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Estimation of population size by spatially replicated counts (point-count method) 

has been used for many large-scale animal-monitoring programs, yet its application in 

aquatic environments has been limited.  Multiple site-specific estimates of abundance can 

be averaged and combined with covariate data to predict total abundance across an area 

of interest.  Covariate data also provide an understanding of the relationship between 

abundance and habitat use, which is a fundamental interest of many animal-population 

investigations.  Design of sampling scenarios for point-count population-estimate surveys 

can influence the accuracy and precision of the population estimate.  The first objective 

of this study was to examine how different sampling scenarios, given interaction with 

environmental factors, influence accuracy and precision of population estimates derived 

from the point-count method.  In general, across the sampling scenarios combined with 

environmental factors evaluated, a trade-off exists between accuracy and precision of 

population estimates.  Sample scenarios with many sample units of small area provided 

estimates that were consistently closer to true abundance than sample scenarios with few 

sample units of large area.  However, when considering precision of abundance 

estimates, sample scenarios with few sample units of large area provided abundance 

estimates with smaller widths of 95% confidence intervals than abundance estimates 



 
 

derived from sample scenarios with many sample units of small area.  Of the 

environmental factors evaluated, only density of individuals influenced accuracy and 

precision of population estimates, in which, greater density of individuals magnified the 

trade-off between accuracy and precision.  The second objective of this study was to 

evaluate the applicability of the point-count population estimation method within an 

aquatic environment.  The point-count population estimation method generated a 

population estimate of largemouth bass Micropterus salmoides in a small impoundment 

(12 ha).  Spatial modeling allowed by this method provides an advantage over other 

population estimation methods, although refinement of sampling technique is needed to 

increase precision of abundance estimates derived from the point-count method within a 

small impoundment.  The spatial component of these models allows biologists to relate 

abundance and detection to habitat covariates, thus providing a link to the relationship of 

abundance, detection, and habitat use. 
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Chapter 1.  Introduction 

Estimating the size of an animal population is imperative when attempting to 

understand the dynamics of that animal population.  Estimates of population size through 

time allow for detection of quantifiable changes in a population (e.g., recruitment, 

mortality, immigration, and emigration).  An understanding of population dynamics and 

its interaction with environmental factors and human exploitation is useful for biologists 

to devise effective management strategies (Van Den Avyle and Hayward 1999). 

A variety of methods exist to estimate the size of an animal population.  Methods 

currently employed by wildlife biologists include: distance or sample-area method, mark-

and-recapture method, and removal or depletion method (Schnabel 1938; Zippin 1958; 

Otis et al. 1978; Seber 1982; Anderson et al. 1983; Williams et al. 2002).  Each method 

has inherent assumptions and biases associated with the probability of detection or 

capture.  In general, variance of a population estimate increases when probability of 

detection or capture is low (Zippin 1958; Otis et al. 1978; Anderson et al. 1983).  

Population estimation techniques assume a random distribution of individuals, though 

individuals in nature typically occur in clumped or patchy distributions.  Biologists must 

consider the scope of research to be conducted, available resources, and environmental 

conditions, when choosing the most appropriate method. 

Although population estimation methods are widely accepted and are regularly 

employed throughout wildlife research, desired levels of precision can be difficult to 

obtain when practiced in the field.  Mark-and-recapture population estimates can be effort 

intensive, and in situations where population size is small or capture probability is low, 

recaptures may be difficult to obtain and estimated variability will be great (Royle and 

Nichols 2003; Royle 2004).  A precise population estimate derived from a removal 
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survey requires a large proportion of the population to be captured.  This is especially 

true when population size is small.  Zippin (1958) reported, for a population size N = 200, 

55% of the population must be captured to generate a coefficient of variation of 30%, and 

90% of the population must be captured to generate a coefficient of variation of 5%.   

Two common obstacles are encountered when attempting to estimate size of an 

animal population.  First, generally investigators are interested in animal populations in 

areas where it is impractical to sample the entire area.  In such situations, investigators 

must make inferences about non-sampled portions of area of interest from sampled 

portions of the area (Royle and Nichols 2003).  Second, estimating size of an animal 

population involves detection probability.  Seldom does any method detect all individuals 

present in the survey area, and an investigator must develop an estimator for the 

probability that an animal present in the survey area appears in a count statistic (Royle 

and Nichols 2003).   

An organism’s probability of detection can directly affect accuracy and precision 

of a population estimate.  Several models exist that describe variation in detection 

probability by modeling the relationship between abundance or density and covariates 

that describe habitat or other environmental influences (Buckland et al. 2001; Ramsey 

and Harrison 2004; Royle et al. 2004).  Heterogeneous detection or capture probabilities 

are common in aquatic systems when sampling with gears such as nets and electrofishers 

(Miranda and Boxrucker 2009).  Due to infrequent encounters of scarce individuals, 

detection probability may be low when sampling low-density populations (Rosenberg et 

al. 1995; Royle 2004).  Density of a population may affect the ability to detect 

individuals, and density has been reported to affect accuracy and precision of population 
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estimates from visual counts (Heggenes et al. 1990; Rodgers et al. 1992; Pink et al. 

2007).  To maximize detection probabilities, repeated capture or observation effort 

(mark-and-recapture and removal methods) and multiple observations (distance methods) 

can be employed, but each can become time and effort expensive (Royle and Nichols 

2003). 

Distribution of individuals within an area is another possible factor that affects 

detection probability.  Random distribution of individuals within a population is an 

assumption made when estimating population size from the above methods.  Random 

distribution rarely occurs in nature, and is probably only justified within a homogeneous 

landscape (Royle 2004).  Distribution of individuals can be influenced by habitat 

utilization and availability (Conroy et al. 2008).  When a random sampling design is 

employed, underestimation of population size is possible if utilized habitats are not 

sampled (Pink et al. 2007). 

Distribution of sampling effort can affect accuracy and precision of population 

estimates.  Bearing in mind the challenges faced when sampling animals in the wild and 

estimating abundance, biologists must carefully select sampling scenarios that will yield 

greatest accuracy and precision.  When a finite amount of sampling effort can be 

conducted, is it better for a biologist to sample few large sample units, or many small 

sample units?  Zeros in catch data are known to cause statistical analysis complications 

(Welsh et al. 1996), and to reduce the chance of a zero catch, a biologist might increase 

the area of the sample unit.  Inversely, more sample units yield greater statistical power.  

Thus, a trade-off likely exists between biased estimates caused by zero-inflated data and 
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statistical power for biologists devising sampling scenarios to measure and analyze 

population size. 

I investigated the influence of point-count sample scenarios, given interaction 

with environmental factors, on accuracy and precision of population estimates.  Total 

area sampled remained constant throughout sample scenarios evaluated, but scenarios 

ranged from few samples of large area to many samples of small area.  Understanding 

how changing the spatial distribution and area of sampled points (while maintaining a 

uniform amount of total area sampled), and interaction with specified environmental 

factors, will provide insight on sample design and the accuracy and precision of 

population estimates.  Furthermore, this research will aid researchers and wildlife 

managers in design of efficient sampling strategies.  I also applied the point-count 

method to a small impoundment to evaluate the effectiveness of this method to estimate 

population size of largemouth bass Micropterus salmoides within a small impoundment.  

Given the limited application of the point-count method within aquatic systems, 

evaluation of the point-count method within a small impoundment should provide insight 

to the applicability and advantages of the point-count method in an aquatic environment. 

 

Goals 

 The goals of my research are to understand the influence of sampling design, 

given interaction with environmental factors, on the accuracy and precision of point-

count population estimates, and provide insight to the applicability of the point-count 

method in an aquatic environment. 
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Objectives 

 The objectives of my research are: 

 Generate population estimates using point-count methodology within computer 

simulated environments.  Evaluate how a range of sampling scenarios and 

interaction with environmental factors influences accuracy and precision of point-

count population estimates (Chapter 2).   

 Evaluate the applicability of the point-count population estimation method within 

an aquatic environment.  Generate a population estimate for largemouth bass 

Micropterus salmoides within an impoundment using point-count methodology 

(Chapter 3). 
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Chapter 2.  Influence of sampling design on accuracy and precision of population 

estimates derived from point-count method.  

 

Introduction 

 Estimation of population size by spatially replicated counts (point-count method) 

has been used for many large-scale animal-monitoring programs (e.g., North American 

Breeding Bird Survey, North American Amphibian Monitoring Program, and Christmas 

Bird Count; Royle 2004).  Such studies attempt to estimate abundance by counting 

organisms within a sample area on repeated visits to obtain an estimation of site-specific 

abundance (Otis et al. 1978; Williams et al. 2002).  Multiple estimated site-specific 

abundances can be averaged and combined with covariate data to predict abundance 

across an area of interest (Royle 2004).  Covariate data also provide an understanding of 

the relation between abundance and habitat use, which is a fundamental interest of many 

animal-population investigations (Royle 2004).   

 When attempting to estimate population size, generally investigators are 

interested in animals inhabiting areas where it is impractical to sample the entire area.  In 

such situations, investigators must make inferences about non-sampled portions of the 

area of interest from sampled portions of the area (Royle and Nichols 2003).  Also, when 

attempting to estimate population size, seldom does any method detect all individuals 

present in the survey area, and an investigator must develop an estimator for the 

probability an animal present in the survey area appears in a count statistic (Royle and 

Nichols 2003).  Further, many investigations of animal population size by spatially 

replicated counts examine low density populations or species that exhibit low detection 

probabilities, and are characterized by zero-inflated data (Royle 2004).   
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 Design of sampling scenarios (i.e., the number of sampling units and the area of 

each unit) for point-count population-estimate surveys can have major implications on 

the number of zero-counts encountered while conducting point-counts, and thus influence 

the accuracy and precision of the population estimate.  Bearing in mind the challenges 

faced when sampling animals in the wild and estimating abundance, biologists must 

carefully select sampling scenarios that will yield the greatest accuracy and precision.  

When a finite amount of sampling effort can be conducted, is it better for a biologist to 

sample few large-sample units or many small-sample units?  Zeros in catch data are 

known to cause statistical analysis complications (e.g., bias in estimate or over 

dispersion; Welsh et al. 1996), and to reduce the chance of a zero catch, a biologist might 

increase the area of the sample unit.  Inversely, more sample units yield greater statistical 

power (Cohen 1977).  Thus, a trade-off likely exists between the number of zero-counts 

encountered and statistical power for biologists devising sampling scenarios to measure 

population size when a finite amount of sampling effort can be conducted.  Does the 

trade-off between increasing size of the sample unit and decreasing number of sample 

units influence the accuracy and precision of a population estimate by the point-count 

method?    

Though the sampling scenario itself could potentially influence accuracy and 

precision of abundance estimates, the density and distribution of the animals within the 

population of interest could also have an influence on accuracy and precision of 

abundance estimates.  Density of a population may affect the ability of a biologist to 

detect individuals, and density has been reported to affect accuracy and precision of 

population estimates from visual counts (Heggenes et al. 1990; Rodgers et al. 1992; Pink 
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et al. 2007).  Detection probability may be low when sampling low-density populations 

(Rosenberg et al. 1995; Royle 2004), due to infrequent encounters of scarce individuals 

(e.g., endangered species).  Alternatively, saturation of sampling gear could produce 

misrepresentative count data in high-density populations.  For example, the catchability 

coefficient (i.e., proportion of individuals caught by each unit of effort; detection) has 

been reported to vary inversely with abundance, and the sampling gear was more 

effective at lower densities of individuals in Chinook salmon Oncorhynchus tshawytscha 

fisheries (Peterman and Steer 1981).    

Random distribution of individuals within a population is an assumption made 

when estimating population size by the point-count method (Royle 2004).  Random 

distribution rarely occurs in nature, and is probably only justified within a homogeneous 

landscape (Royle 2004).  Distribution of individuals can be influenced by habitat use and 

availability (Conroy et al. 2008).  When a random sampling design is employed, biased 

estimates of population size is possible if used habitats are not sampled (Pink et al. 2007).  

Homogenous landscapes rarely occur in nature and therefore habitat heterogeneity likely 

influences distribution of individuals and likewise influences detection probability.  

Heterogeneous detection probabilities are known to occur when estimating population 

size (Royle and Nichols 2003), and several models for both occupancy and abundance 

have been developed to account for heterogeneous detection probabilities (Dorazio and 

Royle 2003; Royle and Nichols 2003; Tyre et al. 2003; Royle et al. 2005).  Variation of 

abundance among sample sites induces site-specific heterogeneous detection 

probabilities, and can be exploited to model population size assuming spatial distribution 

of individuals across survey sites follow a prior distribution (e.g., Poisson distribution; 
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Royle and Nichols 2003).  A heterogeneous landscape with variable habitat likely 

induces heterogeneous detection of individuals and possibly influences accuracy and 

precision of population estimates derived from the point-count method.    

The N-mixture model has been used to estimate population size from spatially 

replicated count data (Royle 2004).  The N-mixture model allows for spatial variation in 

detection and abundance to be calculated directly.  The N-mixture is unbiased in the 

estimation of parameters even when similar covariates are used in both the detection and 

abundance models (Kéry, 2008).  The model integrates the binomial likelihood for the 

observed counts over possible values of abundance for each sample point using a prior 

distribution on abundance (e.g., Poisson, negative binomial, or zero-inflated Poisson; 

Royle, 2004).  The N-mixture model is defined as:  

nit ~ Binomial (Ni, p), 

where nit is the number of distinct individuals counted at location i in time t, Ni is the 

number of individuals available for sampling (i.e., the population size at location i), and p 

is the detection probability (Royle 2004).  The likelihood for Ni is then integrated over a 

prior distribution.  The Poisson distribution is a commonly used model for the 

distribution of organisms.  The Poisson mixture estimator is defined as:  

 (   )  
     

  
  

where N is the number of individuals available for sampling, and λ is mean of Poisson 

distribution, so that, N values follow a Poisson distribution with mean λ (Royle 2004).    

Our objective was to examine how different sampling scenarios, given interaction 

with environmental factors, influence accuracy and precision of population estimates 

derived from the point-count method.  We applied sampling scenarios to a computer 
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modeled environment to evaluate the influence of sampling-unit size and number on the 

accuracy and precision of point-count population estimates.  Total area sampled remained 

constant throughout sample scenarios evaluated, but scenarios ranged from few samples 

of large area to many samples of small area.  Environmental factors (density and 

distribution of individuals, environmental carrying capacity, and variable detection 

probability) were also evaluated to determine how environmental factors combined with 

sampling scenarios influence accuracy and precision of population estimates derived 

from the point-count method.     

Methods 

Modeling approach 

 A virtual environment consisting of a 10×10 matrix was created to assess the 

influence of sampling-unit size and the number of sample units on the accuracy and 

precision of population estimates derived from the point-count method.  Seven different 

sampling scenarios were evaluated, ranging in size (1-12 cells) and number (24-2 sample 

units; Table 2-1).  Four different environmental factors (i.e., density of individuals, 

distribution of individuals, environmental carrying capacity, and variable detection 

probability; described below) were assessed conjointly with sampling scenarios.  All 

possible combinations of sample scenario and environmental factors were considered for 

analysis.  Assumptions of the modeled environment were: 1) sample events were 

independent among runs, 2) sample sites were closed between sampling events, and 3) 

the sampler was naive of organism distribution.  The modeled environment had specific 

protocols to define the sampling process and always progressed in the order of: 1) 

environment populated with organisms based on defined distribution treatment, 2) 
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detection probability applied based on defined detection probability treatment, 3) sample 

locations randomly chosen, 4) sample-count data applied to N-mixture model.  One-

thousand iterations of each sample scenario and environmental factor combination were 

run to determine central tendency of sample scenarios and assess accuracy and precision 

of population estimates derived from the point-count method.     

Sampling scenarios 

 Seven different sampling scenarios were evaluated.  Sampling effort remained 

constant for each sampling scenario by selecting a total of 24 cells from the available 100 

cells (approximating one quarter of the available habitat, but allowing each sample unit 

area and number of sample units combination to be equally divided by 24).  Sample units 

ranged in area from 1 cell to 12 cells and sample units ranged in number from 24 sample 

units to 2 sample units (Table 2-1), and were depicted as “number of samples, unit size” 

(e.g., “24,1” = 24 samples from units of 1 cell each).  Sample units were randomly 

chosen and consisted of adjacent cells (except for 24,1 scenario; sample unit size = 1 cell) 

joined edge to edge (no diagonal cells).  No overlap among sample units was allowed.  

For each model run, three sampling events (point-count) were conducted using the same 

spatial layout of sampling scenario to obtain spatially replicated count data for use in a 

model to estimate point abundance. 

True abundance of individuals 

 Ten scenarios of true abundance of individuals were analyzed for each sampling 

scenario.  The true abundance of individuals ranged from 100 individuals and increased 

by 100 individuals to a maximum of 1000 individuals (true abundance 100-1000 

individuals).  Evaluating a gradient of abundances from low to high should provide a 
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greater understanding of the influence of abundance of individuals on accuracy and 

precision of population estimates derived from the point-count method. 

Distribution of individuals 

 Individuals were distributed within the virtual environment by two treatments 

(random and clustered).  Individuals distributed by the random treatment had an equal 

probability to occur within any cell, unless that cell had reached carrying capacity (see 

below).  Individuals distributed by the clustered treatment had a greater probability to 

occur in a cell occupied by another individual.  Five seed cells were initially randomly 

selected for the clustered treatment.  The seed cells had a probability six times greater of 

being occupied by another individual.  Cells directly adjacent to the seed cells had a 

probability three times greater (one-half probability of seed cells) of being occupied by 

another individual.  The remaining cells not directly adjacent to seed cells had a lower but 

equal probability to be occupied.      

Environmental carrying capacity 

 Maximum number of individuals that could occur within a single cell was set by 

two treatments (constrained and unconstrained).  The constrained treatment allowed a 

maximum of 10 individuals that could occur within any one cell.  The constrained 

treatment was to account for habitat saturation.  For example, with the constrained 

treatment and a density of 1000 individuals, all cells were full (10 individuals per cell) 

and provided a completely uniform distribution of individuals.  The unconstrained 

treatment allowed an unlimited number of individuals that could occur within any one 

cell (constrained only by true abundance).   
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Variable detection probability 

 Detection probability was assigned to each individual, for each sample event from 

a random uniform distribution between 0 and 1.  Two detection probability treatments 

were analyzed for influence on accuracy and precision of population estimates derived 

from the point-count method.  For the uniform-detection-probability treatment all 

assigned probabilities > 0.25 were viewed as detected.  Uniform detection across all cells 

was representative of a homogeneous landscape and the landscape had an average 

detection across all cells of p = 0.75.  For the non-uniform-detection-probability 

treatment individuals were viewed as detected by a pre-assigned cell-specific detection 

probability, which varied the detection probability of the habitat and followed a study of 

largemouth bass Micropterus salmoides detection in a small (12-ha) impoundment 

(Chapter 3).  For this treatment, cell-specific detection probabilities ranged between p = 

0.01 and p = 0.98.  Cell-specific detection probabilities were arbitrarily selected to induce 

landscape heterogeneity while maintaining an average detection across all cells of p = 

0.75.  Non-uniform detection across cells was representative of a heterogeneous 

landscape.    

Data analysis 

The number of individuals sampled during the three sampling events was used to 

estimate detection probability and site abundance for all sampled points using an N-

mixture model (Royle, 2004).  This model allowed point detection probability (p) and 

abundance (λ) to be constant or to vary with specified covariates.  Our model allowed 

detection probability to vary as a function of visit (i.e., 3 sample events) and abundance 

to vary by intercept only.  The N-mixture model provided an estimate of detection and 
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abundance for sampled area.  Population estimates were derived by area expansion of 

modeled estimates of detection and abundance from sampled area (Royle 2004).  

Estimates were calculated using the “pcount” function in the unmarked package (Fiske 

and Chandler 2011) in R (R Development Core Team, 2013).  Accuracy of estimates was 

analyzed by examining median of standardized differences from true abundance of 

population estimates across 1000 iterations for each scenario.  To calculate standardized 

difference from true abundance the following formula was applied: 

(Ne – Nt) / Nt, 

where Ne = extrapolated abundance and Nt = true abundance.  Precision of estimates was 

analyzed by examining median of standardized widths from 95% confidence intervals of 

population estimates across 1000 iterations for each scenario.  To calculate standardized 

widths from 95% confidence intervals the following formula was applied: 

We / Nt,  

where We = extrapolated 95% confidence-interval width and Nt = true abundance.  

Frequency of population estimates out of 1000 simulations for the seven sampling 

scenarios in which true abundance was below, within, and above the 95% confidence 

interval of the population estimate was also calculated to assess accuracy and precision of 

estimates.   

Results 

Influence of sampling scenarios 

A general trend existed for each sample scenario and environmental factor 

combination, in which more sample units of small area had estimates with greater 

accuracy and few sample units of large area had estimates with greater precision.  The 
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24,1 (24 sample units of 1 cell) sample scenario achieved the most accurate estimates, 

whereas the 2,12 (2 sample units of 12 cells) sample scenario achieved the most precise 

estimates (Figures 2-2, 2-4, 2-6, 2-8, 2-10, 2-12, 2-14, and 2-16).  The distribution of data 

around the median standardized difference from true abundance was skewed towards 

underestimation of true abundance and the distribution of data around the median 

standardized 95% confidence-interval width was skewed towards larger 95% confidence-

interval widths (Figure 2-1).  Median standardized difference from true abundance for the 

24,1 scenario across all environmental factors evaluated ranged from 0.01 to 0.06 (mean 

± SE = 0.04 ± 0.01; n = 8) for low true abundance (100 individuals), from –0.01 to 0.05 

(mean ± SE = 0.03 ± 0.01; n = 8) for medium true abundance  (500 individuals), and 

from –0.02 to 0.06 (mean ± SE = 0.03 ± 0.01; n = 8) for high true abundance (1000 

individuals).  Alternatively, median standardized difference from true abundance for the 

2,12 scenario across all environmental factors evaluated ranged from 0.11 to 0.17 (mean 

± SE = 0.13 ± 0.01; n = 8) for low true abundance (100 individuals), from 0.15 to 0.17 

(mean ± SE = 0.16 ± 0.00; n = 8) for medium true abundance (500 individuals), and from 

0.17 to 0.18 (mean ± SE = 0.17 ± 0.00; n = 8) for high true abundance (1000 individuals).  

Standardized median 95% confidence-interval widths for the 24,1 scenario across all 

environmental factors evaluated ranged from 0.21 to 0.46 (mean ± SE = 0.33 ± 0.03; n = 

8) for low true abundance (100 individuals), from 0.29 to 0.40 (mean ± SE = 0.33 ± 0.01; 

n = 8) for medium true abundance (500 individuals), and from 0.25 to 0.37 (mean ± SE = 

0.31 ± 0.01; n = 8) for high true abundance (1000 individuals).  Alternatively, 

standardized median 95% confidence-interval widths for the 2,12 scenario across all 

environmental factors evaluated ranged from 0.00 to 0.08 (mean ± SE = 0.03 ± 0.01; n = 
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8) for low true abundance (100 individuals), from 0.06 to 0.08 (mean ± SE = 0.07 ± 0.00; 

n = 8) for medium true abundance (500 individuals), and from 0.05 to 0.05 (mean ± SE = 

0.05 ± 0.00; n = 8) for high true abundance (1000 individuals).   

Estimates from the 24,1 scenario had large 95% confidence intervals and most 

often the true abundance was within the interval, whereas estimates from the 2,12 

scenario had small 95% confidence intervals and most often the true abundance was 

outside the interval (Figures 2-3, 2-5, 2-7, 2-9, 2-11, 2-13, 2-15, and 2-17).  As sample 

scenarios transitioned from many sample units of small area (24,1) to few sample units of 

large area (2,12), a trade-off between accuracy and precision of estimates existed.  Even 

though estimates from sample scenarios with few sample units of large area had high 

precision, the estimates tended to underestimate true abundance.     

Influence of environmental factors 

True abundance of individuals.—The magnitude of the trade-off between accuracy and 

precision of estimates was influenced by the true abundance of individuals (Figures 2-2, 

2-4, 2-6, 2-8, 2-10, 2-12, 2-14, and 2-16).  The trade-off between accuracy and precision 

of estimates was greatest for high abundance populations (1000 individuals) and least for 

low abundance populations (100 individuals).  The abundance pattern appeared 

consistent across all other environmental factors evaluated.   

Distribution of individuals.—Similar results were produced for each of the environmental 

factors examined in combination with the distribution of individuals treatments (Figures 

2-2, 2-6, 2-10, and 2-14: random distribution; Figures 2-4, 2-8, 2-12, and 2-16: clustered 

distribution).  The maximum difference between median standardized difference from 

true abundance of a random distribution treatment compared to a clustered distribution 
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treatment from any sampling scenario and density of individuals was 0.05 (mean ± SE = 

0.00 ± 0.00; n = 280).  The maximum difference between median 95% confidence-

interval widths of a random distribution treatment compared to a clustered distribution 

treatment from any sampling scenario and density of individuals was 0.16 (mean ± SE = 

0.00 ± 0.00; n = 280).  Distribution of individuals had minimal influence on the accuracy 

and precision of estimates generated by modeled sampling scenarios, given the similarity 

of results generated by random and clustered treatments.   

Environmental carrying capacity.—Setting a limit on the number of individuals that 

could occur within one cell was an attempt to account for some level of habitat saturation.  

Further, it allowed for some inference about uniformed distribution of individuals (in 

constrained treatment, as density approached 1000 individuals, distribution of individuals 

approached uniform).  The constrained and unconstrained treatments produced similar 

results (Figures 2-2, 2-4, 2-10, and 2-12: constrained; Figures 2-6, 2-8, 2-14, and 2-16: 

unconstrained).  The maximum difference between median standardized difference from 

true abundance of a constrained treatment compared to an unconstrained treatment from 

any sampling scenario and density of individuals was 0.06 (mean ± SE = 0.00 ± 0.00; n = 

280).  The maximum difference between median 95% confidence-interval widths of a 

constrained treatment compared to an unconstrained treatment from any sampling 

scenario and density of individuals was 0.15 (mean ± SE = 0.00 ± 0.00; n = 280).  Habitat 

saturation appears to have minimal influence on accuracy and precision of estimates 

generated by modeled sampling scenarios.      

Variable detection probability.—Accuracy and precision of estimates derived from the 

uniformed-detection-probability treatment (Figures 2-2, 2-4, 2-6, and 2-8) and the non-
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uniform-detection-probability treatment (Figures 2-10, 2-12, 2-14, and 2-16) were 

similar, with the exception of a few scenarios where precision slightly improved (e.g., 

24,1 scenario; high true abundance).  The maximum difference between median 

standardized difference from true abundance of a uniformed-detection-probability 

treatment compared to a non-uniform-detection-probability treatment from any sampling 

scenario and density of individuals was 0.07 (mean ± SE = 0.03 ± 0.00; n = 280).  The 

maximum difference between median 95% confidence-interval widths of a uniformed-

detection-probability treatment compared to a non-uniform-detection-probability 

treatment from any sampling scenario and density of individuals was 0.21 (mean ± SE = 

0.03 ± 0.00; n = 280).  The similarity of the results could be attributed to average 

detection across all cells being set to p = 0.75 for both treatments, and with 1000 

iterations a merging of the central tendency of parameters describing accuracy and 

precision may have occurred.  For the non-uniform-detection-probability treatment, high 

variability in detection probability between individual cells had minimal influence on 

accuracy and precision of estimates derived from sampling scenarios evaluated. 

Discussion 

 The general trend that was apparent across the sampling scenarios combined with 

environmental factors we evaluated was that a trade-off exists between accuracy and 

precision of abundance estimates derived from point-count method.  Sample scenarios 

with many sample units of small area (i.e., 24,1) provided estimates that were 

consistently closer to true abundance than sample scenarios with few sample units of 

large area (i.e., 2,12).  However, sample scenarios with few sample units of large area 

(i.e., 2,12) provided more precise abundance estimates with smaller widths of 95% 
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confidence intervals than abundance estimates derived from sample scenarios with many 

sample units of small area (i.e., 24,1).  Although some minimal variation of parameters 

describing accuracy and precision of abundance estimates occurred between 

environmental factors evaluated (true abundance and distribution of individuals, 

environmental carrying capacity, and variable detection probability), the same general 

trends remained across sampling scenarios.  Thus, sample design must be carefully 

considered as it influences accuracy and precision of abundance estimates.  This is 

important to note because sample design is a factor that is within the biologist’s control, 

whereas environmental factors are not within the biologist’s control.         

 The abundance estimates with the greatest accuracy occurred with a greater 

number of sample units and smaller sample-unit size.  More samples may be necessary to 

provide reasonable estimates of abundance when heterogeneity of count data exists as a 

result of site abundance (Royle and Nichols 2003).  Sampling larger area reduced the 

variation between count data of sample sites, and thus improved the precision of the 

abundance estimates.  Our sampling scheme (number of visits to sample site) was not 

adjusted to account for heterogeneous detection probabilities. When false-negatives exist 

(failure to detect an individual when in fact it is present), increased repeated visits 

eliminated false-negative bias for models of occupancy (Tyre et al. 2003).  Further, Tyre 

et al. (2003) reported when false-negative error rates ≤50%, greater efficiency was gained 

by adding more sample sites, whereas when false-negative error rates >50% precision 

was improved by increasing the number of visits to a sample site.  A greater number of 

repeated visits could potentially improve accuracy and precision of abundance estimates 

(Dail and Madsen 2010). 
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 There have been a number of historical recommendations for estimating sample 

size requirements.  Recommendations include sample size to achieve a desired level of 

precision (Gunderson 1993) and sample size based on statistical power (Peterman and 

Bradford 1987; Peterman 1990).  Too few samples may result in an inability to decisively 

reject a hypothesis and this aspect of survey design is often accentuated by low precision 

frequently associated with sampling gears (Cyr et al. 1992; Hardin and Connor 1992; 

Wilde 1995; Wilde and Fisher 1996).  From our models for estimating abundance from 

replicated-count data, if a desired level of precision is the target goal for utility of 

abundance estimates (e.g., comparison across years) then fewer samples of large area 

should be a suitable sample design given a finite amount of effort.  However, number of 

samples should be increased if abundance estimates are to be used for hypothesis testing 

and statistical power is a concern (i.e., the probability of failing to reject a false null 

hypothesis), because statistical power is a function of sample number.  A sample design 

stratified based on habitat type or classes of strata may further increase precision of 

estimates by reducing sampling variation (Wilde and Fisher 1996).  Stratification 

variables must be appropriate surrogate measures to variables of interest (e.g., habitat 

variables known to be either preferred or avoided by species of interest) for increase in 

precision of abundance estimates (Wilde and Fisher 1996).   

The true abundance of individuals influenced the magnitude of the trade-off effect 

observed with accuracy and precision of abundance estimates.  Sample design had less of 

an influence on accuracy and precision of abundance estimates in low abundance 

populations (100) when compared to high abundance populations (1000).  We expected 

potential accuracy and precision bias at low abundance based on low detection due to 
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infrequent encounters of scarce individuals (Rosenberg et al. 1995; Royle 2004).  Our 

results were contrary to initial speculation and greater bias occurred at high abundance.  

All other environmental factors evaluated (i.e., distribution of individuals, environmental 

carrying capacity, and variable detection probability) produced similar results between 

treatments and appeared to have minimal influence on accuracy and precision of 

population estimates.   

The influence of true abundance and sample design on abundance estimates could 

be exhibited over a theoretical period in which animal abundance changed while habitat 

availability remained unchanged.  An example of this would be a largemouth bass 

population that has transitioned from a non-stunted to a stunted population (Goedde and 

Coble 1981).  The stunted largemouth bass population would in all likelihood have 

greater abundance than the non-stunted population.  In this case, even if sampling design 

was consistent across years, the influence of sample design on accuracy and precision of 

abundance estimates would be greater for the stunted largemouth bass population because 

of greater true abundance.  A change in sample design is perhaps warranted if density of 

animals shifts over time.  It should be noted that we did not address the true abundance 

effect as it applies to changes in habitat availability; thus, when comparing sample 

designs of different-sized areas (e.g., 10-ha reservoir vs. 10,000-ha reservoir), density of 

organisms must be considered due to differences in habitat availability.     

The trade-off between accuracy and precision of abundance estimates is an 

important aspect for biologists to consider when devising sampling regimes.  Precision in 

abundance estimates is undeniably desired, but from our simulations the sample designs 

that produced the greatest precision most likely underestimated abundance, and would 
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result in biased management decisions.  Biologists making management decisions based 

on abundance estimates would most likely desire an estimate that was both accurate and 

precise, but in reality choice of sample design potentially dictates favor towards accuracy 

or precision in abundance estimates.  Is it more valuable to have abundance estimates that 

are more accurate, more precise, or some optimal combination of both?  Consideration of 

research objectives or management goals must be practiced when selecting sample design 

for abundance estimates, given that biologists by default opt for greater accuracy or 

greater precision by choice of sample design.   
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Table 2-1.  Sample unit number and size for sampling scenarios used in simulated 

replicated counts.   

Scenario  N samples Sample unit area 

2,12 2 12 cells 

3,8 3 8 cells 

4,6 4 6 cells 

6,4 6 4 cells 

8,3 8 3 cells 

12,2 12 2 cells 

24,1 24 1 cell 
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Figure 2-1.  Median and range from 5
th

 percentile to 95
th

 percentile of the standardized 

difference from true abundance and the standardized widths of 95% confidence intervals 

from 1000 simulations of population estimates of 7 sampling scenarios and 10 

populations (N = 100-1000).  For modeling, individuals were randomly distributed across 

a 10×10 grid in which the maximum number of individuals that could occur in any cell 

was limited to 10, and detection probability was uniform (all individuals with p > 0.25 

were detected).         
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Figure 2-2.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were randomly 

distributed across a 10×10 grid in which the maximum number of individuals that could 

occur in any cell was limited to 10, and detection probability was uniform (all individuals 

with p > 0.25 were detected).  



 
 

 

Figure 2-3.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were randomly distributed across a 10×10 grid in 

which the maximum number of individuals that could occur in any cell was limited to 10, and detection probability was uniform (all 

individuals with p > 0.25 were detected).       
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Figure 2-4.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were cluster 

distributed across a 10×10 grid in which the maximum number of individuals that could 

occur in any cell was limited to 10, and detection probability was uniform (all individuals 

with p > 0.25 were detected).



 
 

  

Figure 2-5.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were cluster distributed across a 10×10 grid in 

which the maximum number of individuals that could occur in any cell was limited to 10, and detection probability was uniform (all 

individuals with p > 0.25 were detected). 
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Figure 2-6.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were randomly 

distributed across a 10×10 grid in which there was no limit on the maximum number of 

individuals that could occur within one cell, and detection probability was uniform (all 

individuals with p > 0.25 were detected).  



 
 

 

Figure 2-7.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were randomly distributed across a 10×10 grid in 

which there was no limit on the maximum number of individuals that could occur within one cell, and detection probability was 

uniform (all individuals with p > 0.25 were detected). 
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Figure 2-8.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were cluster 

distributed across a 10×10 grid in which there was no limit on the maximum number of 

individuals that could occur within one cell, and detection probability was uniform (all 

individuals with p > 0.25 were detected).   



 
 

 

Figure 2-9.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were cluster distributed across a 10×10 grid in 

which there was no limit on the maximum number of individuals that could occur within one cell, and detection probability was 

uniform (all individuals with p > 0.25 were detected). 
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Figure 2-10.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were randomly 

distributed across a 10×10 grid in which the maximum number of individuals that could 

occur in any cell was limited to 10, and detection probability was non-uniform (pre-

assigned cell-specific detection probability determined detection of individuals).  



 
 

 

Figure 2-11.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were randomly distributed across a 10×10 grid in 

which the maximum number of individuals that could occur in any cell was limited to 10, and detection probability was non-uniform 

(pre-assigned cell-specific detection probability determined detection of individuals).   
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Figure 2-12.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were cluster 

distributed across a 10×10 grid in which the maximum number of individuals that could 

occur in any cell was limited to 10, and detection probability was non-uniform (pre-

assigned cell-specific detection probability determined detection of individuals).



 
 

 

Figure 2-13.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were cluster distributed across a 10×10 grid in 

which the maximum number of individuals that could occur in any cell was limited to 10, and detection probability was non-uniform 

(pre-assigned cell-specific detection probability determined detection of individuals). 
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Figure 2-14.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were randomly 

distributed across a 10×10 grid in which there was no limit on the maximum number of 

individuals that could occur within one cell, and detection probability was non-uniform 

(pre-assigned cell-specific detection probability determined detection of individuals).



 
 

 

Figure 2-15.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were randomly distributed across a 10×10 grid in 

which there was no limit on the maximum number of individuals that could occur within one cell, and detection probability was non-

uniform (pre-assigned cell-specific detection probability determined detection of individuals). 

4
0
 



41 
 

 

 

 

 

 

 

 

 

Figure 2-16.  Median standardized difference from true abundance and median 

standardized widths of 95% confidence intervals from 1000 simulations of population 

estimates of 7 sampling scenarios.  True abundance denoted as squares (N = 100), 

asterisks (N = 500), and triangles (N = 1000).  For modeling, individuals were cluster 

distributed across a 10×10 grid in which there was no limit on the maximum number of 

individuals that could occur within one cell, and detection probability was non-uniform 

(pre-assigned cell-specific detection probability determined detection of individuals).



 
 

Figure 2-17.  Frequency of population estimates out of 1000 simulations in which true abundance was below (red), within (green), and 

above (blue) the 95% confidence interval of the population estimate for 7 sample scenarios (indicated on right of plots) and 10 

populations (N = 100-1000, as indicated on top of plots).  For modeling, individuals were cluster distributed across a 10×10 grid in 

which there was no limit on the maximum number of individuals that could occur within one cell, and detection probability was non-

uniform (pre-assigned cell-specific detection probability determined detection of individuals). 
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Chapter 3.  Application of unmarked population estimation method to an aquatic 

species in a closed system 

 

INTRODUCTION 

 Estimates of population size through time allow for detection of quantifiable 

changes in a population (e.g., recruitment, mortality, immigration, and emigration), 

which provides insight for effective management strategies (Van Den Avyle and 

Hayward, 1999).  Fishery managers often do not estimate total population size because of 

the intensive sampling effort and time required to obtain an estimate of total population 

size, but instead often rely on relative abundance indices, the most common being catch 

per unit effort (Bonar et al., 2009).  However, the exact nature of the relation between 

true population size and catch per unit effort is largely unknown (Harley et al., 2001; 

Hubert and Fabrizio, 2004; Bajer and Sorensen, 2012), particularly between different 

water bodies.  Further, differences in catch pose problems when evaluating management 

actions based on relative abundance estimates.  Comparing relative abundance estimates 

assumes uniform catchability, which is known to vary through time and between 

sampling sites, confounding comparisons (Hayes et al., 2007).  Furthermore, catchability 

can also vary because of fish size, fish life stage, type of sampling gear, and 

environmental conditions, making it difficult or impossible to assess the change in the 

abundance of a cohort over time (Tetzlaff et al., 2011).   

 Given the problems associated with relying on relative abundance estimates, 

several methods have been used to estimate the population size of an organism in aquatic 

settings.  One of these methods is the removal or depletion method (Zippin, 1958).  Using 

this method, a population estimate is obtained by sampling an area multiple times; all 
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individuals caught during each sample are removed or temporarily withheld from the 

population, until the number of individuals caught during a subsequent sampling pass 

diminishes or is zero.  A regression model can be fit to the catch data and an estimate of 

population size is obtained by maximum-likelihood (Zippin, 1958).  This method relies 

on the assumptions that the sampled population is closed and capture probability is 

constant across individuals and sampling occasions.  The depletion method is often 

applied in small streams and small waterbodies where greater capture efficiency can be 

ensured (Riley and Fausch, 1992; Maceina et al., 1993; Bryant, 2000).  A precise 

population estimate derived from a removal survey requires a large proportion of the 

population to be captured, which is especially true when population size is small.  Zippin 

(1958) reported, for a population size N = 200, 55% of the population must be captured to 

generate a coefficient of variation of 30%, and 90% of the population must be captured to 

generate a coefficient of variation of 5%.  Furthermore, the assumption of constant 

capture probability is often violated, which can lead to biased population estimates 

(Rosenberger and Dunham, 2005). 

Mark-and-recapture is another common method used for estimation of population 

sizes in aquatic systems (Schnabel, 1938; McInerny and Cross, 1999; Van Den Avyle and 

Hayward, 1999).  The basic premise of the procedure is marking a sampled portion of the 

population and obtaining capture histories of individuals or groups from subsequent 

resampling.  Several model structures use capture histories of sampled individuals to 

produce population estimates (Thompson et al., 1998; Cooch and White, 2013).  Each of 

these models have their own assumptions but can include closed population, random 

distribution of marked and unmarked individuals with respect to sampling units, and no 
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difference in capture probability between marked and unmarked fish (Thompson et al., 

1998).  Population estimates of aquatic organisms using the mark-and-recapture method 

have been documented to be accurate and precise (Schnabel, 1938; Seber, 1982; Van Den 

Avyle and Hayward, 1999; Williams et al., 2002).  However, mark-and-recapture 

sampling can be effort and time intensive (Zimmerman and Palo, 2011), especially when 

a large number of individuals must be tagged to ensure proportionate detection of tagged 

individuals within the population (Royle and Nichols, 2003; Royle, 2004).   

The use of spatially and temporally replicated counts is commonly employed by 

terrestrial biologists to estimate abundance (Royle, 2004), but its application in aquatic 

settings is limited (Hankin and Reeves, 1988; Vondracek and Degan, 1995).  Generally, a 

survey region is sampled through a series of randomized points or transects, and an 

observer records animals detected within a set distance of the sampled point.  A benefit of 

this methodology is that the use of count data from spatially and temporally replicated 

counts does not require individuals be uniquely marked and redetected throughout time 

(Royle et al., 2004).  The data from replicated counts can be assessed by an N-mixture 

model to determine sample site specific abundance, and estimate population size by area 

expansion of the model (Royle 2004).  The N-mixture model allows for spatial variation 

in detection and abundance to be calculated directly.  The N-mixture is unbiased in the 

estimation of parameters even when similar covariates are used in both the detection and 

abundance models (Kéry, 2008).  The model integrates the binomial likelihood for the 

observed counts over possible values of abundance for each sample point using a prior 

distribution on abundance (e.g., Poisson, negative binomial, or zero-inflated Poisson; 

Royle, 2004).  The N-mixture model is defined as:  
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nit ~ Binomial (Ni, p), 

where nit is the number of distinct individuals counted at location i in time t, Ni is the 

number of individuals available for sampling (i.e., the population size at location i), and p 

is the detection probability (Royle 2004).  The likelihood for Ni is then integrated over a 

prior distribution.  The Poisson distribution is a commonly used model for the 

distribution of organisms.  The Poisson mixture estimator is defined as:  

 (   )  
     

  
  

where N is the number of individuals available for sampling, and λ is mean of Poisson 

distribution, so that, N values follow a Poisson distribution with mean λ (Royle 2004).  

The N-mixture model allows point detection probability (p) and abundance (λ) to vary 

with site- or time-specific covariates.  Thus, the N-mixture model allows the user to test 

for spatial variation in detection and abundance.     

Given the limited application of count data with unmarked populations in aquatic 

systems, we applied an unmarked count approach to estimate fish abundance and 

compare that population estimate to a traditional mark-and-recapture population estimate.  

Specifically, we compared these two sampling methods to estimate population size and 

detection probability of largemouth bass Micropterus salmoides within a small 

impoundment.  The comparison of population estimates derived from the unmarked 

sampling method and the mark-and recapture sampling method should provide insight to 

the applicability of the unmarked sampling method in an aquatic environment.  
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MATERIALS AND METHODS 

>STUDY SITE 

 This study took place at Cottontail Reservoir (40˚ 38.759’ N; 96 ˚ 45.871’W), a 

small impoundment (12 ha) located in Lancaster County, Nebraska.  Maximum water 

depth of the reservoir was 2.7 m with an average water depth of 1.5 m.  The 

impoundment contained a fish community dominated by largemouth bass, bluegill 

Lepomis macrochirus, and channel catfish Ictalurus punctatus.  We sampled the reservoir 

during spring (30 March to 2 April 2011), when water temperatures were 7-9° C. Given 

our sampling time frame, we assumed a closed largemouth bass population. 

 

>FIELD SAMPLING 

MARK-AND-RECAPTURE METHOD 

To conduct our mark-and-recapture counts, we generated three concentric 

shoreline laps at 5 m, 40 m, and 80 m from the shoreline using ArcGIS.  The boat was 

slowly driven along each lap while the electrical field was energized continuously.  All 

largemouth bass were netted, and all largemouth bass ≥200 mm total length were marked 

with a fin punch on their caudal fin during each survey day and released.  During each 

sampling event the number of fish caught and the number with marked fins were 

recorded.  Mark-and-recapture sampling was conducted once a day for four consecutive 

days (30 March to 2 April 2011), directly following completion of point-count sampling.     

UNMARKED METHOD 

We selected sample points for the unmarked estimate by creating a grid using 

ArcGIS (Version 10.1; ESRI, 2011).  The Lake Mapping Program of the Nebraska Game 
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and Parks Commission provided shoreline layer and bathymetric maps of this 

impoundment.  We randomly selected 50 sample points from 96 grid points physically 

available to sample (Figure 3-1).  We used boat-mounted pulsed-DC electrofishing 

(Smith-Root GPP 5.0) to sample the 50 randomly selected points, and we assumed an 

effective sampling area of 10 m
2
 (Randall et al., 1993).  Points available for sampling 

were spaced 30-m apart to ensure independence of sample points.  Each sample point was 

electrofished for one minute of pedal-down time and all fish that surfaced were collected, 

though only largemouth bass ≥200 mm in total length were used for count data.  For 

temporal replication, each point was sampled once a day for four consecutive days (30 

March to 2 April 2011).  Water depth and distance from cover (i.e., submerged tree) were 

recorded for each sample point for use as covariate data.  Water depth and structural 

cover are known habitat that can potentially influence largemouth bass presence (Werner 

et al., 1977).  Furthermore, water depth and cover could potentially influence detection of 

largemouth bass when sampling by boat electrofisher (McInerny and Cross, 2000; 

Schoenebeck and Hansen, 2005).   

We derived similar data for use in the predictive, spatial model from points not 

sampled for largemouth bass.  At unsampled points, we estimated depth using the 

bathymetric map, and distance from cover was estimated using the line tool in Google 

Earth (2012).  We created a presence/absence variable for cover, where cover was present 

if the distance to a submerged tree was <15 m in each grid cell.  The distance of <15 m 

was chosen as one-half of the 30 m grid cell.   
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>DATA ANALYSIS 

MARK-AND-RECAPTURE METHOD 

The Schumacher-Eschmeyer multiple-survey model was used to estimate 

population size of largemouth bass for the mark-and-recapture count data (Schumacher 

and Eschmeyer, 1943).  The Schumacher-Eschmeyer model uses the formula: 

   
∑     

  
   

∑     
 
   

  

where N = population estimate, Cd = total number of individuals caught during day d, Md 

= number of marked individuals available for recapture at the start of day d, and Rd = 

number of recaptures during day d.  For the Schumacher-Eschmeyer model, a Student’s t 

distribution was used to set confidence intervals.  Estimates were calculated using the 

“schnabel” function in the fishmethods package (Nelson, 2013; Version 1.4-0) in R (R 

Development Core Team, 2013; Version 2.15.2). 

UNMARKED METHOD 

Count data from repeated visits to sampled points were used to calculate detection 

probability and site abundance for all sampled points using an N-mixture model (Royle, 

2004).  Estimates were calculated using the “pcount” function in the unmarked package 

(Fiske and Chandler, 2011; Version 0.9-9) in R (R Development Core Team, 2013; 

Version 2.15.2).  A suite of models were developed a priori using covariates for 

detection and abundance to determine the best model to predict detection and abundance 

of largemouth bass.  Covariates included in the models were water depth, presence of 

cover and the interaction of water depth and presence of cover.  A model including each 

covariate combination for detection and abundance, and a null model (constant detection 

and abundance across space) were considered for comparison.  Models were compared 
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using Akaike’s Information Criterion (AIC; Akaike, 1973; Burnham and Anderson, 

2002).  The best model was then used to predict the detection probability and abundance 

of largemouth bass for each sample point in Cottontail Reservoir (Royle et al., 2005).  

We used three different prior distributions as possible distributions describing largemouth 

bass abundance (Poisson, negative binomial, and zero-inflated Poisson) for the N-mixture 

model.  Total largemouth bass detection and abundance in the impoundment was 

predicted by area expansion of detection and abundance in our sampled area to the area 

of the entire impoundment using covariate data at all non-sampled grid points to 

extrapolate.  Bootstrapped 95% confidence interval of the total largemouth bass 

abundance was calculated from 1,000 iterations.   

 

RESULTS 

MARK-AND-RECAPTURE METHOD 

 There were 369 largemouth bass marked during mark-and-recapture sampling, of 

which 41 largemouth bass were subsequently recaptured (Table 3-1).  The population 

abundance estimate derived from the mark-and-recapture method was 1,860 (1,648-2,133 

95% C. I.).  Estimated detection probability from the mark-and-recapture method was p = 

0.05 (0.03-0.07 95% C. I.) 

UNMARKED METHOD 

We sampled 38% of the impoundment at 50 sample points.  Twenty-one 

competing models were assessed to estimate detection probability and abundance from 

the unmarked count data.  Our top-ranked model (AIC weight: 0.87) allowed detection 

probability to vary as a function of the interaction of water depth and presence of cover 
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(βno cover x depth = -2.47, SE = 0.80; βcover x depth = -4.90, SE = 0.81) and abundance varied as 

a function of water depth (βdepth = 2.25, SE = 0.63) and presence of cover (βcover = 3.27, 

SE = 0.45; Table 3-2).  We used this model to estimate detection probability and 

abundance for each sampled grid cell given the water depth and distance to cover in each 

cell (Table 3-3 and Figure 3-2).  We found ecologically unrealistic estimates of 

abundance with negative binomial and zero-inflated Poisson distributions.  The N-

mixture with a Poisson distribution was selected as the most appropriate distribution for 

our data, which corresponds with the findings of Joseph et al. (2009).  Within the entire 

impoundment, predicted mean detection probability was 0.31 (0.16-0.43 95% C. I.) and 

estimated abundance was 2,576 (2,271-2,957 95% C. I.) largemouth bass (Figure 3-3).  

 

DISCUSSION  

Using the two methods to estimate the population abundance in Cottontail 

Reservoir, we obtained two different population abundances.  The lower of the two 

estimates was obtained from the mark-and-recapture methodology (1,860; 1,648-2,133 

95% C. I.) and the greater abundance was from the unmarked methodology (2,576; 

2,271-2,957 95% C. I.).  From our sampling, we cannot determine which method has 

greater accuracy and can only draw conclusions from the relative precision of each 

method.  Between the two techniques, the mark-and-recapture estimate provided a 

smaller confidence range (485) than the unmarked estimate (686).  The lower precision in 

the unmarked estimate is a concern particularly when precise abundance estimates are 

needed to evaluate management actions.  Although, a wider 95% confidence interval may 

be acceptable if it encompasses true abundance, given that it is unknown which method’s 
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estimate is closest to true abundance.  The mark-and-recapture method assumes that the 

population is mixing between sampling events and the entire population is available to be 

captured in each sample, whereas the unmarked method assumes sample site closure 

between sampling events.  The conflicting closure assumption between the methods is 

perhaps the reason in the discrepancy between estimates.  An insufficient amount of 

individuals detected during unmarked sampling, an inadequate number of temporally 

replicated sampling occasions, or some combination of these two can lead to limited 

information in the data, and thus it may be unrealistic to expect high precision in 

estimates of N (Dorazio and Royle, 2003).  A greater number of temporal survey events 

could be used to increase the number of individuals counted, thus improving the precision 

of our population estimate (Quinn et al., 2011).  Increased sampling within a sample 

period or extra sample periods, could also potentially improve the precision of the mark-

and-recapture estimate.  

We estimated the population over the same time frame using the mark-and-

recapture and unmarked methods, and there could have possibly been some behavioral 

changes in the largemouth bass given the repeated sampling with electrofishing over a 

relatively short-time frame (Mesa and Schreck, 1989).  Although this possibility seems 

like it would have had an effect on both the mark-and-recapture and unmarked estimation 

techniques, sampling with electrofishing could have induced a shift away from our set 

sampling points.  If this did have an effect, it seems reasonable that more samples with 

greater time apart could have also improved the precision in the unmarked estimates.  

However, the largemouth bass population within this impoundment is targeted by anglers 

suggesting greater time between sample periods would most likely violate the assumption 
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of sample site closure and an open model would be more appropriate (Dail and Madsen, 

2010).   

 The unmarked method required similar sampling effort (e.g., pedal down time 

and processing of fish) as the more traditionally applied mark-and-recapture method.  

Both methods provide more robust information and the estimates of abundance provided 

are an improvement compared to relative abundance indices for evaluation and design of 

management strategies (Harley et al., 2001; Hubert and Fabrizio, 2004; Bajer and 

Sorensen, 2012), particularly if precision of population estimates derived from the point-

count method can be improved.  Although the population estimate derived from our 

application of the unmarked method was less precise when compared to the estimate 

derived from the mark-and-recapture method, some key advantages exist and we suggest 

it has value in future aquatic research and management.  The unmarked method is not 

dependent on redetection of marked individuals, which is advantageous when sampling 

low-density populations in which individuals are difficult to detect or capture (e.g., 

endangered species).  Furthermore, there is also an advantage in using the technique in 

aquatic settings when sampling high-density populations in which the effort required to 

mark a sufficient number of individuals to detect a proportionate number of marked 

individuals within the population is too great (e.g., invasive common carp Cyprinus 

carpio or white perch Morone americana).  

The best model for the unmarked estimation method included depth, the presence 

of cover, and the interaction of depth and cover for the probability of detection, and depth 

and the presence of cover for abundance.  Thus, as water depth increased and cover was 

present the abundance of largemouth bass increased, whereas the ability to detect those 
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fish decreased.  This model agrees with known habitat associations of largemouth bass in 

standing waterbodies (Werner et al., 1977; Hunt and Annett, 2002).  The detection 

probability can be thought of as being related to the ‘power’ of the survey method (Royle 

and Dorazio, 2008).  The catchability of largemouth bass using electrofishing is known to 

vary with local density and environmental variables (McInerny and Cross, 2000; 

Schoenebeck and Hansen, 2005).  Under our sample conditions, largemouth bass were 

least detectable in deep water sites, in which deep water sites also contained greatest 

abundance of largemouth bass.  This effect could be expected, given with electrofishing, 

the electric field diminishes with distance from the electrodes, so largemouth bass 

occupying deeper water would be less susceptible to capture.  The presence of cover 

makes it more difficult to detect largemouth bass, or could possibly suspend largemouth 

bass within the water column by preventing stunned fish from floating to the surface for 

capture.  The relationship between density of largemouth bass and catchability was less 

of a concern given the methodology we used as all largemouth bass detected at each 

sample point were collected, thus a gear saturation point was never achieved.   

Therefore, a major advantage to the unmarked method is the spatial component of 

these models (Royle et al. 2005, Kéry, 2008), which allows the managers to relate 

detection and abundance to habitat covariates (Royle et al., 2004).  Covariate information 

not only provides an understanding of what variables most affect detection and 

abundance, but also provides a link to the relation of abundance and habitat use, which 

gives insight to a fundamental interest of many animal population investigations.  

Although greater precision in our unmarked method population estimate is desired, the 

unmarked method provides promise for application in aquatic settings.  Future refinement 
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of sampling technique is needed to increase precision, such as, greater number of 

temporal sampling events, and sampling higher proportion of the impoundment so the 

extrapolation is not as large.   
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Table 3-1.  Largemouth bass (LMB) captured (Ct) during time t during mark-and–

recapture sampling at Cottontail Reservoir.  Also, number of LMB that had been marked 

prior to sampling at time t (Mt) and number that were recaptured (Rt) during sample t.    

Sample Day 

LMB 

Captured 

(Ct) 

Total LMB 

Marked 

(Mt) 

LMB 

Recaptured 

(Rt) 

1 231 0 0 

2 231 231 9 

3 211 159 21 

4 12 319 25 
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Table 3-2.  AIC model selection analysis of N-mixture modeled abundance and detection 

probability for largemouth bass at Cottontail Reservoir.  λ (covariate) indicates 

covariate(s) by which abundance varies; p (covariate) indicates covariate(s) by which 

detection probability varies.    

Model K AIC ΔAIC 

AIC 

weight 

Cumulative 

weight 

λ(depth+cover) p(depth/cover
a
) 6 340.78 0.00 0.87 0.87 

λ(cover) p(depth/cover
a
) 5 345.83 5.05 0.07 0.94 

λ(depth+cover) p(depth+cover) 6 347.43 6.65 0.03 0.97 

λ(depth/cover
a
) p(depth/cover

a
) 6 348.58 7.80 0.02 0.99 

λ(depth) p(.)
b 

3 353.48 12.70 0.00 0.99 

λ(depth+cover) p(.)
b 

4 354.36 13.58 0.00 0.99 

λ(cover) p(depth) 4 354.56 13.78 0.00 0.99 

λ(.) p(.)
b 

2 354.89 14.11 0.00 0.99 

λ(depth) p(cover) 4 355.05 14.27 0.00 1.00 

λ(depth) p(depth) 4 355.16 14.38 0.00 1.00 

λ(depth/cover
a
) p(.)

b 
4 355.37 14.59 0.00 1.00 

λ(depth+cover) p(cover) 5 355.83 15.05 0.00 1.00 

λ(depth/cover
a
) p(depth+cover) 6 355.89 15.11 0.00 1.00 

λ(cover) p(.)
b 

3 356.07 15.29 0.00 1.00 

λ(depth) p(depth/cover
a
) 5 356.28 15.49 0.00 1.00 

λ(depth+cover) p(depth) 5 356.28 15.49 0.00 1.00 

λ(depth) p(cover+depth) 5 356.39 15.61 0.00 1.00 

λ(cover) p(depth+cover) 5 356.51 15.73 0.00 1.00 

λ(depth/cover
a
) p(cover) 5 356.89 16.11 0.00 1.00 

λ(depth/cover
a
) p(depth) 5 357.12 16.34 0.00 1.00 

λ(cover) p(cover) 4 357.30 16.51 0.00 1.00 
a
 Denotes model with interaction of two factors. 

b
 (.) denotes constant across sample sites.   
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Table 3-3.  N-mixture model coefficient values selected by AIC used to predict 

abundance and detection of largemouth bass as a function of water depth and presence of 

cover at Cottontail Reservoir.   

 

Variable Estimate SE z P 

Abundance (log-scale) 

         Intercept -2.98 0.94 -3.17 1.54E-03 

     Depth 2.25 0.63 3.57 3.55E-04 

     Cover 3.27 0.45 7.22 5.05E-13 

     Detection (logit-scale) 

         Intercept 2.63 1.32 2.00 4.56E-02 

     Cover (absent) : Depth -2.47 0.80 -3.09 2.03E-03 

     Cover (present) : Depth -4.90 0.81 -6.07 1.25E-09 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1.  Left map indicates paths of mark-and-recapture sampling by boat-electrofishing for Cottontail Reservoir.  Right map 

indicates point-count sampling grid for Cottontail Reservoir.  Black circles indicate points randomly selected for replicated point-

counts. 
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Figure 3-2.  Bivariate plots of predicted abundance and detection as a function of water depth and presence of cover.  The presence of 

cover is represented by dotted line and no cover present is represented by solid line.  
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Figure 3-3.  Predicted abundance and detection probability of largemouth bass for Cottontail Reservoir.  Predictive model allows 

abundance to vary as a function of water depth and distance to cover, and detection probability to vary as a function of the interaction 

of water depth and presence of cover. 
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Chapter 4.  Management Implications and Future Research 

 Insight was gained on the influence of sample design, in combination with 

possible environmental factors encountered in the field, on accuracy and precision of 

point-count population estimates (Chapter 2), and illuminated that a trade-off exists 

between accuracy and precision of estimates dependent on sample design.  Analysis of a 

field application of the point-count method (i.e., unmarked method; Royle 2004) 

provided insight to possible advantages (e.g., modeled spatial relationship of abundance, 

detection, and habitat use) of the point-count method compared to more conventionally 

used population-estimation methods within aquatic settings (Chapter 3).  For studies that 

require population estimates, or an understanding of the relation between abundance and 

habitat use, information provided from our analyses could be used as a guide for design 

of sampling strategies.   

 We determined from our simulated sampling scenarios that a trade-off exists 

between accuracy and precision of abundance estimates derived from a point-count 

method (Chapter 2).  Sample scenarios with many sample units of small area (i.e., 24 

sample units, each with a size of 1 cell) provided estimates that were consistently closer 

to true abundance than sample scenarios with few sample units of large area (i.e., 2 

sample units, each with a size of 12 cells).  However, when considering precision of 

abundance estimates, sample scenarios with few sample units of large area provided 

abundance estimates with smaller widths of 95% confidence intervals than abundance 

estimates derived from sample scenarios with many sample units of small area.  

Environmental factors that were evaluated in combination with sampling scenarios 

appeared to have minimal influence on accuracy and precision of population estimates 
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derived from the point-count method, except for density of individuals, in which higher-

density populations appeared to magnify the trade-off between accuracy and precision of 

population estimates.  Recommendations for sample design should be based on whether a 

specific level of accuracy or precision is desired.  A common scenario encountered while 

estimating abundance of fish within a small-Midwestern impoundment would be: large 

true abundance, random distribution of individuals, no limit on the maximum number of 

individuals that could occur within a sample area, and non-uniformed detection 

probability.  Given the previously stated conditions, a suitable sample design to optimize 

accuracy of abundance estimates would be many sample units of small area, given a 

finite amount of effort.  However, a suitable sample design to optimize precision of 

abundance estimates would be few sample units of large area, given a finite amount of 

effort.  To optimize both accuracy and precision of abundance estimates, a sample design 

of an intermediate number of samples and moderate sampling area (e.g., 6,4 and 8,3 

scenarios from our simulated sample designs; Figure 4-1) would minimize the trade-off 

between accuracy and precision of abundance estimates.  When sampling effort was 

doubled (i.e., double number of sample units) to reproduce sampling effort implemented 

in point-count sampling of largemouth bass within a small impoundment (Chapter 3), the 

trade-off between accuracy and precision of abundance estimates remained (Figure 4-2).  

Over all accuracy of abundance estimates improved slightly, but precision was not 

improved, and the trade-off between accuracy and precision of abundance estimates was 

minimized in the 8,6 and 12,4 scenarios (Figure 4-2).  It is important to note that 

biologists by default opt for greater accuracy or greater precision by choice of sample 



70 
 

 

design.  Further insight could be gained by analysis of sample design and change in 

habitat availability.  Relevant research questions include: 

 What is the influence of sample design of the point-count method and change in 

habitat availability within study area (e.g., establishment or removal of aquatic 

vegetation) on accuracy and precision of population estimates? 

 What is the influence of sample design of the point-count method and different 

sized study areas (e.g., 10-ha reservoir vs. 10,000-ha reservoir) on accuracy and 

precision of population estimates? 

From our application of the point-count population estimation method within a small 

impoundment (12 ha), we determined the spatial model provided by the N-mixture 

modeling technique to be advantageous.  The spatial component of these models (Royle 

et al. 2005; Kéry 2008) allows biologists to relate detection and abundance to habitat 

covariates (Royle et al. 2004).  Covariate information not only provides an understanding 

of what variables most affect detection and abundance, but also provides a link to the 

relationship of abundance and habitat use, which gives insight to a fundamental interest 

of many animal population investigations.  An understanding of the relationship between 

abundance and habitat use could potentially direct better management of species of 

interest by targeting habitat associated with high abundance.  Future refinement of 

sampling technique is needed to increase precision of our abundance estimates, such as, 

greater number of temporal sampling events, and sampling higher proportion of the 

impoundment so the extrapolation is not as great.  Increasing the time between replicated 

counts could possibly improve precision, and remove bias associated with behavioral 

changes in fish given repeated sampling with electrofishing over a relatively short period 
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(Mesa and Schreck 1989).  The sample-site-closure assumption was most likely violated 

between our sample periods and future implementation should use the generalized N-

mixture model (Dail and Madsen 2010), which allows sample sites to be open between 

sampling events.  Relevant research questions include: 

 Do an increased number of temporal sampling events improve the precision of 

point-count population estimates conducted by electrofishing within a small 

impoundment?  

 Does sampling higher proportion of the impoundment improve the precision of 

point-count population estimates conducted by electrofishing within a small 

impoundment?  
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Figure 4-1.  Trade-off between accuracy and precision from 1000 simulations of 

population estimates derived from 7 sampling scenarios.  Median standardized 

differences from true abundance denoted as circles (accuracy), and median standardized 

widths of 95% confidence intervals denoted as triangles (precision). For modeling, 

individuals had a true abundance of 1000, were randomly distributed across a 10×10 grid 

in which there was no limit on the maximum number of individuals that could occur 

within one cell, and detection probability was non-uniform (pre-assigned cell-specific 

detection probability determined detection of individuals).  
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Figure 4-2.  Trade-off between accuracy and precision from 1000 simulations of 

population estimates derived from 7 sampling scenarios.  Median standardized 

differences from true abundance denoted as circles (accuracy), and median standardized 

widths of 95% confidence intervals denoted as triangles (precision). For modeling, 

individuals had a true abundance of 1000, were randomly distributed across a 10×10 grid 

in which there was no limit on the maximum number of individuals that could occur 

within one cell, and detection probability was non-uniform (pre-assigned cell-specific 

detection probability determined detection of individuals). 
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Appendix 1.  R-programming code for construction of virtual environment and 

sample point selection protocol.  

grid.crawler<-function(sample.size,grids,used.points=NULL){ 

used.points.og<-used.points 

sample.grids<-NULL 

if(sample.size==1){ 

sampl<-grids[!grids$sample%in%used.points,]  #sampled 

from available points, not already used  

sampl<-sampl[sample(1:nrow(sampl),1,replace=FALSE),] 

sample.grids<-rbind(sample.grids,sampl)  #store 

sampled points 

used.points<-rbind(used.points,sample.grids$sample[i]) 

    } 

if(sample.size>1){ 

i = 1 

while(i <= sample.size){ 

if(i == 1){ 

 

#sampled from availiable points, not already used 

sampl<-grids[!grids$sample%in%used.points,]   

sampl<-sampl[sample(1:nrow(sampl),1,replace=FALSE),] 

sample.grids<-rbind(sample.grids,sampl)  #store sampled 

points 

used.points<-rbind(used.points,sample.grids$sample[i]) 

if(sample.size>1){i <-i +1}} 

    if(i >1){ 

      availiable_xys<-NULL 

 

for(j in 1:nrow(sample.grids)){   

    

## Inside point selected 

if(sample.grids$inside[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j], 

sample.grids$x[j]-1,sample.grids$x[j]+1)  # inside 

grids can have +/- = x values 

avail.y<-c(sample.grids$y[j]-

1,sample.grids$y[j]+1,sample.grids$y[j],sample.grids$y

[j])  # inside grids can have +/- y = values 

          avail.xy<-cbind(avail.x,avail.y)} 
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## Left edge selected, including corners 

if(sample.grids$L_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j], 

sample.grids$x[j]+1)  # left edge grids can have + =  

x values 

avail.y<-c(sample.grids$y[j]-

1,sample.grids$y[j]+1,sample.grids$y[j])  # left edge 

grids can have +/-  = y values 

if(sample.grids$T_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]+1)  # 

top corner grids can have + =  x values 

avail.y<-c(sample.grids$y[j]-1,sample.grids$y[j])  ## 

top corner can have - =  y values} 

if(sample.grids$B_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]+1)  # 

bottom corner grids can have + = x values 

avail.y<-c(sample.grids$y[j]+1,sample.grids$y[j])  # 

bottom corner grids can have + = y values}  

avail.xy<-cbind(avail.x,avail.y)} 

        

## Right edge selected, including corners 

if(sample.grids$R_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j], 

sample.grids$x[j]-1)   

avail.y<-c(sample.grids$y[j]-

1,sample.grids$y[j]+1,sample.grids$y[j])   

if(sample.grids$T_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]-1)   

avail.y<-c(sample.grids$y[j]-1,sample.grids$y[j])} 

if(sample.grids$B_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]-1)   

avail.y<-c(sample.grids$y[j]+1,sample.grids$y[j])}   

avail.xy<-cbind(avail.x,avail.y)} 

 

## Bottom edge selected, including corners 

 

if(sample.grids$B_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]-

1,sample.grids$x[j]+1)   

avail.y<-

c(sample.grids$y[j]+1,sample.grids$y[j],sample.grids$y

[j])   

if(sample.grids$L_edge[j]==1){ 
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avail.x<-c(sample.grids$x[j], sample.grids$x[j]+1)   

avail.y<-c(sample.grids$y[j]+1,sample.grids$y[j]) 

#BOTTOM LEFT corner, overwrite available x 

} 

if(sample.grids$R_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]-1)  

avail.y<-c(sample.grids$y[j]+1,sample.grids$y[j]) 

}  

avail.xy<-cbind(avail.x,avail.y) 

} 

       

## TOP edge selected, including corners 

if(sample.grids$T_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]-

1,sample.grids$x[j]+1)   

avail.y<-c(sample.grids$y[j]-

1,sample.grids$y[j],sample.grids$y[j]) 

if(sample.grids$L_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]+1)   

avail.y<-c(sample.grids$y[j]-1,sample.grids$y[j])   

} 

if(sample.grids$R_edge[j]==1){ 

avail.x<-c(sample.grids$x[j], sample.grids$x[j]-1)   

avail.y<-c(sample.grids$y[j]-1,sample.grids$y[j])   

}  

avail.xy<-cbind(avail.x,avail.y) 

} 

avail.xy<-as.data.frame(avail.xy) 

availiable_xys<-rbind(availiable_xys,avail.xy) 

} 

availiable_xys<-

availiable_xys[!duplicated(paste(availiable_xys$avail.

x,availiable_xys$avail.y)),] 

avail.grids<-grids[which(paste(grids$x,grids$y) 

%in%paste(availiable_xys$avail.x,availiable_xys$avail.y)),]  

# pull from the grid list, locations that match 

avail.grids<-

avail.grids[!avail.grids$sample%in%used.points,]  # remove 

points already included in sample 

if(length(avail.grids$x)>1){ 

sample.grids<-

rbind(sample.grids,avail.grids[sample(1:nrow(avail.grids),1

,replace=FALSE),]) #randomly select location 

used.points<-rbind(used.points,sample.grids$sample[i]) 

i<-i+1 
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}else{ 

used.points<-used.points.og  # if there are no more 

availiable points then the search will start over,resetting 

to initial conditions 

sample.grids<-NULL 

i<-1 

warning("grid.crawer stuck, retrying search") 

} 

} 

} 

} 

return(sample.grids)  

} 
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Appendix 2.  R-programming code for random individual distribution. 

random.fish<-

function(N=30,grids,num.per.cell=10,do.detect=TRUE,detect.t

rials=3,replace=FALSE){ 

  total.tiles<-nrow(grids) 

  samples<-rep(1:total.tiles,each=num.per.cell) 

    rand.sample<-sample(samples,N,replace=replace) 

    rand.sample<-data.frame(fish.loc=cbind(rand.sample)) 

if(do.detect==TRUE){ 

    detect.probs<-t(replicate(N,runif(detect.trials))) 

    rand.sample<-data.frame(rand.sample,detect.probs) 

    names(rand.sample)<-

c("fish.loc",paste("detect",1:detect.trials,sep=".")) 

  } 

return(rand.sample) 

} 
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Appendix 3.  R-programming code for clustered individual distribution. 
 

cluster.fish.2<-

function(N=30,grids,num.per.cell=10,focal.no=NULL,prob.incr

ease=20.00,do.detect=TRUE,detect.trials=3,type="attract"){ 

  total.tiles<-nrow(grids) 

samples<-

data.frame(sample=rep(1:total.tiles,each=num.per.cell),prob

=NA) 

  if(is.null(focal.no)){ 

    focal.no<-floor(total.tiles*(1/20)) 

  } 

 

focal.loc<-sample(1:total.tiles,focal.no,replace=FALSE) 

  focal.ind<-which(samples$sample%in%focal.loc) 

  focal.samples<-

data.frame(sample=samples$sample[focal.ind],focal.ind) 

  focal.indiv<-

focal.samples[!duplicated(focal.samples$sample),] 

  rand.sample.a<-focal.indiv$sample 

  mod.samples<-samples[-focal.indiv$focal.ind,] 

  orig.prob<-1/nrow(mod.samples) 

 

rand.sample<-c(rand.sample.a,sample(mod.samples$sample,N-

length(rand.sample.a),replace=FALSE,prob=mod.samples$prob)) 

  rand.sample<-data.frame(fish.loc=cbind(rand.sample)) 

   

  if(do.detect==TRUE){ 

    detect.probs<-t(replicate(N,runif(detect.trials))) 

     

    rand.sample<-data.frame(rand.sample,detect.probs) 

    names(rand.sample)<-

c("fish.loc",paste("detect",1:detect.trials,sep=".")) 

  } 

   

  return(rand.sample) 

} 
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Appendix 4.  R-programming code for sample scenarios and sampling protocol for 

virtual environment. 
 

library(plyr) 

 

reformat.dat<-function(sample.grids,rand.sample, 

detect.prob=0.25){ 

  require(plyr) 

   

  potential.fish<-

rand.sample[rand.sample$fish.loc%in%c(sample.grids$sample),

] 

  potential.fish<-

data.frame(grid=sample.grids$grid[match(potential.fish$fish

.loc,sample.grids$sample)],potential.fish) 

   

  y<-

matrix(0,length(unique(sample.grids$grid)),ncol(potential.f

ish)-2) 

  for(i in 3:ncol(potential.fish)){ 

     

    zero.dat<-

data.frame(grid=unique(sample.grids$grid),fish.loc=0) 

    pre.dat<-

rbind(potential.fish[which(potential.fish[,i]>detect.prob),

c("grid","fish.loc")],zero.dat) 

    pre.dat$fish.loc[pre.dat$fish.loc>0]<-1 

    y[,i-2]<-

ddply(pre.dat,.(grid),summarize,y=sum(fish.loc))$y 

    } 

  colnames(y)<-paste("y.",1:ncol(y),sep="") 

   

  return(y) 

   

  } 

 

## Sampling scenarios ## 

 

sample.dim=c(10,10) 

grids<-expand.grid(x=1:sample.dim[1],y=1:sample.dim[2]) 

grids$sample<-1:nrow(grids) 

 

grids$L_edge<-ifelse(grids$x==min(grids$x),1,0) 

grids$R_edge<-ifelse(grids$x==max(grids$x),1,0) 

grids$B_edge<-ifelse(grids$y==min(grids$y),1,0) 
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grids$T_edge<-ifelse(grids$y==max(grids$y),1,0) 

grids$inside<-

ifelse(apply(grids[,c("L_edge","R_edge","B_edge","T_edge")]

,1,sum)==0,1,0) 

 

scenarios<-

data.frame(N.samples=c(24,12,8,6,4,3,2),sample.size=c(1,2,3

,4,6,8,12)) 

all.the.data<-NULL 

 

 

 

for(r in 1:nrow(scenarios)){ 

 

 

N.samples=scenarios$N.samples[r] 

sample.size=scenarios$sample.size[r] 

ttl.fish<-100 ## change for specified density ## 

detect.prob=0.25 

 

iter<-1000 

stor.pred<-NULL 

stor.obs<-NULL 

 

for(q in 1:iter){ 

  print(q) 

  used.points=NULL 

  all.sample.grids<-NULL 

   

for(i in 1:N.samples){ 

  sample.grids<-

grid.crawler(sample.size=sample.size,grids=grids,used.point

s=used.points) 

  used.points=rbind(used.points,sample.grids$sample) 

  all.sample.grids<-

rbind(all.sample.grids,data.frame(grid=i,sample.grids)) 

  } 

 

## Random fish sampling ## 

 

rand.sample<-

random.fish(N=ttl.fish,grids,num.per.cell=10,do.detect=TRUE

,detect.trials=3,replace=TRUE) 
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## Clustered fish sampling ## 

 

rand.sample<-  

cluster.fish(N=ttl.fish,grids,num.per.cell=10,focal.no=5,pr

ob.increase=2.00, 

                            

do.detect=TRUE,detect.trials=3,replace=TRUE) 

 

## Uniformed detection probability ## 

 

y<-

reformat.dat(sample.grids=all.sample.grids,rand.sample=rand

.sample, detect.type="uniform",detect.prob=0.25) 

 

## Supplied detection probability ## 

 

y<-

reformat.dat(sample.grids=all.sample.grids,rand.sample=rand

.sample, detect.type="supplied",detect.prob=detect.probs1) 

    

## replace = FALSE, limit it to 10 per cell, TRUE is 

unlimited ## 

 

## detect prob = "uniform" all cells have the same 

detection probability, "supplied" lets you input the 

probabilities ## 

 

## detect.probs = supplied probabilities, NULL if not 

supplied ## 

 

obs.data<-data.frame(t(apply(y,2,function(x) 

nzeros(x))),t(apply(y,2,mean)),t(apply(y,2,sum))) 

names(obs.data)<-c(paste("zeros.",1:ncol(y),sep=""), 

paste("mean.",1:ncol(y),sep="") 

,paste("sum.",1:ncol(y),sep="")) 

 

visitMat <- matrix(as.character(1:ncol(y)), nrow(y), 

ncol(y), byrow=TRUE) 

 

umf <- unmarkedFramePCount(y=y, 

obsCovs=list(visit=visitMat)) 
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Appendix 5.  R-programming code for N-mixture model and extrapolation for 

population estimate. 

library(plyr) 

library(ggplot2) 

library(reshape2) 

library(gridExtra) 

library(unmarked) 

 

## N-Mixture Model ## 

fm1 <- pcount(~visit -1 ~ 1, umf, K=100) 

fm1re <- ranef(fm1) 

pred.data<-

data.frame(t(data.frame(as.numeric(plogis(coef(fm1, 

type="det"))))),sum(bup(fm1re)),as.numeric(colSums(confint(

fm1re)))[1],as.numeric(colSums(confint(fm1re)))[2]) 

rownames(pred.data)<-NULL 

names(pred.data)<-

c(paste("detect.",1:ncol(y),sep=""),"sampled.abund","L_CI",

"U_CI") 

 

## Extrapolate site abundance ## 

 

pred.data$extrap.abund<-

pred.data$sampled.abund/(nrow(all.sample.grids)/prod(sample

.dim)) 

pred.data$extrap.LCI<-

pred.data$L_CI/(nrow(all.sample.grids)/prod(sample.dim)) 

pred.data$extrap.UCI<-

pred.data$U_CI/(nrow(all.sample.grids)/prod(sample.dim)) 

 

stor.pred<-rbind(stor.pred,pred.data) 

stor.obs<-rbind(stor.obs,obs.data) 

} 

data.all<-

data.frame(scenario=paste(scenarios$N.samples[r],scenarios$

sample.size[r],sep=","),ttl.fish=ttl.fish,stor.obs,stor.pre

d) 

all.the.data<-rbind(all.the.data,data.all) 

} 

all.the.data 

 

 


