nuances of agricultural needs.  The ‘harsh’ 

environment of irrigation reservoirs leads to significant fluctuation in walleye 

recruitment, which is closely tied to abiotic conditions, including reservoir water level 

(DeBoer et al. 2013).  Water released from reservoirs for irrigation can carry age-0 

walleye and zooplankton through the dam causing a direct reduction in recruits (Walburg 

1971) as well as reducing food availability for larval walleye (sensu Watson et al. 1996; 

Kalff 2003), required at this critical life stage.  Walleye exhibit reproductive traits of both 

fast-living and slow-living species: they have small eggs, high fecundity, and provide no 

parental care, but also delay maturation and spawn once annually.  Even using more-

complex life-history models (Winemiller and Rose 1992; Winemiller 2005), walleye still 

exhibit intermediate reproductive traits.  It is important to note that life-history 

continuums are not continuous, but rather have discrete trade-offs that likely lead to 

among-species zones of concentration in trait expression.  Thus, it is very easy to identify 

the endpoints of the continuum because all of the trade-offs lead to a convergence of life-

history expression.  More challenging to understand is the manifestation of the ‘middle’, 

where trade-offs between life-history traits may lead to differential life-history expression 
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among species, or even among populations, which are experiencing the same ecological 

conditions.   Nonetheless, if there are environmental cues that predict reproductive 

potential, then we might expect phenotypic adaptation to different abiotic conditions.  

Furthermore, given the longevity of walleye and the high costs of reproduction, we would 

predict phenotypic adaptation would increase with age – older walleye should modify 

their reproductive output more than younger walleye, given the same environmental 

conditions.   

Our goal was to compare aspects of walleye spawning ecology at two reservoirs 

that differ in environmental variability to identify the capacity of phenotypic adaptation 

and the corresponding association with age.  Specifically, we compared the presence and 

nature of the relationship between (1) female age and spawning phenology and (2) female 

condition, size and reproductive investment, in environments that differ in the degree of 

annual variation in water level.  We knew older fish generally spawn first (Miranda and 

Muncy 1987, and references therein), and that fish are indeterminate growers that exhibit 

positive allometric relationships between size and condition, and size and gonadal 

investment.  However, gonadal investment in fishes is influenced by environmental 

factors across populations, as well as by maternal factors within populations (Baltz and 

Moyle 1982; Johnston and Leggett 2002; Venturelli et al. 2010).  Thus, we predicted that 

(1) older females will spawn before younger females independent of water-level 

variability, but that females from environments with less annual variation in water level 

will (2) spawn before females from environments with more-variable water levels 

independent of female age, (3) be in greater relative condition than females from 
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environments with more-variable water levels, and (4) make a greater relative investment 

in reproduction than females from environments with more-variable water levels.   

 

Methods 

 Study site and data collection 

Nebraska is at the southwestern edge of the walleye’s native range (Carlander 

1997) and is typified by extreme seasonal variability in temperature and precipitation 

(Matthews 1988).  As a result, reservoirs in the region are subject to a wide range of 

environmental conditions including extreme changes in water level (June 1977; Willis 

1986; Olds et al. 2011), turbidity (Bremigan 1997; Gido and Matthews 2000; Olds et al. 

2011), and temperature (Willis 1986; Olds et al. 2011), all of which can be exacerbated 

by seasonal agricultural irrigation demands.  Water temperatures can approach or exceed 

30°C during summer, thus walleye in southwest Nebraska likely are at the upper thermal 

limit at which they can thrive (Colby et al. 1979).    

Reservoir water-level data for 2003-2012 were obtained from the U. S. Bureau of 

Reclamation (USBR 2013) for two reservoirs in the Republican River basin in southwest 

Nebraska that differed in the relative degree of annual water-level variability over the last 

10 years:  Swanson Reservoir (mean ± SE annual variation 17% ± 3% of maximum 

depth) and Medicine Creek Reservoir (annual variation 28% ± 5%).  Swanson has a 

surface area of 1,223 ha, a basin of 2,232,600 ha, and a maximum depth of 9.5 m; 

Medicine Creek has a surface area of 591 ha, a basin of 227,900 ha, and a maximum 

depth of 12.5 m.  Walleye were collected on alternate nights from March 25 to April 13 
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of 2012, but because of weather conditions, the actual number of sampling nights at each 

reservoir differed.  Two to three 100-m by 1.8-m monofilament gillnets with 7.6-cm bar 

mesh were set at approximately sunset in ~2 m of water in close proximity to the dam at 

each reservoir, the primary spawning site (Martin et al. 2011), and retrieved after 

approximately a 1-hour deployment.  Water temperature was measured at a depth of 1 m 

at the start of every net deployment.  Upon capture, males were released and each female 

was measured for total length (mm), weighed (g), and had her second dorsal spine 

removed for aging (DeVries and Frie 1996).  Each dorsal spine was later prepared and 

aged in the laboratory following standard protocol (Logsdon 2007).  Individual females 

usually spawn in one night (Ellis and Giles 1965); therefore, all female walleye captured 

were assumed to be in breeding condition.  All ripe females (i.e., those with distended 

abdomens that exuded eggs when gentle pressure was applied) were euthanized, and 

ovaries and the liver were extracted and weighed individually (0.1 g).  Walleye exhibit 

group synchronous ovarian development (Malison and Held 1996), therefore a ~5 mL 

sample of eggs was collected and weighed (0.1 g) from the posterior third of the right 

ovary from each euthanized fish to ensure eggs of the same developmental stage were 

sampled.  The egg samples were preserved with 10% buffered formalin phosphate.  Egg 

diameter of the first 25 eggs encountered from each sample was later measured (0.01 

mm) in the laboratory using an ocular micrometer on a dissecting microscope; the 

remaining eggs in each sample were counted. 
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Data analyses 

Females that had already released their eggs were excluded from analysis (only 

one such fish was captured).  Female age structure was estimated by calculating age-

specific daily catch per unit effort (i.e., number of females of each age group captured per 

hour of netting).  To determine if a difference existed between reservoirs, catch per unit 

effort was modeled as a function of day of year and reservoir.  To determine if any 

relationship existed between age and spawning phenology within a season and between 

reservoirs, age was modeled as a function of day of year and reservoir.  Body condition 

was compared between reservoirs by modeling body weight as a function of length and 

reservoir, and by modeling liver weight as a function of somatic weight and reservoir.  

Reproductive investment was indexed as fecundity, egg size, and gonad weight, all of 

which were independently modeled as a function of somatic weight and reservoir.  

Fecundity was estimated by multiplying the number of eggs in each sample by the ratio 

between total combined ovary weight and egg sample weight.   Egg size was indexed as 

the mean diameter of 25 eggs from each sample.  To determine if any relationship existed 

between water temperature and day of year between reservoirs, mean water temperature 

(calculated for each sampling date) was modeled as a function of day of year and 

reservoir.  We used SAS (Version 9.2, SAS Institute Inc., Cary, NC) for all analyses, with 

α = 0.05.  In all analyses, a significant reservoir term indicated a difference between 

reservoirs.   
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Results 

 Reservoirs did not differ in walleye spawning phenology (F = 0.96; df = 1, 37; P 

= 0.33) as the majority of walleye were captured during the first four sampling events; 

nearly half (50% from Swanson, 47% from Medicine Creek) of all fish were captured on 

a single day at each reservoir (Figure 3.1).  We collected 80 female walleye from 

Swanson and 37 from Medicine Creek: 69 and 29 were unripe, 11 and 7 were ripe, and 0 

and 1 were spent, respectively.  Female age ranged from 4 to 10 at Swanson and from 5 

to 9 at Medicine Creek (Figure 3.1), and there was no difference in mean age between 

reservoirs (F = 0.01; df = 1, 34; P = 0.93).  Body weight increased with total length at 

both reservoirs (F = 264.7; df = 1, 109; P < 0.0001), but females were heavier for a given 

length at Swanson (F = 6.5; df = 1, 109; P = 0.01; Figure 3.2).   

We obtained ovary and liver weights and egg samples from 11 breeding females 

at Swanson and 7 at Medicine Creek.  Female age ranged from 6 to 10 and mean age did 

not differ between reservoirs (F = 0.43; df = 1, 16; P = 0.51).  There was no relationship 

between egg size and somatic weight (i.e., body weight – [liver weight + gonad weight]) 

(F = 0.04; df = 1, 357; P = 0.85; Figure 3.3a) or between egg size and reservoir (F = 2.14; 

df = 1, 357; P = 0.1; Figure 3.4a); however, liver weight (F = 47.7; df = 1, 15; P < 

0.0001; Figure 3.3b), fecundity (F = 7.1; df = 1, 15; P = 0.02; Figure 3.3c), and gonad 

weight (F = 10.8; df = 1, 15; P = 0.005; Figure 3.4d) increased with somatic weight at 

both reservoirs.  Although females from Swanson had a greater relative liver weight than 

females from Medicine Creek (F = 22.04; df = 1, 15; P = 0.0003; Figure 3.3b), there was 

no difference between reservoirs in fecundity (F = 1.53; df = 1, 15; P = 0.2; Figure 3.3c) 
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or gonad weight (F = 4.04; df = 1, 15; P = 0.06; Figure 3.3d).  Water temperatures were 

stable during the sampling season (F = 0.06; df = 1, 9; P = 0.81), and did not differ 

between reservoirs (F = 0.2; df = 1, 9; P = 0.66).   

 

Discussion 

Understanding reproductive effort is a primary focus of life-history studies; life-

history theory predicts that large-sized and long-lived organisms should make 

reproductive decisions that favor survival when faced with energetic constraints (sensu 

Bårdsen et al. 2011).  Although reproductive trade-offs are widely documented 

(Winemiller and Rose 1992; Ricklefs 2000; Shine 2005; Brown and Sibly 2006), there 

are numerous failures to document the manifestation of trade-offs in life-history 

expression (Weber and Declerck 1997; Henriksson and Ruohomäki 2000; Milla et al. 

2006; Messina et al. 2007).  In particular, the interplay between stochastic environmental 

conditions and life-history expression, including reproductive investment, remains 

unclear (Messina and Fry 2003; Sgrò and Hoffmann 2004; Bertrand et al. 2006).  Life-

history theory predicts that slow-living, capital breeders (i.e., those that invest in 

reproduction via surplus energy, e.g., from visceral fat deposits) such as walleye 

(Henderson et al. 1996; Moles et al. 2008) in more-variable and lower-quality 

environments, such as exist at Medicine Creek, would be in relatively poorer condition 

and thus invest relatively less in reproduction (Roff 1983).  Our results supported those 

predictions; however, despite significant differences in female body mass and liver mass 

between reservoirs (Figure 3.2, 3.3b) we found no difference in reproductive investment 
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as measured by either egg size or fecundity (Figure 3.3a, c).  This evidence is counter to 

life-history theory and differs from conclusions that reproductive investment by walleye 

is sensitive to environmental conditions (Johnston and Leggett 2002).   

Although there is some evidence to suggest an energetic constraint, at least at the 

population level, the evidence to suggest adaptive phenotypic matching to environmental 

conditions is unclear.  Life-history theory predicts (Roff 1992; Stearns 1992) and 

empirical evidence has shown (fish: Hutchings 1991, Johnston and Leggett 2002, Wang 

et al. 2012; turtles: Rowe 1994; amphipods: Glazier 1999) that when individuals inhabit 

environments with unfavorable conditions for offspring, selection favors increased 

investment in fewer progeny.  However, we found no difference in egg size or fecundity 

between reservoirs (Figure 3.3a, c), despite differences in water-level variability and 

suspected differences in environmental conditions.  That we failed to find females 

adapting egg size to environmental conditions is surprising given previous findings in 

walleye (Johnston and Leggett 2002) and general indications that fish alter egg size to 

match environmental conditions (Stearns 1983; Kinnison et al. 1998); however our 

finding is not without precedence (Morrongiello et al. 2012; Régnier et al. 2013).  We 

also found no difference in egg size among females of different sizes, which is counter to 

previous studies (Johnston 1997; Wiegand et al. 2004; Venturelli et al. 2010).  In general, 

variation in offspring size within broods can reflect an adaptive strategy for dealing with 

an unpredictably variable environment (Marshall et al. 2008).  Indeed, it is possible that 

walleye at Medicine Creek cannot produce an egg large enough, within physiological 
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tradeoff bounds, to increase an individual offspring’s survival, and are thus not modifying 

egg size and number relative to females from Swanson.  

Even if females from Medicine Creek are not varying offspring size to cope with 

environmental conditions, successful reproduction still requires timing reproductive 

events to maximize reproductive potential.  Timing breeding to optimize food resources 

for offspring, for example, is a common reproductive strategy, as the consequences of 

mismatching are significant (Lack 1950; Cushing 1969, 1975, 1990; Martin 1987; Visser 

et al. 2006).  Differences in food resources between reservoirs would suggest differences 

in breeding phenology if females are matching ecological conditions.  Additionally, we 

would predict that older walleye would breed earlier to optimize ecological conditions for 

offspring and allow more recovery time post-breeding (Miranda and Muncy 1987; 

Schultz 1993; Cargnelli and Neff 2006; Donelson et al. 2008; Sydeman et al. 1991; 

Clutton-Brock et al. 1987; Sinervo and Doughty 1996).  We found no difference in 

breeding phenology among age groups or reservoirs as the overwhelming majority of 

females spawned in a 2- or 3-day period, which is also counter to previous studies 

(Miranda and Muncy 1987, and references therein).  That there was little variation in the 

timing of spawning indicates that there could also be strong selection (e.g., high rates of 

egg predation; Ims 1990; Eckrich and Owens 1995) favoring breeding synchrony (Estes 

1976; Smith 2004).  Still, while selection may explain why we failed to see age-

differentiated breeding phenology within reservoirs, breeding synchrony between 

reservoirs is more complex.   
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Synchrony in walleye breeding phenology between reservoirs suggests a common 

ecological condition coupled with a common cue that initiates breeding across both 

reservoirs.  Many fish species take cues (e.g., water temperature; Graham and Orth 1986; 

Webb and McLay 1996; Carscadden et al. 1997) from their environment to determine 

when to spawn (de Vlaming 1972), so it is reasonable that walleye in both reservoirs are 

using the same environmental cue, such as moon phase or water temperature, to precisely 

coordinate spawning activity.  It is also possible that walleye do not respond to 

environmental variability in a linear manner, or that the environmental variability in both 

reservoirs is above or below some threshold, or that our selected indicator of 

environmental variability is not related to female walleye egg development. 

Female walleye in these systems are likely responding to environmental 

variability by modifying life-history traits, including age at maturity and whether or not 

to trade-off between somatic and gonadal investment.  However, in addition to coping 

with abiotic variability, walleye in irrigation reservoirs also experience significant harvest 

mortality, which is known to have important implications for life-history expression 

(Ditchkoff et al. 2006; Godfrey and Irwin 2007; Arlinghaus et al. 2009).  Even though 

angling effort for walleye (number of angler-hours per hectare) is nearly twice as high at 

Medicine Creek, harvest of walleye (number of walleye captured per hectare) is over 

twice as high at Swanson (C. Chizinski, unpublished data).  Thus, walleye at Medicine 

Creek are not only subject to more extreme abiotic conditions, they are also subject to 

greater angling pressure, which could have negative synergistic consequences for walleye 
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at Medicine Creek by reducing not only the number of breeding females in the 

population, but also restricting the number of potential breeding opportunities.  

One possibility for our failure to demonstrate a trade-off is that the life-history 

traits we measured may not inform our understanding of the energetic trade-offs between 

survival and reproductive investment.  Life-history trade-offs are complex and often 

manifested through indirect pathways.  As an example, reduced reproductive investment 

is not always manifested in reduced fecundity, as there are inherent trade-offs in the size 

and number of offspring that ultimately shape investment (fish: Hutchings 1991, Johnston 

and Leggett 2002, Wang et al. 2012; turtles: Rowe 1994; amphipods: Glazier 1999).  

There are likely many indirect trade-offs that occur in walleye life-history expression, 

thus we believed it important to study multiple reproductive traits to improve our 

understanding of these trade-offs.  It seems unlikely that females at Medicine Creek are 

masking alternative trade-offs in life-history expression, as length-corrected mass 

regularly predicts reproductive investment in other fish species (Carlander 1969; 1977; 

1997).  Although mass may not always indicate condition (Schulte-Hostede et al. 2005), 

females from Medicine Creek exhibited many signs of physiological stress, including 

reduced visceral fat (J. DeBoer, personal observation), which is the primary source of 

energy for walleye gonadal development (Henderson et al. 1996; Moles et al. 2008).   

It is also possible that the production-oriented stocking strategy used to maintain 

populations of walleye in irrigation reservoirs is constraining local adaptation and 

variability in life-history expression that might naturally exist.  As with many 

recreational-fishery species, the range of walleye has expanded through stocking and 
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transplanting to enhance opportunities, particularly in reservoirs (Scott and Crossman 

1973; Colby et al. 1979).  For most fisheries-management agencies, walleye used for 

propagation are collected during a brief period (i.e., peak spawning activity) and from 

relatively few water bodies (often a single water body), not only to maximize efficiency 

of collection, but also to minimize time, effort, and money spent doing so.  By limiting 

the collection window, fisheries managers unintentionally select for walleye that spawn 

during the same 2- or 3-day period, which is a highly heritable trait (Noordwijk et al 

1981; Cooke and Findlay 1982; Gustafsson 1986; Danzmann et al. 1994; Fishback et al. 

2000; Leder et al 2006), suggesting the similarity in spawning phenology we observed 

between reservoirs is possibly the result of artificial selection.  This production-oriented 

stocking strategy could also impose different selection processes for stocked fish that 

spawn in these reservoirs compared to fish that are naturally produced in these reservoirs.  

Breeding time is known to be locally adapted for fishes (Otterå et al 2006; Quinn et al. 

2000), therefore the continual introduction of individuals from different environments 

may preclude the ability of walleye in these systems to adapt and effectively modify their 

breeding time (and other life-history traits) to suit the ecological conditions in a given 

environment (sensu Hansen et al. 2009).   

It is also possible that our failure to demonstrate a trade-off is a function of the 

“artificial” reservoir systems that we sampled in.  Given that walleye did not evolve in 

reservoir ecosystems, it is possible that life-history traits may respond differently in 

reservoirs as compared to other waters that walleye naturally evolved and reproduce in.  

Additionally, our sample size of ripe fish was fairly small, which could explain why we 
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did not find differences in egg size or fecundity among reservoirs; increasing the number 

of fish sampled likely would have provided more information.  Also, we only sampled 

during a single year; additional years of sampling likely would have provided more 

information by increasing environmental variance.   

Although the relative importance of natural reproduction by walleye in these and 

other irrigation reservoirs is unknown, the patterns we observed are nonetheless 

interesting.  Compared to walleye at Swanson Reservoir, walleye at Medicine Creek 

Reservoir appear to exhibit reproductive traits more typical of a short-lived life-history 

strategy, which may be resultant from the interaction of several factors, including 

environmental and anthropogenic pressures.  These factors could affect their population 

dynamics (Hansen et al. 1998); walleye in Medicine Creek could perceive this harsh 

environment as a survival constraint, and thus, accordingly modify their somatic and 

reproductive allocation (McBride et al. 2013).  As agricultural needs, and thus demands 

on irrigation reservoirs, continue to increase, it is imperative to understand the degree to 

which fish and other organisms can respond to increasingly altered environmental 

conditions. 
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Figure 3.1.  Mean ± SE catch per unit effort of female walleye during spring 2012 at 

Swanson Reservoir (○) and Medicine Creek Reservoir (▲), Nebraska (top panel).  

Composition of catch per unit effort by age for female walleye collected at Swanson 

(SW) and Medicine Creek (MC) during spring 2012 (bottom panels).  Day 85 was March 

25, day 105 was April 14.   
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Figure 3.2.  Body weight as a function of length for female walleye collected during 

spring 2012 from Swanson Reservoir (○) and Medicine Creek Reservoir (▲), Nebraska.   
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Figure 3.3.  Mean ± SE egg diameter (A), liver weight (B), fecundity (C), and gonad 

weight (D) as a function of somatic weight for female walleye collected during spring 

2012 from Swanson Reservoir (○) and Medicine Creek Reservoir (▲), Nebraska.  
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Chapter 4: CONCLUSIONS AND RECOMMENDATIONS 

 

 Walleye Sander vitreus and white bass Morone chrysops are among the most 

popular sportfish in the reservoirs of the Great Plains (Stone 1996; Bauer 2002; Hurley 

and Duppong-Hurley 2005).  Despite considerable effort by the Nebraska Game and 

Parks Commission (NGPC) stocking walleye and managing reservoirs for walleye and 

white bass, populations of walleye and white bass in southwest Nebraska reservoirs are 

dynamic, as erratic recruitment has led to “boom-and-bust” fisheries for these two 

species.  Thus, a better understanding of the factors affecting year-class strength and 

subsequent recruitment of walleye and white bass in irrigation reservoirs is important for 

fishery managers. 

 

General observations 

Long-term modeling 

Understanding the environmental factors that regulate fish recruitment is essential 

for effective management of fisheries.   The candidate model set for walleye included 

only abiotic variables (water-level elevation, minimum daily air temperature during 

winter prior to hatching, annual precipitation, spring warming rate and May reservoir 

discharge), and the candidate model set for white bass included primarily biotic variables 

(catch per unit effort (CPUE) of black crappie Pomoxis nigromaculatus, CPUE of age-0 

walleye, CPUE of bluegill Lepomis macrochirus, CPUE of age-3 and older white bass, 

and minimum daily air temperature during winter after hatching).  Our study provided 
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essential information regarding factors regulating recruitment of walleye and white bass 

in irrigation-reservoir ecosystems, and indicated that variability in the fish’s environment 

within and among years may be influential in determining the nature of those factors.   

Many of the variables in the candidate models sets are difficult to regulate or 

control (e.g., air temperature and precipitation).  Even though reservoir water-level 

fluctuation may not be directly controllable by NGPC, management can be tailored 

around it.  For example, I believe larval walleye may not be suitable for stocking in 

irrigation reservoirs that still operate as such (i.e., those with high annual water-level 

fluctuation like Medicine Creek Reservoir); two of my study reservoirs (i.e., Enders and 

Swanson reservoirs) do not discharge water regularly (or did not during the study period), 

and thus may have functioned more like flood-control reservoirs, with abundant littoral 

macrophytes and more-stable abiotic conditions, which appear to benefit walleye 

recruitment.  I also recommend operating and promoting these five reservoirs as a 

regional fishery, similar to what is done with the Salt Valley reservoirs around Lincoln, 

NE.   With the regional-fishery concept in mind, I believe it is important to explore the 

development and promotion of a pelagic piscivore community, featuring striped bass, 

hybrid striped bass, blue catfish, or some combination thereof, in reservoirs with high 

annual water-level fluctuation (and thus abundant gizzard shad populations). 

 

Walleye spawning ecology 

I compared several aspects of walleye spawning ecology at two reservoirs that 

differ in environmental variability (i.e., annual water-level fluctuation) to identify the 
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capacity of phenotypic expression and the corresponding association with age.  Despite 

significant differences in female body and liver masses between reservoirs that differ in 

environmental variability, I found no difference in reproductive investment measured by 

egg size and fecundity.  Although the relative importance of natural reproduction by 

walleye in these and other irrigation reservoirs is unknown, the patterns I observed are 

nonetheless interesting.  Walleye at Medicine Creek Reservoir appear to exhibit 

reproductive characteristics more typical of a short-lived life-history strategy, which may 

be resultant from the interaction of environmental and anthropogenic pressures.  These 

factors could affect their population dynamics (Hansen et al. 1998); walleye in Medicine 

Creek Reservoir could perceive this harsh environment as a survival constraint, and thus, 

accordingly modify their somatic and reproductive allocation (McBride et al. 2013).  As 

agricultural needs, and thus demands on irrigation reservoirs, continue to increase, it is 

imperative to understand the degree to which fish and other organisms can respond to 

increasingly altered environmental conditions.   

Understanding the contribution of stocked and naturally produced walleye will 

improve our understanding of walleye recruitment and, thus, management in these 

reservoirs.  First, I believe it is critical for NGPC to determine what proportion of the 

walleye populations in the state’s major walleye reservoirs (e.g., Sherman, McConaughy, 

Calamus, Swanson, and Harlan County) are comprised of naturally produced walleye.  

Although research from Harlan County Lake indicates that naturally produced fish may 

contribute little to year-class formation in irrigation reservoirs (Uphoff 2012), walleye 

occasionally produce moderate to strong year classes in years they are not stocked (see 
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Figure 4.1).  Also, the Harlan County Lake study was a single-year effort at a single 

water body, and there is likely extreme variability in stocking success (and also in natural 

spawning success) when multiple years and multiple reservoirs are considered.  Second, 

if naturally produced walleye do comprise a substantial proportion of the population in 

the state’s reservoirs, I believe it is important to understand how water-level fluctuation 

(and consequent water-quality conditions) affects not only adult fish physiology but also 

fish recruitment in those reservoirs, as my research indicates that water-level fluctuation 

is an important factor regulating fish recruitment in these reservoirs, and naturally 

produced fish may be better adapted to the specific ecological conditions in a given 

system. 

 

Tangential observations 

Walleye stocking 

Despite intensive effort maintaining a stocking program for walleye in these 

reservoirs, year-class strength of walleye is sporadic.  It is possible that the annual 

stocking of walleye was a confounding factor in my research; walleye were stocked in all 

years at all reservoirs I studied.  I believe it is possible that annual stocking of large 

numbers of walleye fry may actually be contributing to the erratic recruitment, because of 

the possibility for density-dependent constraints in years (or reservoirs) when prey 

availability is limiting.  Additionally, there appears to be little consideration regarding the 

effect of stocking walleye on white bass year-class strength in these reservoirs.  I 

performed a cursory analysis of the efficacy of stocking walleye, and also its effect on 
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white bass recruitment, from 1993-2011 by separately plotting the number of age-1 

walleye and white bass captured in fall gillnets the year after stocking, using stocking as 

2- and 3-level categorical variables (“yes-no” and “fingerling-fry-no”).  Although the 

data were skewed and there was considerable overlap in the distributions, there was some 

indication that stocking walleye (rather than not stocking walleye) does result in stronger 

walleye year classes (Figure 4.1), yet there is clear evidence of recruitment failure in 

years walleye were stocked.  Furthermore, any distinction of a benefit to year-class 

strength when comparing stocking fingerlings versus stocking fry is even less clear 

(Figure 4.2).  Although there appears to be no difference in white bass year-class strength 

when I plot stocking as “yes-no” (Figure 4.3), when I plot it as “fingerling-fry-no”, it 

appears that stocking fingerling walleye may result in weaker white bass year classes 

(Figure 4.4), perhaps because of competition for food resources, or even predation on 

age-0 white bass.  I believe that a more-detailed statistical analysis of these data needs to 

be performed to better understand the effects of stocking walleye in these reservoirs, both 

on walleye and white bass populations.  

 I believe that stocking walleye the year after a strong year class of walleye is 

produced may be an ineffective strategy.  Given that age-1 walleye still feed primarily on 

age-0 gizzard shad, a strong year class of age-1 walleye may out-compete the next year 

class, thus making stocking during the second year less effective, or even ineffective.  

Incidentally, a strong year class of walleye may be able to support a fishery for multiple 

years (R. Kill, unpublished data), which would make stocking the year after strong year-

class formation unnecessary, both ecologically and financially.  I believe it is possible to 
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initially address this question of consecutive strong year classes mathematically, by 

assessing the incidence of consecutive strong year classes of walleye (and white bass) 

from data currently available.  However, given the difficulty indexing year-class strength 

of walleye and white bass using age-0 fish (see Chapter 3), I also recommend additional 

research into developing a reliable method to accurately index year-class strength for 

walleye and white bass in irrigation reservoirs.   

 I also believe that stocking walleye fry into reservoirs with increased potential for 

food competition (e.g., with hyper-abundant gizzard shad (Michaletz et al. 1987; Quist et 

al. 2004) at Medicine Creek Reservoir) may be an ineffective strategy.  However, 

stocking walleye fingerlings that can feed on hyper-abundant gizzard shad larvae may be 

a more successful alternative, despite increased hatchery costs.  Likewise, stocking 

walleye fingerlings (rather than fry) might result in greater zooplankton abundance for 

larval white bass (and other larval fishes), which might improve recruitment of white bass 

at Medicine Creek.  It might also be possible to remove a substantial amount of adult 

gizzard shad (via piscivorous predator introduction) to reduce predation on zooplankton. 

 

Potential for egg predation 

While sampling for spawning walleye during spring 2012, I observed a prevalent 

co-occurrence of walleye, river carpsucker Carpiodes carpio, and common carp Cyprinus 

carpio.  During peak walleye spawning activity, mean daily catch per unit effort (CPUE) 

of walleye was significantly correlated with combined mean daily CPUE of river 

carpsucker and common carp (r = 0.64, p = 0.04; Figure 4.5).  I suspect river carpsucker 
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and common carp were preying on walleye eggs, although I did not perform diet analyses 

of carpsucker or carp.  River carpsucker are benthic detritivores with a broad diet, 

including algae, macroinvertebrates, and zooplankton (Becker 1983; Sublette et al. 1990).  

In Lake of the Ozarks, river carpsucker are benthic browsers that feed on periphyton 

associated with submerged rock substrate (Brezner 1958).  Although I found no records 

of river carpsucker feeding on fish eggs, similar species of catostomids are known egg 

predators (Spiegel et al. 2011).  Common carp have a broad diet that includes 

macroinvertebrates, plant material, and fish (Becker 1983), and are known to prey on fish 

eggs (Moyle 1976; Taylor et al. 1984; Miller and Beckman 1996; Marsden 1997; García-

Berthou 2001).   Thus, given that walleye in my study reservoirs are spawning over large 

rock substrate, and that river carpsucker and common carp appear to be non-selective 

benthic foragers, I suspect carpsucker and carp were either intentionally or incidentally 

preying on walleye eggs. 

  Egg predation is known to negatively affect the recruitment of several species, 

including lake trout Salvelinus namaycush (Fitzsimmons et al. 2002), atlantic salmon 

Salmo salar (Palm et al. 2009), and Baltic cod Gadus morhua callarias (Köster and 

Möllmann 2000).  Egg predation is suspected to negatively affect the recruitment of 

walleye (Schaeffer and Margraf 1987; Roseman et al. 2006), white bass (Schaeffer and 

Margraf 1987), and sunfishes Lepomis spp. (Dorn and Mittelbach 2004).  Egg predators 

can severely decrease the number of potential recruits at an early stage, and thus can 

negatively and substantially affect fish recruitment.   Although research from Harlan 

County Lake indicates that naturally produced fish may contribute little to year-class 
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formation in irrigation reservoirs (Uphoff 2012), walleye occasionally produce moderate 

to strong year classes in years they are not stocked (see Figure 4.1).  Thus, I believe it is 

important to evaluate the potential for egg predation if the recruitment of walleye in 

irrigation reservoirs is to be better understood.   

 

Standardized sampling recommendations 

 The following statements were not part of any objective of my study; however, I 

believe they are important nonetheless.  Current NGPC protocols call for an 80% 

confidence interval on abundance estimates, and also derive fish age estimates using 

scales.  First, an 80% confidence interval generally results in 4-5 gillnet-nights of 

sampling per reservoir per year for walleye and white bass, which typically produces less 

than 100 fish (often much less) per sample.  I believe this effort and resultant catch are 

insufficient to accurately quantify abundance and calculate population dynamics for these 

recreationally important species.  Second, I believe scales are an inaccurate and imprecise 

way to estimate age, particularly for relatively long-lived fishes like walleye and white 

bass.  Dorsal spines are a non-lethally removed structure that are gaining popularity, 

particularly for aging walleye, although I believe otoliths to be superior to both scales and 

spines.  Otoliths are a validated structure for walleye aging (Erickson 1983; Michaletz 

1986), and are also the most time-efficient and precise structure for walleye aging 

(Isermann et al. 2003).  I understand that otoliths are a lethal structure to obtain, but given 

that many fish are often already dead when gillnets are retrieved, and given the 

importance of accurately estimating age for making properly informed management 
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decisions, I believe the sacrifice of relatively few fish is inconsequential, particularly 

when weighed against the cost of inaccurate data from using scales to age fish. 

 

Detection probability 

 Accurately determining the abundance and distribution of age-0 sportfish is 

important for successful fisheries management for various reasons, including 

characterizing nursery habitats for protection or enhancement, properly identifying 

reproductive dynamics, and understanding the influences of environmental variables 

(Brewer and Ellersieck 2011).  One of the pervasive shortcomings of fisheries 

management, particularly in lentic systems, is that we often ignore the effect of detection 

(or capture) probability on samples used to index relative abundance and on subsequent 

management recommendations.  What little fisheries research has been published on 

detection probability often focuses on the use of sonar to sample fish (e.g., Mulligan and 

Kieser 1996; Mulligan 2000), on community-scale metrics such as species richness 

(Bayley and Peterson 2001; McManamay et al. 2013), or on small lotic systems (Brewer 

and Ellersieck 2011; Peoples and Frimpong 2011).  Nonetheless, comparison of relative 

abundance of fish throughout space or time is of primary importance in fisheries 

management.  Although relative abundance estimation is dependent on detection 

probability (MacKenzie and Kendall 2002), most state agencies that index relative 

abundance of important sportfish as a management technique do not acknowledge 

detection probability as important.  By understanding detection probability, it is possible 
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to estimate true abundance, rather than merely indexing relative abundance (Dauwalter 

and Fisher 2007). 

I believe one of the primary reasons that detection probability is often minimized 

as a component of lentic fisheries management is that fish are inherently elusive animals 

to sample, particularly in large, complex water bodies.  Compounding that difficulty, 

detection probability is a function of probability of individual capture, which varies 

widely with sampling method, fish size, physical habitat, and number of individuals 

present in a given area (Bayley and Peterson 2001).  Particularly for age-0 fish like 

walleye (Quist et al. 2003; Roseman et al. 2005) and age-0 white bass (Cole and 

MacMillan 1984; Weaver et al. 1997), which are often patchily distributed, the number of 

individuals present in a given area can vary dramatically. 

I believe it is important to begin addressing this shortcoming as it pertains to both 

graduate-level research and NGPC sampling in the state of Nebraska.  I believe 

evaluation of multiple sampling-gear types (sensu Haynes et al. 2013) would be 

beneficial, not only for those gears used for sampling small-bodied fishes, such as species 

of concern and age-0 sportfish, but also for larger-bodied sportfish assessed with routine 

standardized sampling gears.  I believe that a 2- or 4-year graduate research project could 

address many of these shortcomings by experimentally determining capture efficiency for 

several species with several gears in multiple water body types, similar to the approaches 

used by Bayley and Austin (2002), Schoenebeck and Hansen (2005), and Buckmeier and 

Schlechte (2009).  Alternatively, a more-thorough literature search could provide 

reference values in lieu of actual research; however, given the biases associated with 
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detection probability (Bayley and Peterson 2001), I believe this approach would be 

inferior. 
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Figure 4.1.  Catch per unit effort (CPUE, number per net-night) of age-1 walleye as a 

function of walleye stocking (yes versus no) during the previous year.  Whiskers indicate 

5th and 95th percentiles, box lines indicate 25th, 50th, and 75th percentiles, and ● indicates 

outliers.  Data were from Enders, Swanson, Red Willow, Medicine Creek, and Harlan 

County reservoirs in the Republican River basin, NE from 1994-2012. 
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Figure 4.2.  Catch per unit effort (CPUE, number per net-night) of age-1 walleye as a 

function of walleye stocking (fingerling versus fry versus no) during the previous year.  

Whiskers indicate 5th and 95th percentiles, box lines indicate 25th, 50th, and 75th 

percentiles, and ● indicates outliers.  Data were from Enders, Swanson, Red Willow, 

Medicine Creek, and Harlan County reservoirs in the Republican River basin, NE from 

1994-2012. 
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Figure 4.3.  Catch per unit effort (CPUE, number per net-night) of age-1 white bass as a 

function of walleye stocking (yes versus no) during the previous year.  Whiskers indicate 

5th and 95th percentiles, box lines indicate 25th, 50th, and 75th percentiles, and ● indicates 

outliers.  Data were from Enders, Swanson, Red Willow, Medicine Creek, and Harlan 

County reservoirs in the Republican River basin, NE from 1994-2012. 

  

C
P

U
E

 (
N

�n
e

t-
n
ig

h
t-1

)

0

10

20

30

40

Yes No

n = 65 n = 23 



121 
 

 

Figure 4.4.  Catch per unit effort (CPUE, number per net-night) of age-1 white bass as a 

function of walleye stocking (fingerling versus fry versus no) during the previous year.  

Whiskers indicate 5th and 95th percentiles, box lines indicate 25th, 50th, and 75th 

percentiles, and ● indicates outliers.  Data were from Enders, Swanson, Red Willow, 

Medicine Creek, and Harlan County reservoirs in the Republican River basin, NE from 

1994-2012. 
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Figure 4.5.  Catch per unit effort (CPUE, catch per net hour, mean ± SE) of walleye and 

combined CPUE of river carpsucker and common carp by date during peak walleye 

spawning activity (i.e., CPUE ≥ 10% of maximum walleye CPUE by reservoir).  Data 

were from the Republican River basin, NE during spring 2012.  
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APPENDIX A: BIOLOGICAL DATA FROM FEMALE WALLEYE 
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