
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Dissertations & Theses in Natural Resources Natural Resources, School of

Summer 7-22-2011

Discontinuities: Predicting Invasions and
Extinctions
Aaron Lotz
University of Nebraska-Lincoln, alotz@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/natresdiss

Part of the Natural Resources and Conservation Commons, Other Ecology and Evolutionary
Biology Commons, and the Terrestrial and Aquatic Ecology Commons

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Lotz, Aaron, "Discontinuities: Predicting Invasions and Extinctions" (2011). Dissertations & Theses in Natural Resources. 31.
http://digitalcommons.unl.edu/natresdiss/31

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natresdiss?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natres?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natresdiss?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/21?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/21?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natresdiss/31?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

  

            DISCONTINUITIES: PREDICTING INVASIONS AND EXTINCTIONS 

 

by 

 

Aaron Lotz 

 

 

A DISSERTATION 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

 For the Degree of Doctor of Philosophy 

 

Major: Natural Resource Sciences 

(Applied Ecology) 

 

Under the Supervision of Professor Craig R. Allen 

 

Lincoln, Nebraska 

 

August, 2011 

 



 
 

  

DISCONTINUITIES: PREDICTING INVASIONS AND EXTINCTIONS 

Aaron Lotz, Ph.D. 

University of Nebraska, 2011 

Advisor: Craig R. Allen 

In this dissertation, I explore multiple tenets of the textural discontinuity 

hypothesis, which states that hierarchical landscape structures with scale-specific pattern 

entrain attributes of animals inhabiting the landscape. Landscapes form hierarchies that 

are structured by vegetative, geomorphological and contagious disturbance processes. 

The spatial and temporal patterns inherent in landscapes reflect numerous processes, 

interacting on distinct scales, which shape the assembly of animal communities. Analysis 

of body mass patterns and functional group distributions has been suggested as methods 

to provide insight about these underlying hierarchical processes. Scientists have posited 

that species at the edges of body mass aggregations may be exposed to highly variable 

resources. This dissertation focuses on the distribution of biological diversity in space 

and time and socio-ecological factors that are contributing to the worldwide increase in 

invasive and endangered species. 

I analyzed invasions and extinctions of birds and mammals across five 

Mediterranean-climate ecosystems and in 100 countries using an information-theoretic 

approach. All body mass distribution data analyzed were discontinuous. This work 

provided further support for Holling’s textural discontinuity hypothesis. Alpha diversity 

of function increased in 9 out of the 10 Mediterranean-climate ecosystems analyzed when 

NIS were introduced into the community. After the introduction of NIS, I observed a 

decrease in cross-scale redundancy of functional groups in mammals and when both 



 
 

  

taxonomic groups were combined. In Eocene Epoch mammal data, speciation events 

were not detected near body mass aggregation edges. Only 64% of the biomes in 

mammals had ecoregions with similar structure and only 50% of the biomes in birds had 

ecoregions with similar structure, which may be a result of coarse landscape 

classification schemes. GDP per capita was positively correlated with the proportion of 

NIS bird and mammal species within a country. Resilience of a country was correlated to 

life expectancy. As life expectancy increased, resilience of a country decreased. Results 

may help us make proper management decisions in monitoring particular non-indigenous 

species and focus conservation efforts on those native species. 
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CHAPTER 1: INTRODUCTION 

One of the major unresolved problems, at the forefront of worldwide 

environmental concerns, is the increase in invasive and endangered species. Changes in 

biodiversity due to human actions have been more profound in the last 50 years than in 

the previous entirety of recorded human history. An astonishing 52% of cycads, 32% of 

amphibians, 25% of conifers, 23% of mammals, and 12% of bird species are currently 

threatened with extinction (Millennium Ecosystem Assessment 2005). As native species 

decline, introduced non-indigenous species may become established and theses can affect 

ecosystem processes and can potentially lead to the further extinction of native species 

(Forys & Allen 2002).  This potential loss of ecological processes inherently affects 

landscape structure and dynamics, including predator-prey interactions, dispersal, 

foraging behavior and functional group composition.   

In this dissertation, I explore multiple tenets of the textural discontinuity 

hypothesis, which states that hierarchical landscape structures with scale-specific pattern 

entrain attributes of animals inhabiting the landscape (Holling 1992). Landscapes form 

hierarchies that are structured by vegetative, geomorphological and contagious 

disturbance processes (Holling 1992). The spatial and temporal patterns inherent in 

landscapes reflect numerous processes, interacting on distinct scales, which shape the 

assembly of animal communities (Turner 1990). In order to understand these patterns, 

one must understand the interactions between organisms and between organisms and 

their environment.  

Analysis of body mass patterns and functional group distributions have been 

suggested as methods to provide insight about these underlying hierarchical processes, as 



2 
 

  

both are important in ecosystem-level biota structure (Forys & Allen 2002).  Studies have 

reported a discontinuous body mass distribution reflecting the architecture of the 

landscape (Havlicek & Carpenter 2001, Allen & Holling 2008).  These studies support 

Holling’s (1992) textural discontinuity hypothesis, which states that hierarchical 

landscape structures with scale-specific pattern entrain attributes of animals inhabiting 

the landscape.  Other studies have demonstrated the influence of community interactions 

on body mass distributions (Oksanen et al. 1979, Stubblefield et al. 1993, and Nummi et 

al. 2000).  These studies support Hutchinson’s (1959) community interaction hypothesis, 

which states that in the process of community formation species may be displaced, 

unfilled niches may be occupied, and niches may be partitioned.  Community interactions 

may be most important at local scales, important only after community entrainment due 

to landscape patterns (under the premise of the textural discontinuity hypothesis) (Allen 

et al. 2006).    

Mediterranean-climate ecosystems (in distinct regions of Chile, Africa, 

California, Australia, and Spain) provide replicated examples of ecological convergence 

and are similar in ecological structure and function, yet contain fauna that has been 

evolutionarily isolated (Peterson et al. 1998). Thus, Mediterranean-climate ecosystems 

enable the comparison of similarities in scale-specific vertebrate community structure. If 

systems with similar ecological structure provide similar opportunities for animals, then 

these geographically disparate systems should have similar body mass distributions 

despite geographic and evolutionary isolation.  If the vertebrate body mass structures are 

similar among these systems, the entrainment hypothesis of Holling’s textural 

discontinuity hypothesis is supported.   
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Mediterranean-climate regions are also densely populated by humans and have 

been altered by human habitation and landscape transformation.  These areas have been 

invaded by numerous non-indigenous vertebrate species and declines and extinctions of 

native species have transformed faunal community composition.  Analysis of body-mass 

aggregations has been suggested as a predictor of invasiveness, endangerment and 

nomadism (Allen et al. 1999, Allen & Saunders 2002).  The mix of native and non-

indigenous species in Mediterranean-climate ecosystems provides excellent data to 

investigate the effects of invasive species on functional group composition and changes 

in body mass distributions, as well as how these changes affect biodiversity and 

functional representation at various scales.  Invasive species may alter: 1) alpha diversity, 

which refers to the diversity within a particular ecosystem, 2) beta diversity, which refers 

to the diversity between two ecosystems and 3) gamma diversity, which is the overall 

diversity across all ecosystems (Balée 2006, Fridley et al. 2007).    

There is very little information on the effects of paleoecological time on changes 

in body mass distributions.  Smith et al. (2004) suggest that, over evolutionary time as 

lineages speciate and diversify, species do not occupy a greater range of body sizes.   

Holling et al. (2002) suggest that it takes extreme disturbances over paleoecological time 

and space to substantially change body mass distributions.  Lambert and Holling (1998) 

analyzed body mass distributions of the Pleistocene North American mammal extinctions 

and suggested that they reflected changes in key mesoscale aspects of the landscape.  The 

Siberia megafauna extinction at end of Pleistocene (Folke et al. 2004) and great mammal 

faunal crash in North America at the end of the Miocene (Lambert 2006) may have 
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triggered irreversible regime shifts and a closer examination of  body mass distributions 

may prove insightful. 

Organisms of different body sizes have different requirements for resources and 

operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot 

simultaneously interact with multiple scales, but has to specialize at a single scale or shift 

between two scales (Allen & Saunders 2002). Peterson et al. (1998) suggest functional 

diversity within body mass aggregations and redundancy of functional groups across 

scales increases resilience. Little is known with respect to ecological function and 

whether a species in the same guild or functional group is dispersed across scales. If body 

mass structure reflects landscape structure at these different scales, this will support the 

textural discontinuity hypothesis and create a fundamental link between landscape and 

community ecology.   

There is a critical need for integrated concepts and research capable of uniting the 

natural and social sciences (Pickett et al. 1997). Studies have recognized the need to 

couple human systems with environment systems (Turner et al. 2003), the convergence of 

environmental and financial markets (Sandor et al. 2002), the importance of socio-

cultural dynamics in natural resource management (Stratford & Davidson 2002) and the 

tremendous impact of humans on the environment in comparison to other species (Fowler 

& Hobbs 2003). Numerous studies have focused on only one aspect of the socio-

ecological relationship such as carbon emissions (Kratena 2004), water (Postel 2003) or 

human population growth (Struglia & Winter 2002).   

At present, only three projects have attempted to focus on and integrate multiple 

socio-ecological factors at a national scale, with an emphasis on their roles in an 
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ecologically sustainable society, into an index of values that can be ranked and compared. 

In 2003, the Global Footprint Network was established in an effort to establish and 

maintain a sustainable future. As part of that effort, the Ecological Footprint was created. 

This metric, comprised of 5 levels and 6 sub-categories, calculates how much natural 

resources we have, how much we use and who uses it in order to track human demands 

on the biosphere (Ewing et al. 2008). The U.S. National Aeronautics and Space 

Administration’s (NASA) Socioeconomic Data and Applications Center (SEDAC) 

published three indexes, the 2005 Environmental Sustainability Index (ESI) (Esty et al. 

2005), the 2006 Environmental Performance Index (EPI) (Esty et al. 2006) and the 2008 

EPI (Esty et al. 2008). Each index was developed in order to explore the relationships, at 

a national scale, between multiple socio-ecological factors and their effect on a country’s 

environmental performance and sustainability. These reports demonstrated that as 

humans, we are an integral part of the environment and have a tremendous impact on the 

environment around us.  These indicators represent another layer of the ecosystem, 

previously unaccounted for in ecological research. The economic, demographic, 

environmental and societal metabolism facets of humanity are not isolated, but highly 

integrated and have profound impacts on the world’s ecosystem and fauna. I suggest 

these socio-ecological landscape factors may be able to provide clues as to the 

invasiveness and endangerment of species around the world. 

This dissertation focuses on the distribution of biological diversity in space and 

time and socio-ecological factors that are contributing to the worldwide increase in 

invasive and endangered species. I begin this document by comparing the body mass 

distributions among ecosystems with similar ecological structure and examining the 
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effects of invasions and extinctions (Chapter 2) and changes in alpha, beta and gamma 

diversity (Chapter 3). I then explore changes in body mass distributions over 

paleoecological time to examine speciation events (Chapter 4). I then examine the effects 

of spatial scale on body mass distributions to determine the extent to which the textural 

discontinuity hypothesis remains valid (Chapter 5). The final research chapter of this 

dissertation focuses on the socio-ecological factors that may be contributing to the rising 

number of invasive and endangered birds and mammals (Chapter 6). Finally, I conclude 

with the significance of this work (Chapter 7). 
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CHAPTER 2: BODY MASS DISCONTINUITIES IN MEDITERRANEAN-CLIMATE 

ECOSYSTEMS 

 

 Over the last 35 years the population status of 1,686 vertebrate species has 

declined by 30% (Loh et al. 2008). Climate change, habitat loss, habitat degradation and 

the introduction of non-indigenous species (NIS) are just some of the factors that have 

contributed to an estimated three orders of magnitude increase in the rate of species 

extinction over the past few hundred years and significant changes in biodiversity 

worldwide (Millennium Ecosystem Assessment 2005). Invasive species have contributed 

to the decline of vertebrate species. The economic costs of invasive species exceed $120 

billion a year in environmental damages and are the primary cause for decline for 

approximately 42% of the United States’ endangered species (Pimentel et al. 2005). 

Identifying the cause of invasions and the ability to reliably predict invasions are very 

poor (see Gallien et al. 2010). A better understanding would improve management and 

lessen the potential impacts on native species. 

Landscapes form hierarchies that are structured by vegetative, geomorphologic 

and contagious disturbance processes (Holling 1992). The spatial and temporal patterns 

inherent in landscapes reflect numerous processes, interacting on distinct scales, which 

potentially shape the assembly of animal communities. Allen et al. 2006 reviewed five 

non-mutually exclusive hypotheses for observed body mass patterns, each operating at 

different scales; specifically energetic, phylogenetic, biogeographical, textural 

discontinuity and community interaction hypothesis. The authors suggest that their 

relevance varies with the scale at which each is applied. Community interactions produce 
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structure at local scales, the energetic and textural discontinuity at intermediate scales and 

the phylogenetic and biogeographical at broad scales. Many studies have reported a 

discontinuous body mass distribution reflecting the ecological structure of the landscape 

(Restrepo et al. 1997, Raffaelli et al. 2000, Havlicek & Carpenter 2001, see Allen & 

Holling 2008). These studies support the textural discontinuity hypothesis (TDH), which 

states that hierarchical landscape structures with scale-specific pattern entrain attributes 

of animals inhabiting the landscape (Holling 1992). 

Organisms of different body sizes have different requirements for resources and 

operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot 

simultaneously interact with multiple scales, but has to specialize at a single scale or shift 

between two scales (Allen & Saunders 2002). Allen et al. (1999) suggest that the gaps 

between body mass aggregations represent scale breaks and that these points in the body 

mass distribution are highly susceptible to change in structure and ecological processes. 

Analysis of body-mass aggregations has been suggested as a predictor of invasiveness 

and endangerment (Allen et al. 1999). Allen & Saunders (2002) reported nomadic bird 

species in southcentral Australia were significantly associated with the edge of body mass 

aggregations. Allen et al. (1999) reported in four different south Florida taxa (birds, 

mammals and herpetofauna), that more invasive and declining species exist at the edge of 

body mass aggregations than could be expected by chance.  

Here I examined whether invasive and endangered species were nonrandomly 

distributed in vertebrate body mass structures among five Mediterranean-climate 

ecosystems. Mediterranean-climate ecosystems are projected to incur the highest loss of 

biodiversity of all terrestrial ecosystems by the year 2100 (Sala et al. 2000) with South 
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Africa and southwestern Australia expected to undergo the most significant impact 

(Klausmeyer & Shaw 2009). These regions are interesting to ecologists and conservation 

biologists for a variety of reasons, including the ecological convergence mentioned 

above. They are biologically rich, with a relatively high level of endemism (Mittermeier 

et al. 2005).  Mediterranean-climate regions support large human populations, resulting in 

extensive, rapid, anthropogenic transformation. In a study examining key threats and 

trends in Mediterranean-climate ecosystems, the California-Baja California region had 

the highest population density and highest percent urban area of any of the five 

Mediterranean regions examined, while southwestern Australia had the highest 

percentage of high intensity agriculture (Underwood et al. 2009). Compared to other 

continental areas, Mediterranean regions have been invaded by a large number of non-

indigenous organisms, including vertebrates. Concomitant with invasions, declines and 

extinctions have transformed the faunas of Mediterranean ecoregions (Di Castri 1991). 

 Mediterranean-climate regions provide replicated examples of ecosystems that are 

similar in ecological structure and function, yet contain fauna that has been evolutionarily 

isolated (Cody and Mooney 1978, Peterson et al. 1998, Abbott and Le Maitre 2010).  

Thus, Mediterranean-climate ecosystems enable the comparison of scale specific 

vertebrate community structure and should exhibit similar body mass patterns. In order to 

test Holling’s (1992) textural discontinuity hypothesis, I determined whether 

discontinuous body mass patterns existed in each of the five Mediterranean-climate 

ecosystems and examined whether the vertebrate body mass structures are similar among 

these systems. A lack of discontinuous body mass patterns and a lack of similarity among 
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these systems would provide strong evidence against the textural discontinuity 

hypothesis. 

 

METHODS 

 Mediterranean-climate ecosystems occur in central coastal Chile, the Western 

Cape Province of South Africa, San Diego County, California, the South West Botanical 

Province in southwestern Australia, and Spain. Delineation of Mediterranean-climate 

regions varies by author, especially whether one considers primarily climatic or 

vegetative boundaries, therefore multiple sources were used to gain a consensus on the 

extent of Mediterranean-climate habitat in each region (Akin 1991, Di Castri 1991, 

Hobbs et al. 1995). In general, these ecosystems are characterized by winter rains with a 

pronounced dry-season, and frequent fires (Hobbs et al. 1995). Vegetation is mainly 

grassland and brush including Chaparral (California), Mattoral (Chile), Maquis (Spain), 

Fynbos (South Africa) and Mallee or Kwongan (Australia). Although the entire 

Mediterranean-climate ecosystem in California and Australia were not sampled, body 

mass distribution analysis is robust to approximately 18% (mammals) and 15% (birds) 

omission error (Sendzimir 1998). Therefore, my results are limited in scope to the areas 

that I selected. 

Study Areas 

 I examined two terrestrial vertebrate groups, birds and mammals. Species lists for 

Mediterranean-climate ecosystems were obtained from published sources. Californian 

mammals were determined from a specific study of their habitat preferences and 

Native species  
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distribution (Quinn 1990). Unitt (2004) and Vuilleumier (1991) provided a thorough list 

of the birds of San Diego County. Vuilleumier (1991) provided a list of Chilean birds and 

Chilean mammals were provided by Miller (1981).  Spanish mammals were determined 

from Cheylan (1991). Spanish birds were compiled from the comprehensive works of 

Cramp (1978 – 1994). Mammals residing in the Mediterranean-climate Fynbos of the 

southern cape of South Africa were determined from Smithers (1983).  Winterbottom 

(1966) provided data on the avifauna of Mediterranean shrublands in South Africa. 

Mammal data for Australia were compiled from Strahan (1995). Australian birds were 

determined from Saunders and Ingram (1995).     

Body-mass estimates

 In most cases, body mass estimates for birds were compiled from Dunning (1993) 

and estimates for mammals from Silva and Downing (1995). Where possible, body mass 

estimates from the region of interest were used, otherwise estimates were taken from the 

nearest geographic location. Male and female body mass estimates were averaged when 

weights for both sexes were provided. The body sizes were recorded in grams and 

subsequently logarithmically transformed. 

   

 A species was considered a non-indigenous species (NIS) to an ecosystem of 

interest if it was introduced, intentionally or inadvertently. Species introduced after the 

year 2006 and only species with established breeding populations were included in 

analyses. Endangered species were classified as those species listed as either extinct, 

endangered, a species of special concern, vulnerable or threatened. A list of NIS and 

endangered species was created utilizing data from the 2006 International Union for 

Species Criteria 
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Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species 

(IUCN 2006), but data quality varies by region and taxa.   

 Body mass pattern or structure refers to the distribution of body mass 

aggregations and gaps along the body mass axis. Body mass distributions were analyzed 

for discontinuities using simulations of actual data compared to a null distribution (a 

continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 

1997). A body-mass aggregation consisted of three or more species with body masses 

that did not exceed the expectation of the null distribution and was defined by the upper 

and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass 

aggregations were defined as significantly large areas between adjacent body masses that 

exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of 

discontinuities in the data was determined by calculating the probability that the observed 

discontinuities were chance events (compared observed values with output of 1,000 

simulations run against the null set (Restrepo et al. 1997).   

Discontinuity Analysis 

The number of species in my data sets vary from < 30 to > 150, therefore I 

maintained a constant statistical power of approximately 0.50 when setting alpha for 

detecting discontinuities (Lipsey 1990). Two other methods were also used to confirm the 

location of discontinuities. I used Bayesian Classification and Regression Trees 

(Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 1999) to further 

validate any patterns detected in body mass distributions. A multiple method approach in 

detecting significance in body mass patterns has been suggested as the best protocol 

(Allen et al. 2006, Stow et al. 2007). Visual examination of juxtaposition of pairs of 
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Mediterranean-climate ecosystem body mass distributions was also used to determine 

similarities in body mass aggregation patterns. Abundance data for each individual 

species was not integrated into my analyses. Changes in dominance of species (greater 

numbers of individuals) could change aggregation and gap locations, but body mass 

distribution patterns will be conserved despite changes in species composition or number 

(Havlicek & Carpenter 2001). 

Chi-square and Phi correlation analyses were used to determine differences in 

body mass patterns between Mediterranean-climate ecosystems. The null hypothesis of 

the Chi-square analyses is that there are equal distributions among each of the four cells 

in a 2 x 2 table (one in the gap condition while the other is in the lump condition and vice 

versa, both in the lump condition and both in the gap condition), which would indicate 

that the two groups are unrelated. A Bonferroni correction was applied to account for 

multiple comparisons in the same analysis (Miller 1981). In order to provide additional 

information, a correlation of binary variables, using Phi correlation, was also utilized in 

order to elucidate more information and to determine the relationship between the 

Mediterranean-climate ecosystems. Species within each Mediterranean-climate 

ecosystems were assigned a binary variable (where 1 represented a body mass 

aggregation and 0 represented a gap), based on the log10 body mass axis, and divided 

into a 0.01 gram increment bin. The body mass axis range was limited by the shared data 

between the two groups. The Phi coefficient ranges from -1 to 1. Values approaching 1 

indicate a positive correlation and values approaching -1 indicate a negative correlation. 

Fleiss et al. (2003) suggested that values greater than ±0.30 indicate a strong relationship. 

NIS & Endangered Species Analysis   
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 After completing these analyses, the location of NIS body masses within these 

distributions was determined.  NIS and endangered species could be distributed in the 

body-mass patterns in various ways; randomly, within a limited range of body masses, at 

the edge of aggregations, invasives only within body mass aggregations or invasives only 

in the gaps (Figure 2.1). Both gaps and edges of body mass distributions represent 

changes in scale and areas of high variability (see Allen et al. 1999). I specifically tested 

whether NIS and endangered species occurred in gaps between body mass aggregations 

in the observed distribution more often than expected values if their distribution were 

random using a chi-square goodness of fit test.   

T-tests were used to determine the distance to body mass aggregation edge of 

native endangered species compared to native non-endangered species and the 

distribution of NIS in terms of distance to the nearest edge in the observed distribution 

when compared to the native species distances from edges. Taxonomic groups were also 

analyzed separately for both comparisons. T-tests were also used to compare the distance 

to body mass aggregation edge of native and NIS, with NIS distance to body mass 

aggregation edge when gap spaces are set to zero. Gap space was set to zero in order to 

observe the results when you assume all NIS are actually on the edge. 

 

RESULTS 

 All ten Mediterranean-climate bird and mammal body-mass distributions were 

discontinuous. Unique aggregations of species were detected in each taxa, by all 

methods.  I observed a range of 4-12 discontinuities in my datasets. There were a total of 

Discontinuities  
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57 endangered bird species and 52 endangered mammal species and a total of 54 invasive 

bird species (74.1% within body mass aggregations) and 41 invasive mammal species 

(48.8% within body mass aggregations) (Table 2.1). Bird communities had between 6 – 

12 body mass aggregations and mammals had between 4 – 8 body mass aggregations in 

each community. Bird communities had a smaller average gap size (x = 0.097±0.09) than 

mammals (x = 0.322±0.166). Visual examination of juxtaposition of pairs of 

Mediterranean-climate ecosystem body mass distributions revealed similar overlapping 

patterns at some scales, but not at every scale, in either birds (Figure 2.2) or mammals 

(Figure 2.3). 

Lump/Gap Structure 

 Five of 10 pairwise comparisons between mammal body mass aggregations in 

Mediterranean-climate ecosystems were significant in the chi-square analysis and 5 of 10 

pairwise comparisons were significant in the Phi correlation analysis (Tables 2.2 & 2.3). 

The pairwise comparisons between California and South Africa, Chile and southwestern 

Australia, Spain and South Africa, Spain and southwestern Australia, and South Africa 

and southwestern Australia indicated no similarity in body mass patterns. All other 

Mediterranean-climate ecosystem body mass patterns were similar to each other. The Phi 

coefficients between California and Chile, California and Spain, California and 

southwestern Australia, Chile and Spain, and Chile and South Africa indicated strong 

positive relationships. The Phi coefficients between Chile and southwestern Australia and 

between Spain and southwestern Australia indicated positive relationships, but the 

relationships were weak. The Phi coefficients between the remaining pairwise 

Mammals 
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comparisons of Mediterranean climate ecosystems indicated negative relationships, but 

the relationships were weak.  

Two of 10 pairwise comparisons between bird body mass aggregations in 

Mediterranean-climate ecosystems were significant in the chi-square analysis and one of 

10 pairwise comparisons were significant in the Phi correlation analysis (Tables 2.4 & 

2.5). The pairwise comparisons between California and Chile and California and South 

Africa indicated similar body mass patterns. All other pairwise comparisons of 

Mediterranean-climate ecosystem body mass patterns were not similar to each other. The 

Phi coefficient between California and South Africa was the only comparison that 

indicated a strong positive relationship. The Phi coefficients between California and 

Chile, California and Spain, and Chile and southwestern Australia indicated positive 

relationships, but the relationships were weak. The Phi coefficients between the 

remaining pairwise comparisons of Mediterranean climate ecosystems indicated negative 

relationships, but the relationships were weak. 

Birds 

NIS and Endangered Species

 The distance to edge of a body mass aggregation for native endangered species 

was significantly less than for non-endangered species in Australia mammals (z=1.345, 

P=0.09) and South Africa birds (z=1.56, P=0.06). The distance to edge of a body mass 

aggregation for native non-endangered species was significantly less than for endangered 

species in Spain mammals (z=2.66, P=0.004) and Australia birds (z=1.820, P=0.03) 

(Table 2.6). The distance to edge of a body mass aggregation for natives was significantly 

less than for NIS in California birds (z=1.3, P=0.10), Chile birds (z=1.13, P=0.10) and 
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Spain mammals (z=1.269, P=0.10). The distance to edge of a body mass aggregation for 

NIS was significantly less than for natives in Spain birds (z=-1.745, P=0.04) (Table 2.7). 

Pooling data across ecosystems, the distance to edge of a body mass aggregation for all 

native non-endangered was significantly less than for endangered species in birds 

(z=1.565, P=0.06) and the distance to edge of a body mass aggregation for all native was 

significantly less than for NIS, in mammals (z=1.869, P=0.03) (Table 2.8).   

T-tests comparing distance to edge of a body mass aggregation for native and 

non-native species with NIS species in gaps set to zero were significant in California 

mammals (z=-1.41, P=0.08), Spain birds (z=-2.199, P=0.01) and mammals (z=-1.085, 

P=0.10), South Africa birds (z=-1.352, P=0.09), Australia mammals (z=-1.332, P=0.09) 

and Chile mammals (z=-1.915, P=0.03).  Pooling data across ecosystems, t-tests 

comparing distance to edge of a body mass aggregation for all native and NIS, with NIS 

species in gaps set to zero, were significant in both taxonomic groups (birds, P = 0.06; 

mammals, P = 0.004) (Table 2.9).   

NIS birds (X2=29.91, 4 df; P = 5.11e-06) and mammals (X2=34.25, 4 df; P = 6.63e-

07) occurred in gaps between body mass aggregations in the observed distribution more 

often than expected (Table 2.10). Based on calculated gap space, NIS birds (X2=2.68, 4 

df; P = 0.61) and mammals (X2=3.67, 4 df; P = 0.45) did not occur in gaps between body 

mass aggregations in the observed distribution more often than expected. Declining 

species of birds (X2=31.32, 4 df; P = 2.63e-06) and mammals (X2=8.80, 4 df; P = 0.07) 

occurred at body mass aggregation edges in the observed distribution more often than 

expected (Table 2.11). Based on calculated gap space, declining species of birds 
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(X2=6.88, 4 df; P = 0.14) and mammals (X2=1.28, 4 df; P = 0.86) did not occur at body 

mass aggregation edges in the observed distribution more often than expected. 

 

DISCUSSION 

 Discontinuous body-mass distributions were found in all Mediterranean-climate 

ecosystems and taxa examined. Discontinuities in body mass distributions have also been 

shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, 

birds, and mammals (Allen et al. 1999, Allen 2006), Pleistocene and Miocene mammals 

(Lambert and Holling 1998, Lambert 2006), tropical forest birds (Restrepo et al. 1997), 

and boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed 

in Sendzimir et al. 2003). This analysis extends these conclusions to include animal 

communities across Mediterranean-climate ecosystems of the world.  

Body mass distribution patterns observed using the statistical methods employed 

in this dissertation are real and are not an apparent effect of random noise. Sendzimir 

(1998) ran simulations to determine differences in observed body mass distributions 

compared to simulated body mass distribution patterns. Aggregation pattern recognition 

did decline below robust levels in the 10 to 15 percent (mammals) and 5 percent level 

(birds) of error due to random variation in body size in mammals. This decline in 

aggregation pattern recognition was evident across all body sizes in both mammals and 

birds. 

Bird communities had more aggregations than mammal communities and 

mammal communities had larger gap sizes than birds. These differences may be due to 

how each taxa perceive and interact with landscape structure. It has been suggested that 
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birds live in a more three dimensional world and mammals live in a one dimensional 

world (Holling 1992). If this were the case, birds would be able to access a greater 

number of resources enabling the use of a more complex landscape structure and allow 

birds to occupy more niches. More niches could account for a greater number of 

aggregations, which would contradict the textural discontinuity hypothesis. TDH would 

posit that as a landscape becomes more structurally complex, the opportunity to fill new 

niches increases, not vice versa. Birds and mammals also have different locomotory 

modes, affording birds the ability to utilize both terrestrial and aerial resources in any 

given landscape (Sendzimir 1998).  

Mediterranean-climate ecosystems are geographically isolated regions that have 

long been considered to be structurally similar and have similar climatic regimes. 

However, more in-depth research of ecological processes within these ecosystems 

suggests that these regions are examples of both convergence and divergence (reviewed 

in Rundel 2011). Only 35% of all pairwise comparisons between the structures of body 

mass distributions in five Mediterranean-climate ecosystems were determined to be 

similar. These results may be due to inherent differences in soil fertility, geology, 

differential rainfall, topographic heterogeneity, climatic heterogeneity, and different 

disturbance regimes (i.e., fire frequency) among these Mediterranean-climate ecosystems 

(Di Castri 1991, reviewed in Cowling et al. 1996).  

Differences in human transformation of these Mediterranean-climate ecosystems 

might also explain the lack of similarity in all pairwise comparisons between ecosystems.  

The Mediterranean Basin (i.e., Spain in this analysis) has the oldest history of human 

occupation (i.e., agriculture and animal husbandry) dating back 10,000 years ago (Naveh 
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& Kutiel 1990). The other regions were inhabited by hunter-gatherers and pastoralists 

until colonization which subsequently brought European grains and livestock to these 

regions (Aschmann 1973). Differences in time since settlement, cultural differences 

between the colonizing countries, and other regional differences (i.e., availability of 

resources and relationships between colonizers and indigenous people) may have 

contributed to differences in current patterns of human transformation between 

Mediterranean-climate ecosystems, thus resulting in differences in landscape structure 

between ecosystems (Hobbs et al. 1995). Differences in present and projected human 

population sizes, growth rates, and densities between Mediterranean-climate ecosystems 

have major impacts on land use, resulting in different patterns of landscape 

transformation (Mooney et al. 2001). Thus, body mass distributions within these 

ecosystems will never be the same in all pairwise comparisons. My results may also be an 

artifact of the type of statistical analysis applied to the data. Chi-square and Phi 

correlation analyses may not have been appropriate; however, no other statistical analyses 

for this type of comparison have ever been documented. 

More NIS and endangered species were found to occur at the edges of body mass 

aggregations than could be expected by chance alone in 30% of datasets, thus supporting 

similar analyses which examined the distribution of NIS and endangered species in 

relation to body mass aggregations (Allen et al. 1999). Skillen and Maurer (2008) 

reported an average of 52% of declining species were closer to body mass aggregation 

edges than the median distance to the nearest body mass aggregation edge and showed an 

average of 72% of NIS were further away from body mass aggregation edges than the 

median distance (i.e., located in gaps). In those regions where invasive and endangered 
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species were not found near the edges of body mass aggregations, plausible factors may 

be degree of human alteration or influence, species assemblages transitioning from a 

recent environmental change, or a delayed response to a prior change in the environment 

(Skillen and Maurer 2008). Body mass aggregation edges and gaps between body mass 

aggregations or scale breaks have been referred to as “zones of crisis and opportunity” 

(Allen et al. 1999) depending on whether the species is an endangered species or an 

invader.  

The results of this study clearly have significant implications for the field of 

landscape ecology and conservation biology. Humans continually altering the landscape 

at an increasing rate, current patterns of global change (i.e., climate change and 

globalization), and an increased rate of invasions (Vitousek et al. 1996, Mooney and 

Cleland 2001, Lodge and Shrader-Frechette 2003), will continue to change the 

composition of animal communities both locally, regionally and globally. My results may 

help our ability to maintain ecosystem resilience by making the proper management 

decisions in monitoring particular non-indigenous species (those closest to body mass 

aggregation edges and in gaps) and focus conservation efforts on those native species 

nearest body mass aggregation edges (i.e., the endangered ones). 
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Table 2.1. Overall number of native species in five Mediterranean-climate ecosystems, the overall percentage of endangered and  

non-indigenous species (NIS), the percentage of NIS species in each region after a hypothetical removal of threatened species, the  

number of discontinuities and the percentage of NIS within body mass aggregations. 

Region 

Number of 

Native Bird 

and Mammal 

Species % Endangered % NIS 

% NIS After 

Extinction of 

Threatened Species 

Number of 

Discontinuities (birds, 

mammals) 

% of NIS 

within 

body mass 

aggregations 

California 148 12.8 13.5 15.5 9,5 70 

Chile 150 3.3 13.3 13.8 9,4 65 

Spain 165 20 10.3 12.9 6,8 59 

South Africa 157 8.3 11.5 12.5 7,7 61 

Southwestern 

Australia 188 16.5 10.6 12.7 12,5 60 
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Table 2.2. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem  

mammal body mass aggregations. Probability levels less than or equal to 0.005 were considered significant  

matches between the lump and gap architecture of the compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California <.0001* <.0001* 0.0326 <.0001* 

Chile --- <.0001* <.0001* 0.4484 

Spain 

 

--- 0.5239 0.4445 

South Africa      --- 0.3378 
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Table 2.3. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem mammal body mass  

aggregations. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative  

correlation. Values greater than ±.30 indicate a strong relationship between the lump and gap architecture of the  

compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California 0.2895* 0.3932* -0.1016 0.4488* 

Chile --- 0.3790* 0.4681* 0.0486 

Spain 

 

--- -0.0301 0.0455 

South Africa      --- -0.0519 
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Table 2.4. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem bird  

body mass aggregations. Probability levels less than or equal to 0.005 were considered significant matches  

between the lump and gap architecture of the compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California 0.0023* 0.1059 <.0001* 0.1184 

Chile --- 0.0566 0.9393 0.9634 

Spain 

 

--- 0.2529 0.2389 

South Africa      --- 0.0235 
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Table 2.5. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem bird body mass  

aggregations. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a  

negative correlation. Values greater than ±.30 indicate a strong relationship between the lump and gap  

architecture of the compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California 0.1771 0.0940 0.5017* -0.0860 

Chile --- 0.1143 -0.0046 0.0027 

Spain 

 

--- -0.0692 -0.0682 

South Africa      --- -0.1366 
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Table 2.6. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body mass aggregation of  

endangered and non-endangered bird and mammal species in five Mediterranean-climate ecosystems. 

Region Non-Endangered Endangered Birds  Non-Endangered Endangered Mammals 

 x(SD) x(SD) z P   x(SD) x(SD) z P 

California 0.071(.069) 0.083(.113) 0.985 0.160  0.099(.106) 0.12(.085) 0.540 0.290 

Chile 0.054(.044) 0.075(.030) 0.774 0.220  0.15(.151) 0.078(.135) -1.050 0.150 

Spain 0.144(.132) 0.143(.115) 0.290 0.390  0.045(.056) 0.080(.054) 2.660 0.004* 

South Africa 0.061(.063) 0.040(.080) 1.560 0.060*  0.118(.121) 0.130(.119) 0.389 0.350 

SWAustralia 0.046(.053) 0.134(.214) 1.820 0.030*   0.171(.135) 0.119(.100) 1.345 0.090* 
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Table 2.7. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body mass 

aggregation of native and non-indigenous (NIS) bird and mammal species in five Mediterranean-climate 

ecosystems.   

Region Native NIS Birds   Native NIS Mammals 

 x(SD) x(SD) z P   x(SD) x(SD) z P 

California 0.073(.077) 0.087(.067) 1.300 0.100*  0.101(.103) 0.118(.074) 0.515 0.300 

Chile 0.054(.043) 0.081(.062) 1.130 0.100*  0.143(.149) 0.115(.089) 0.244 0.400 

Spain 0.144(.128) 0.072(.105) 1.745 0.040*  0.051(.057) 0.073(.051) 1.269 0.100* 

South Africa 0.059(.064) 0.048(.034) 0.222 0.410    0.120(.120) 0.136(.093) 0.830 0.200 

SWAustralia 0.051(.076) 0.053(.069) 0.180 0.430   0.140(.116) 0.206(.171) 0.993 0.160 
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Table 2.8. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body 

mass aggregation of all endangered and non-endangered bird and mammal species and native 

compared to non-indigenous (NIS) bird and mammal species, pooling five Mediterranean-climate 

ecosystems. 

Taxonomic 

Group Non-Endangered Endangered 

Non-

Endangered/ 

Endangered   Native NIS Native/NIS 

 x(SD) x(SD) z P   x(SD) x(SD) z P 

Birds 0.072(.083) 0.113(.131) 1.565 0.0   0.076(.090) 0.069(.070) 0.398 0.350 

Mammals 0.109(.120) 0.113(.097) 0.729 0.2    0.11(.115) 0.13(.108) 1.869 0.030* 
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Table 2.9. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body mass 

aggregation of native and non-indigenous (NIS) bird and mammal species with NIS species in gaps set to 

zero in five Mediterranean-climate ecosystems. 

Region Native NIS Birds   Native NIS Mammals 

 x(SD) x(SD) z P   x(SD) x(SD) z P 

California 0.073(.077) 0.079(.073) 0.478 0.316  0.101(.103) 0.053(.091) -1.41 0.080* 

Chile 0.054(.043) 0.077(.067) 0.759 0.224  0.143(.149) 0.046(.066) 1.915 0.030* 

Spain 0.144(.128) 0.065(.109) 2.199 0.010*  0.051(.057) 0.030(.062) 1.085 0.100* 

South Africa 0.059(.064) 0.033(.043) 1.352 0.090*  0.120(.120) 0.108(.117) 0.333 0.370 

SWAustralia 0.051(.076) 0.046(.072) 0.919 0.180  0.140(.116) 0.079(.107) 1.332 0.090* 

Combined 0.076(.090) 0.060(.075) 1.523 0.060*   0.11(.115) 0.065(.091) 2.695 0.004* 
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Table 2.10. Results of Chi-Square analyses comparing the observed distribution of 

non-indigenous birds and mammals in gaps between body mass aggregations in five 

Mediterranean-climate ecosystems. 

  Birds   Mammals   

Region Expected Observed Expected Observed 

California 1.218 2 1.03 4 

Chile 0.656 1 2 6 

Spain 0.583 3 1.34 4 

South Africa 0.87 4 0.955 3 

SW Australia 1.076 4 1.07 4 

X2 29.91(5.11E-06)*   34.25(6.63E-07)*   
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Table 2.11. Results of Chi-Square analyses comparing the observed distribution of 

endangered birds and mammals in gaps between body mass aggregations in five 

Mediterranean-climate ecosystems. 

  Birds   Mammals   

Region Expected Observed Expected Observed 

California 1.73 7 0.69 1 

Chile 0.18 0 0.50 2 

Spain 1.55 1 1.53 2 

South Africa 0.29 2 1.31 3 

SW Australia 0.89 0 3.47 6 

X2 31.32 (2.63E-06)*   8.80(0.07)*   
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Figure 2.1. Potential patterns of where invasive and endangered species could be 

distributed in the context of vertebrate body mass distributions. Each pattern supports a 

different hypothesis. 
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            Figure 2.2. Juxtaposition of bird body mass aggregations across five Mediterranean-

climate ecosystems. 
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Figure 2.3. Juxtaposition of mammal body mass aggregations across five Mediterranean-

climate ecosystems. 
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CHAPTER 3: CHANGES IN ALPHA, BETA & GAMMA DIVERSITY OF 

FUNCTION IN MEDITERRANEAN-CLIMATE ECOSYSTEMS 

 

 Climate change, habitat loss, habitat degradation and the introduction of non-

indigenous species (NIS) are just some of the factors that have contributed to an 

estimated three orders of magnitude increase in the rate of species extinction over the past 

few hundred years and significant changes in biodiversity worldwide (Millennium 

Ecosystem Assessment 2005). Biodiversity is the composition, structure and function of 

an ecosystem (Noss 1990). Therefore, biological diversity must be treated more seriously 

as a global resource to be indexed, used and preserved (Wilson 1988).            

Landscapes form hierarchies (which contain breaks in object proximities, and 

textures at particular scales and sizes of objects) that are structured by vegetative, 

geomorphologic and contagious disturbance processes (Holling 1992). The spatial and 

temporal patterns inherent in landscapes reflect numerous processes, interacting on 

distinct scales, which potentially shape the assembly of animal communities. Many 

studies have reported a discontinuous body mass distribution reflecting the ecological 

structure of the landscape (see Allen & Holling 2008). These studies support the textural 

discontinuity hypothesis (TDH), which states that hierarchical landscape structures with 

scale-specific pattern entrain attributes of animals inhabiting the landscape (Holling 

1992).  

Organisms of different body sizes have different requirements for resources and 

operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot 

simultaneously interact with multiple scales, but has to specialize at a single scale or shift 
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between two scales (Allen & Saunders 2002). Allen et al. (1999) suggest that the gaps 

between body mass aggregations represent scale breaks and that these points in the body 

mass distribution are highly susceptible to change in structure and ecological processes. 

Analysis of body-mass aggregations may provide insight into functional group change 

within and across scales (i.e., cross-scale resilience) following invasions and extinctions 

(Forys & Allen 2002). In order to test Holling’s (1992) textural discontinuity hypothesis, 

I determined whether discontinuous body mass patterns existed in each of the five 

Mediterranean-climate ecosystems. A lack of discontinuous body mass patterns would 

provide strong evidence against the textural discontinuity hypothesis. 

Following landscape change and native species decline, NIS may become 

established and can affect ecosystem processes at varying scales and may lead to the 

further extinction of native species (Williamson 1996, Vitousek et al. 1997). Thus, NIS 

may alter; 1) alpha diversity, which refers to the diversity within a particular ecosystem 

and is expressed by the number of species in that ecosystem, 2) beta diversity, which 

refers to the diversity between two ecosystems and is expressed by the total number of 

species unique to each of the ecosystems being compared and 3) gamma diversity, which 

is the overall diversity in all ecosystems within a particular region (Whittaker 1972, Balée 

2006, Fridley et al. 2007). 

In a recent review of the Convention on Biological Diversity’s 2020 goals, 

authors suggest that an assessment of functional diversity is missing. In order to realize 

the benefits of ecosystem services, which are derived from ecosystem functions, the 

species that perform those functions must be conserved (Perrings et al. 2010). However, 

species are not equal in their effects on ecosystem functioning (Mouchet et al. 2010). 
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Function typically refers to ecological functions, such as pollination, seed dispersal, 

predation or grazing. Functional diversity is based on what organisms do, not on their 

evolutionary history (reviewed in Petchey & Gaston 2006). Functional diversity is an 

important determinant of ecosystem processes and is defined as the number of functional 

groups represented by the species in a community (reviewed in Petchey & Gaston 2002).  

The potential loss of native species richness may disrupt ecological processes that 

inherently shape landscape structure, such as predator-prey dynamics, seed dispersal, 

hydrology, nutrient cycling and fire regime. Most studies have examined the effects of 

invasive species on species richness, not functional group diversity (reviewed in Vitousek 

et al. 1996). Few studies analyze functional diversity in relation to invasions (Forys & 

Allen 2002, Hooper and Dukes 2010). Peterson et al. (1998) suggest ecological resilience 

is generated more by functional diversity than by species richness and that redundancy of 

functional groups across scales increases cross-scale resilience.  

Mediterranean-climate ecosystems are among the most diverse and threatened in 

the world (Malcolm et al. 2006). Mediterranean-climate ecosystems are projected to incur 

the highest loss of biodiversity of all terrestrial ecosystems by the year 2100 (Sala et al. 

2000) with South Africa and southwestern Australia expected to undergo the most 

significant impact (Klausmeyer & Shaw 2009). These regions are also densely populated 

by humans and have been altered by human habitation and landscape transformation. 

Mediterranean-climate regions support large human populations, resulting in extensive, 

rapid, anthropogenic transformation. In a study examining key threats and trends in 

Mediterranean-climate ecosystems, the California-Baja California region had the highest 

population density and highest percent urban area of any of the five Mediterranean 
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regions examined, while southwestern Australia had the highest percentage of high 

intensity agriculture (Underwood et al. 2009). Mediterranean-climate ecosystems provide 

a unique data set because they are highly invaded communities whose non-indigenous 

fauna has been well-documented. They have been invaded by numerous non-indigenous 

vertebrate species and declines and extinctions of native species have transformed the 

faunal community composition in these regions (Malcolm et al. 2006). Here, I investigate 

the effects of invasive species and the loss of endangered species on functional group 

composition. Specifically, how these changes affect biodiversity and functional group 

representation within and across body mass aggregations at various scales. 

 

METHODS 

 I focused on central coastal Chile, the Western Cape Province of South Africa, 

San Diego County, California, the South West Botanical Province in western Australia, 

and Spain. Delineation of Mediterranean-climate regions varies by author, especially 

whether one considers primarily climatic or vegetative boundaries, therefore multiple 

sources were used to gain a consensus on the extent of Mediterranean-climate habitat in 

each region (Akin 1991, Di Castri 1991, Hobbs et al. 1995). In general, these ecosystems 

are characterized by winter rains with a pronounced dry-season and frequent fires (Hobbs 

et al. 1995). Vegetation is mainly grassland and brush including Chaparral (California),  

Study Areas 

Mattoral (Chile), Maquis (Spain), Fynbos (South Africa) and Mallee or Kwongan  

(Australia). Although the entire Mediterranean-climate ecosystem in California and 

Australia were not sampled, body mass distribution analysis is robust to approximately 
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18% (mammals) and 15% (birds) omission error (Sendzimir 1998). Therefore, my results 

are limited in scope to the areas that I selected. 

 I examined two terrestrial vertebrate groups, birds and mammals. Species lists for 

Mediterranean-climate ecosystems were obtained from published sources. Californian 

mammals were determined from a specific study of their habitat preferences and 

distribution (Quinn 1990). Unitt (2004) provided a thorough list of the birds of San Diego 

County. Vuilleumier (1991) provided a list of Chilean birds and Chilean mammals were 

provided by Miller (1981). Spanish mammals were determined from Cheylan (1991). 

Spanish birds were compiled from the comprehensive works of Cramp (1978 – 1994). 

Mammals residing in the Mediterranean-climate Fynbos of the southern cape of South 

Africa were determined from Smithers (1983). Winterbottom (1966) provided data on the 

avifauna of Mediterranean shrublands in South Africa. Mammal data for Australia were 

compiled from Strahan (1995).  Australian birds were determined from Saunders and 

Ingram (1995).     

Native species  

Body-mass estimates

 In most cases, body mass estimates for birds were compiled from Dunning (1993) 

and estimates for mammals from Silva and Downing (1995). Where possible, body mass 

estimates from the region of interest were used, otherwise estimates were taken from the 

nearest geographic location. Male and female body mass estimates were averaged when 

weights for both sexes were provided. The body sizes were recorded in grams and 

subsequently logarithmically transformed. 

   

Species Criteria 
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 A species was considered NIS to an ecosystem of interest if it was introduced, 

intentionally or inadvertently. Species introduced after the year 2006 and only species 

with established breeding populations were included in analyses. Endangered species 

were classified as those species listed as either extinct, endangered, a species of special 

concern, vulnerable or threatened. A list of invasive and endangered species was created 

utilizing data from the 2006 International Union for Conservation of Nature and Natural 

Resources (IUCN) Red List of Threatened Species (IUCN 2006), but data quality varies 

by region and taxa.   

 Body mass pattern or structure refers to the distribution of body mass 

aggregations and gaps along the body mass axis. Body mass distributions were analyzed 

for discontinuities using simulations of actual data compared to a null distribution (a 

continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 

1997). A body-mass aggregation consisted of three or more species with body masses 

that did not exceed the expectation of the null distribution and was defined by the upper 

and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass 

aggregations were defined as significantly large areas between adjacent body masses that 

exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of 

discontinuities in the data was determined by calculating the probability that the observed 

discontinuities were chance events (compared observed values with output of 1,000 

simulations run against the null set (Restrepo et al. 1997).   

Discontinuity Analysis 

The number of species in my data sets vary from < 30 to > 150, therefore I 

maintained a constant statistical power of approximately 0.50 when setting alpha for 
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detecting discontinuities (Lipsey 1990). Two other methods were also used to confirm the 

location of discontinuities. I used Bayesian Classification and Regression Trees 

(Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 1999) to further 

validate any patterns detected in body mass distributions. A multiple method approach in 

detecting significance in body mass patterns has been suggested as the best protocol 

(Allen et al. 2006, Stow et al. 2007). Abundance data for each individual species was not 

integrated into my analyses. Changes in dominance of species (greater numbers of 

individuals) could change aggregation and gap locations, but body mass distribution 

patterns will be conserved despite changes in species composition or number (Havlicek & 

Carpenter 2001). 

Chi-square and Phi correlation analyses were used to determine differences in 

body mass patterns between Mediterranean-climate ecosystems. The null hypothesis of 

the Chi-square analyses is that there are equal distributions among each of the four cells 

in a 2 x 2 table (one in the gap condition while the other is in the lump condition and vice 

versa, both in the lump condition and both in the gap condition), which would indicate 

that the two groups are unrelated. A Bonferroni correction was applied to account for 

multiple comparisons in the same analysis (Miller 1981). In order to provide additional 

information, a correlation of binary variables, using Phi correlation, was also utilized in 

order to elucidate more information and to determine the relationship between the 

Mediterranean-climate ecosystems. Species within each Mediterranean-climate 

ecosystems were assigned a binary variable (where 1 represented a body mass 

aggregation and 0 represented a gap), based on the log10 body mass axis, and divided 

into a 0.01 gram increment bin. The body mass axis range was limited by the shared data 
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between the two groups. The Phi coefficient ranges from -1 to 1. Values approaching 1 

indicate a positive correlation and values approaching -1 indicate a negative correlation. 

Fleiss et al. (2003) suggested that values greater than ±0.30 indicate a strong relationship. 

 Species richness has low explanatory power (i.e., does not identify the unique 

ecological role of each species) and should not be used as a measure of functional 

diversity (Petchey et al. 2004). However, there is a positive correlation between species 

richness and functional diversity (Tilman et al. 1996). I constructed functional group 

classifications using both diet and foraging strata, based on published species accounts 

(Table 3.1). Functional diversity, or functional group richness, was calculated as the 

number of diet/foraging strata present in each body mass aggregation. Functional 

diversity change across scales (i.e., alpha, beta and gamma diversity of function) was 

determined using the Shannon Index H′ (Shannon and Weaver 1949). In order to isolate 

the effects of NIS on an ecosystem and predict their future impact, a “preinvasion” 

species list included all native species, all species listed as endangered and native species 

that are extinct. A “postinvasion” species list included native species and NIS with 

established breeding populations. This list assumed that all endangered species will go 

extinct in the near future; therefore currently endangered species were omitted. 

Functional Diversity Analysis 

 Shannon Index values were used to compare alpha, beta and gamma diversity of 

function in each taxa; 1) original community composition contrasted with the addition of 

NIS, 2) original community composition contrasted with a postinvasion community, and 

3) original community composition with NIS contrasted with a postinvasion community. 

T-tests were used to compare functional group richness preinvasion versus postinvasion, 
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by taxa and when combined. In order to determine any changes in the redundancy in 

functional groups across scales, I used t-tests to compare the number of body mass 

aggregations where at least one member of a functional group was present preinvasion to 

the number of aggregations where it occurred postinvasion (Forys and Allen 2002). 

Taxonomic groups were analyzed separately.     

 

RESULTS 

 All ten Mediterranean-climate bird and mammal body-mass distributions were 

discontinuous. Unique aggregations of species were detected in each taxa, by all 

methods.  I observed a range of 4-12 discontinuities in my datasets. There were a total of 

57 endangered bird species and 52 endangered mammal species and a total of 54 invasive 

bird species and 41 invasive mammal species (Table 3.2). Visual examination of 

juxtaposition of pairs of Mediterranean-climate ecosystem body mass distributions 

revealed similar overlapping patterns at some scales, but not at every scale, in either birds 

(Figure 3.1) or mammals (Figure 3.2). 

Discontinuities  

Lump/Gap Structure 

 Five of 10 pairwise comparisons between mammal body mass aggregations in 

Mediterranean-climate ecosystems were significant in the chi-square analysis and 5 of 10 

pairwise comparisons were significant in the Phi correlation analysis (Tables 3.3 & 3.4). 

The pairwise comparisons between California and South Africa, Chile and southwestern 

Australia, Spain and South Africa, Spain and southwestern Australia, and South Africa 

Mammals 



52 
 

   

and southwestern Australia indicated no similarity in body mass patterns. All other 

Mediterranean-climate ecosystem body mass patterns were similar to each other. The Phi 

coefficients between California and Chile, California and Spain, California and 

southwestern Australia, Chile and Spain, and Chile and South Africa indicated strong 

positive relationships. The Phi coefficients between Chile and southwestern Australia and 

between Spain and southwestern Australia indicated positive relationships, but the 

relationships were weak. The Phi coefficients between the remaining pairwise 

comparisons of Mediterranean climate ecosystems indicated negative relationships, but 

the relationships were weak.  

Two of 10 pairwise comparisons between bird body mass aggregations in 

Mediterranean-climate ecosystems were significant in the chi-square analysis and one of 

10 pairwise comparisons were significant in the Phi correlation analysis (Tables 3.5 & 

3.6). The pairwise comparisons between California and Chile and California and South 

Africa indicated similar body mass patterns. All other pairwise comparisons of 

Mediterranean-climate ecosystem body mass patterns were not similar to each other. The 

Phi coefficient between California and South Africa was the only comparison that 

indicated a strong positive relationship. The Phi coefficients between California and 

Chile, California and Spain, and Chile and southwestern Australia indicated positive 

relationships, but the relationships were weak. The Phi coefficients between the 

remaining pairwise comparisons of Mediterranean climate ecosystems indicated negative 

relationships, but the relationships were weak. 

Birds 

Functional Diversity 
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 California - Historically, there were 144 native bird and mammal species in the 

Mediterranean-climate ecosystem of California. Currently, approximately 13% of these 

species are endangered and 14% are NIS. If all currently listed species go extinct and all 

of the currently established NIS persist, 16% of the fauna will be non-native. Alpha 

diversity of function in birds and mammals increased with the inclusion of NIS and 

increased further after endangered species were removed (Table 3.7). Postinvasion, the 

bird community gained three new functional groups (terrestrial herbivore, aquatic 

omnivore, and foliage omnivore) and lost one (aquatic herbivore). The mammal 

community gained one new functional group (aquatic herbivore).  

Chile - Historically, there were 150 bird and mammal species in the 

Mediterranean-climate ecosystem of Chile. Currently, approximately 3% of these species 

are endangered and 13% are NIS. If all currently listed species go extinct and all of the 

currently established NIS persist, 14% of the fauna will be non-native. Alpha diversity of 

function in birds increased with the inclusion of NIS and decreased below the diversity 

level of the original community after endangered species were removed. Alpha diversity 

of function in mammals increased with the inclusion of NIS and increased further after 

endangered species were removed (Table 3.7). Postinvasion, the bird community did not 

gain or lose any functional groups. The mammal community gained one new functional 

group (terrestrial omnivore). 

Spain - Historically, there were 170 bird and mammal species in the 

Mediterranean-climate ecosystem of Spain. Currently, approximately 19% of these 

species are endangered and 10% are NIS.  If all currently listed species go extinct and all 

of the currently established NIS persist, 7% of the fauna will be non-native. Alpha 
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diversity of function in birds increased with the inclusion of NIS and increased further 

after endangered species were removed. Alpha diversity of function in mammals 

decreased with the inclusion of NIS and decreased further after endangered species were 

removed (Table 3.7). Postinvasion, the bird community gained three new functional 

groups (aquatic granivore, foliage herbivore and aquatic omnivore). The mammal 

community lost two functional groups (aquatic carnivore and aquatic herbivore). 

South Africa - Historically, there were 156 bird and mammal species in the 

Mediterranean-climate ecosystem of South Africa. Currently, approximately 8% of these 

species are endangered and 12% are NIS. If all currently listed species go extinct and all 

of the currently established NIS persist, 13% of the fauna will be non-native. Alpha 

functional diversity in birds and mammals increased with the inclusion of NIS and 

increased further after endangered species were removed (Table 3.7).  Postinvasion, the 

bird community gained two new functional groups (aquatic omnivore and terrestrial 

omnivore).  The mammal community gained two new functional groups (arboreal 

granivore and terrestrial omnivore). 

Southwestern Australia - Historically, there were 184 bird and mammal species in 

the Mediterranean-climate ecosystem of Southwestern Australia. Currently, 

approximately 17% of these species are endangered and 11% are NIS. If all currently 

listed species go extinct and all of the currently established NIS persist, 13% of the fauna 

will be non-native. Alpha diversity of function in birds increased with the inclusion of 

NIS and increased further after endangered species were removed. Alpha diversity of 

function in mammals increased with the inclusion of NIS and increased further after 

endangered species were removed (Table 3.7). Postinvasion, the bird community gained 
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two new functional groups (aquatic insectivore and aquatic piscivore). The mammal 

community gained one new functional group (terrestrial omnivore). 

Alpha diversity of function increased in 9 out of the 10 Mediterranean-climate 

ecosystems analyzed when NIS were introduced into the community. Alpha diversity of 

function increased in eight ecosystems and decreased in two with the removal of 

endangered species from the community after introducing NIS (Table 3.7).  Beta 

diversity of function in birds decreased in 80% of the Mediterranean-climate pair-wise 

comparisons analyzed when NIS were introduced and remained the same or decreased in 

60% of the Mediterranean-climate pair-wise comparisons with the removal of endangered 

species from the communities (Table 3.8). Beta diversity of function in mammals 

increased in 70% of the Mediterranean-climate pair-wise comparisons analyzed when 

NIS were introduced and remained the same or increased in 80% of comparisons when 

endangered species were subsequently removed from the communities (Table 3.9). 

Gamma diversity of function in birds and mammals increased with the inclusion of NIS 

and after endangered species were removed (Table 3.10). 

Functional Redundancy 

California - Historically, the mammal community within the California 

Mediterranean-climate ecosystem consisted of 34 species from 8 functional groups 

(Appendix A). The within-aggregation functional diversity ranged from two to five 

functional groups. The aggregations of smaller-bodied mammals had more species and 

higher diversity of functional groups than larger-bodied mammals. Of the 8 functional 

groups, two functional groups occurred in three or more aggregations, one functional 

Mammals 
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group had one representative and occurred in only one aggregation, and the remaining 

five functional groups occurred in two aggregations. In 23% of the cases only one species 

represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, only one aggregation lost one functional group, therefore the loss of functional 

diversity within aggregations was minimal. Membership in each functional group within 

each aggregation had no overall net loss of species. In 28% of the cases only one species 

remained to represent a functional group within an aggregation. The mammal community 

within the California Mediterranean-climate ecosystem gained one new functional group 

in four aggregations and lost one functional group in one aggregation. Overall 

redundancy of function across aggregations (i.e., cross-scale redundancy) was increased 

in two functional groups (Table 3.11). 

Chile - Historically, the mammal community within the Chile Mediterranean-

climate ecosystem consisted of 29 species from 10 functional groups (Appendix B). The 

within-aggregation functional diversity ranged from two to six functional groups. The 

aggregations of smaller-bodied mammals had more species and higher diversity of 

functional groups than larger-bodied mammals. Of the 10 functional groups, two 

functional groups occurred in three or more aggregations, and five functional groups had 

one representative and occurred in only one aggregation. In 25% of the cases only one 

species represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, only one aggregation lost one functional group, therefore the loss of functional 

diversity within aggregations was minimal. Membership in each functional group within 
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each aggregation had an overall net gain of six species. In 27% of the cases only one 

species remained to represent a functional group within an aggregation. The mammal 

community within the Chile Mediterranean-climate ecosystem gained three new 

functional groups in one aggregation and two new functional groups in another 

aggregation and lost one functional group in one aggregation. Cross-scale redundancy 

increased in three functional groups and decreased in one functional group (Table 3.12). 

Spain - Historically, the mammal community within the Spain Mediterranean-

climate ecosystem consisted of 46 species from 10 functional groups (Appendix C). The 

within-aggregation functional diversity ranged from two to five functional groups. The 

aggregations of smaller-bodied mammals had more species and higher diversity of 

functional groups than larger-bodied mammals. Of the 10 functional groups, three 

functional groups occurred in four or more aggregations, and three functional groups had 

one representative and occurred in only one aggregation. In 14% of the cases only one 

species represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, one aggregation lost one functional group and two functional groups were lost in 

another aggregation. Membership in each functional group within each aggregation had 

an overall net loss of one species. In 10% of the cases only one species remained to 

represent a functional group within an aggregation. The mammal community within the 

Spain Mediterranean-climate ecosystem gained one functional group in one aggregation, 

lost one functional group in one aggregation, and lost two functional groups in another 

aggregation. Cross-scale redundancy increased in one functional group and decreased in 

three functional groups (Table 3.13). 
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South Africa - Historically, the mammal community within the South Africa 

Mediterranean-climate ecosystem consisted of 66 species from 7 functional groups 

(Appendix D). The within-aggregation functional diversity ranged from two to five 

functional groups. The aggregations of smaller-bodied mammals had a similar number of 

species and diversity of functional groups compared to larger-bodied mammals. Of the 7 

functional groups, three functional groups occurred in four or more aggregations, and two 

functional groups had one representative and occurred in only one aggregation. In 10% of 

the cases only one species represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, one aggregation lost two functional groups. Membership in each functional group 

within each aggregation had no overall net loss of species. In 11% of the cases only one 

species remained to represent a functional group within an aggregation. The mammal 

community within the South Africa Mediterranean-climate ecosystem gained one 

functional group in three aggregations and lost one functional group in two aggregations. 

Cross-scale redundancy increased in one functional group and decreased in two 

functional groups (Table 3.14).  

Southwestern Australia – Historically, the mammal community within the 

southwestern Australia Mediterranean-climate ecosystem consisted of 44 species from 7 

functional groups (Appendix E). The within-aggregation functional diversity ranged from 

two to five functional groups. The aggregations of smaller-bodied mammals had more 

species and higher diversity of functional groups than larger-bodied mammals. Of the 7 

functional groups, two functional groups occurred in four or more aggregations, and one 
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functional group had one representative and occurred in only one aggregation. In 29% of 

the cases only one species represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, one aggregation lost three functional groups, one aggregation lost two functional 

groups and one aggregation lost one functional group. Membership in each functional 

group within each aggregation had an overall net loss of seven species. In 23% of the 

cases only one species remained to represent a functional group within an aggregation. 

The mammal community within the southwestern Australia Mediterranean-climate 

ecosystem gained one functional group in three aggregations, lost three functional groups 

in one aggregation, lost two functional groups in another aggregation, and lost one 

functional group in an aggregation. Cross-scale redundancy increased in one functional 

group and decreased in four functional groups (Table 3.15). 

California - Historically, the bird community within the California 

Mediterranean-climate ecosystem consisted of 114 species from 16 functional groups 

(Appendix F). The within-aggregation functional diversity ranged from two to eight 

functional groups. The aggregations of smaller-bodied birds had the same number of 

species, but a lower diversity of functional groups compared to larger-bodied birds. Of 

the 16 functional groups, three functional groups occurred in five or more aggregations, 

and three functional groups had one representative and occurred in only one aggregation. 

In 8% of the cases only one species represented a functional group within an aggregation. 

Birds 

After all currently listed species go extinct and all of the currently established NIS 

persist, two aggregations lost one functional group. Membership in each functional group 
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within each aggregation had an overall net loss of one species. In 13% of the cases only 

one species remained to represent a functional group within an aggregation. The bird 

community within the California Mediterranean-climate ecosystem gained one functional 

group in three aggregations, gained three functional groups in two aggregations, and lost 

one functional group in two aggregations. Cross-scale redundancy increased in three 

functional groups and decreased in one functional group (Table 3.16).  

Chile - Historically, the bird community within the Chile Mediterranean-climate 

ecosystem consisted of 121 species from 19 functional groups (Appendix G). The within-

aggregation functional diversity ranged from three to eight functional groups. The 

aggregations of smaller-bodied birds had more species, but a lower diversity of functional 

groups compared to larger-bodied birds. Of the 19 functional groups, four functional 

groups occurred in five or more aggregations, and three functional groups had one 

representative and occurred in only one aggregation. In 18% of the cases only one species 

represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, two aggregations lost one functional group. Membership in each functional group 

within each aggregation had an overall net gain of six species. In 17% of the cases only 

one species remained to represent a functional group within an aggregation. The bird 

community within the Chile Mediterranean-climate ecosystem gained one functional 

group in two aggregations and lost one functional group in two aggregations. Cross-scale 

redundancy increased in two functional groups and decreased in two functional groups 

(Table 3.17).   
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Spain - Historically, the bird community within the Spain Mediterranean-climate 

ecosystem consisted of 119 species from 14 functional groups (Appendix H). The within-

aggregation functional diversity ranged from three to eight functional groups. The 

aggregations of smaller-bodied birds had more species and a higher diversity of 

functional groups compared to larger-bodied birds. Of the 14 functional groups, five 

functional groups occurred in four or more aggregations, and three functional groups had 

one representative and occurred in only one aggregation. In 19% of the cases only one 

species represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, four aggregations lost one functional group. Membership in each functional group 

within each aggregation had an overall net loss of six species. In 21% of the cases only 

one species remained to represent a functional group within an aggregation. The bird 

community within the Spain Mediterranean-climate ecosystem gained one functional 

group in one aggregation, gained two functional groups in two aggregations, and lost one 

functional group in four aggregations. Cross-scale redundancy increased in two 

functional groups and decreased in four functional groups (Table 3.18). 

South Africa - Historically, the bird community within the South Africa 

Mediterranean-climate ecosystem consisted of 91 species from 12 functional groups 

(Appendix I). The within-aggregation functional diversity ranged from two to seven 

functional groups. The aggregations of smaller-bodied birds had more species and a 

higher diversity of functional groups compared to larger-bodied birds. Of the 12 

functional groups, three functional groups occurred in four or more aggregations, and two 
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functional groups had one representative and occurred in only one aggregation. In 14% of 

the cases only one species represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, one aggregation lost one functional group. Membership in each functional group 

within each aggregation had an overall net gain of nine species. In 14% of the cases only 

one species remained to represent a functional group within an aggregation. The bird 

community within the South Africa Mediterranean-climate ecosystem gained one 

functional group in three aggregations and lost one functional group in one aggregation. 

Cross-scale redundancy increased in one functional group and decreased in one 

functional group (Table 3.19).  

Southwestern Australia - Historically, the bird community within the 

southwestern Australia Mediterranean-climate ecosystem consisted of 144 species from 

16 functional groups (Appendix J). The within-aggregation functional diversity ranged 

from two to nine functional groups. The aggregations of smaller-bodied birds had more 

species and a similar diversity of functional groups compared to larger-bodied birds. Of 

the 16 functional groups, six functional groups occurred in five or more aggregations, and 

two functional groups had one representative and occurred in only one aggregation. In 

15% of the cases only one species represented a functional group within an aggregation. 

After all currently listed species go extinct and all of the currently established NIS 

persist, three aggregations lost one functional group. Membership in each functional 

group within each aggregation had no overall loss of species. In 14% of the cases only 

one species remained to represent a functional group within an aggregation. The bird 

community within the southwestern Australia Mediterranean-climate ecosystem gained 
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one functional group in three aggregations and lost one functional group in four 

aggregations. Cross-scale redundancy increased in one functional group and decreased in 

three functional groups (Table 3.20).   

Across body mass aggregations, there were changes in the number of species 

belonging to each functional group (Figures 3.3 & 3.4). Postinvasion, on average, birds 

gained two new functional groups and mammals gained one in each Mediterranean- 

climate ecosystem. Birds in the functional group terrestrial granivores and those that were 

herbivorous comprised the majority of additional memberships, while insectivores 

(terrestrial, aquatic, foliage, bark, and aerial) comprised the majority of declines in 

functional group membership. Carnivorous and herbivorous mammals comprised the 

majority of additional functional group memberships, while herbivores and granivores 

comprised the majority of declines in functional group membership. In birds, NIS 

increased membership in terrestrial carnivores, terrestrial granivores, foliage herbivores, 

terrestrial herbivores, and terrestrial omnivores. In mammals, NIS increased membership 

in terrestrial carnivores, terrestrial herbivores, and terrestrial omnivores. 

Most functional group membership declines were in insectivorous birds and 

mammals.  Within each individual body mass aggregation, there were changes in species 

composition and functional groups present, however, small sample size and extremely 

low statistical power did not make it possible to detect differences in functional group 

richness preinvasion and post invasion within each ecosystem. There were no differences 

in functional group richness preinvasion and post invasion for each terrestrial vertebrate 

group or for both taxonomic groups combined (Table 3.21). There was a decrease in 
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cross-scale redundancy of functional groups in mammals and when both taxonomic 

groups were combined (Table 3.21). 

 

DISCUSSION 

 Discontinuous body-mass distributions were found in all Mediterranean-climate 

ecosystems and taxa examined. Discontinuities in body mass distributions have also been 

shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, 

birds, and mammals (Allen et al. 1999, Allen 2006), Pleistocene and Miocene mammals 

(Lambert and Holling 1998, Lambert 2006), tropical forest birds (Restrepo et al. 1997), 

and boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed 

in Sendzimir et al. 2003). This analysis extends these conclusions to include animal 

communities across Mediterranean-climate ecosystems of the world.  

Body mass distribution patterns observed using the statistical methods employed 

in this dissertation are real and are not an apparent effect of random noise. Sendzimir 

(1998) ran simulations to determine differences in observed body mass distributions 

compared to simulated body mass distribution patterns. Aggregation pattern recognition 

did decline below robust levels in the 10 to 15 percent (mammals) and 5 percent level 

(birds) of error due to random variation in body size in mammals. This decline in 

aggregation pattern recognition was evident across all body sizes in both mammals and 

birds. 

Mediterranean-climate ecosystems are geographically isolated regions that have 

long been considered to be structurally similar and have similar climatic regimes. 

However, more in-depth research of ecological processes within these ecosystems 
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suggests that these regions are examples of both convergence and divergence (reviewed 

in Rundel 2011). Only 35% of all pairwise comparisons between the structures of body 

mass distributions in five Mediterranean-climate ecosystems were determined to be 

similar. These results may be due to inherent differences in soil fertility, differential 

rainfall, topographic heterogeneity, climatic heterogeneity, and different disturbance 

regimes (i.e., fire frequency) among these Mediterranean-climate ecosystems (reviewed 

in Cowling et al. 1996).  

Differences in human transformation of these Mediterranean-climate ecosystems 

might also explain the lack of similarity in all pairwise comparisons between ecosystems.  

The Mediterranean Basin (i.e., Spain in this analysis) has the oldest history of human 

occupation (i.e., agriculture and animal husbandry) dating back 10,000 years ago (Naveh 

& Kutiel 1990). The other regions were inhabited by hunter-gatherers and pastoralists 

until colonization which subsequently brought European grains and livestock to these 

regions (Aschmann 1973). Differences in time since settlement, cultural differences 

between the colonizing countries, and other regional differences (i.e., availability of 

resources and relationships between colonizers and indigenous people) may have 

contributed to differences in current patterns of human transformation between 

Mediterranean-climate ecosystems, thus resulting in differences in landscape structure 

between ecosystems (Hobbs et al. 1995). Differences in present and projected human 

population sizes, growth rates, and densities between Mediterranean-climate ecosystems 

have major impacts on land use, resulting in different patterns of landscape 

transformation (Mooney et al. 2001). Thus, body mass distributions within these 

ecosystems will never be the same in all pairwise comparisons. My results may also be an 
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artifact of the type of statistical analysis applied to the data. Chi-square and Phi 

correlation analyses may not have been appropriate; however, no other statistical analyses 

for this type of comparison have ever been documented. 

The introduction of invasive species led to an increase in alpha diversity of 

function in 90% of the Mediterranean-climate ecosystems analyzed and an increase in 

alpha diversity of function in 80% of the Mediterranean-climate ecosystems analyzed 

after the removal of endangered species. These results provide further support for the 

trends reported in numerous studies regarding an increase in alpha diversity after the 

establishment of non-indigenous species (Olden and Rooney 2006, reviewed in Sax and 

Gaines 2003). An increase in alpha diversity of functional supports the notion that, at a 

local scale, invasive species richness and native species richness are positively correlated 

and invasive species do not reduce native species richness (Houlahan and Findlay 2004, 

Sax 2002, Sax et al. 2002, and Ellis et al. 2000). While Fridley et al. (2007) agree that 

species rich ecosystems are hotspots for invasive species, they contend that a decrease in 

local species richness can increase the success of invasion.     

Beta diversity of function in birds decreased in 80% (when non-indigenous 

species were introduced) and remained the same or decreased in 60% (when endangered 

species were subsequently removed) of the Mediterranean-climate pair-wise 

comparisons. The opposite was seen in mammals, where beta diversity of function 

increased in 70% (when non-indigenous species were introduced) and remained the same 

or increased in 80% (when endangered species were subsequently removed) of the 

Mediterranean-climate pair-wise comparisons. A decrease in beta diversity of function 

supports studies reporting a regional scale decline in species richness following the 
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introduction of invasive species (Newmark 1995, Vitousek et al. 1996). A decrease in 

beta diversity represents the change from a regionally distinct community to a more 

homogenous community and this process has been termed biotic homogenization 

(McKinney and Lockwood 1999). Biotic homogenization has been suggested as an 

influential process which could negatively impact ecosystem function and resilience 

(reviewed in Olden et al. 2004).   

An increase in beta diversity of function supports studies which state no apparent 

loss in species richness at a regional scale from invasive species and no subsequent biotic 

homogenization (Davis 2003, Rosenzweig 2001). These mixed results at a regional scale 

have been described elsewhere (reviewed in Sax and Gaines 2003). Contrary to Sax and 

Gaines (2003) review of species richness, gamma diversity of function (i.e., global scale) 

increased in both taxonomic groups and supports the theory that as scale increases, 

species richness increases (Rosenzweig 1999). This supports studies that have concluded 

invasive species may not threaten overall richness (Rosenzweig 2001).   

Parker et al. (1999) and Vitousek et al. (1996) describe many kinds of 

environmental effects associated with non-indigenous species: including genetic (loss of 

genetic diversity and evolutionary pressure due to hybridization), ecosystem (alteration of 

nutrient cycling and productivity), and population or community (species richness may 

increase, but abundance of native species declines). Although there were no significant 

differences between pre- and post- invasion Shannon Index values, results of this study 

demonstrated a trend of non-indigenous species positively affecting alpha diversity of 

function in both birds and mammals, negatively affecting beta diversity of function in 

birds, and positively affecting beta diversity of function in mammals.   
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Despite differences in pre- and post- invasion species communities, the number of 

functional groups in a given body mass aggregation (functional richness w/n scales) 

remained similar pre- and postinvasion. However, changes in the distribution of species 

within functional groups across different body mass aggregations in mammals and when 

both taxonomic groups were combined, further validate an apparent decrease in 

functional redundancy and cross-scale resilience. Land-use intensification in 

Mediterranean-climate ecosystems has most likely resulted in loss of functional 

redundancy, which ultimately increases the chances of successful invasions (Laliberte et 

al. 2010, Hooper and Dukes 2010). The loss of cross-scale resilience and simplification 

of these communities due to human influences is well documented and may also have 

unforeseen consequences (Regier and Baskerville 1986, Peterson et al. 1998, Forys and 

Allen 2002). In recent years, one such consequence is the hotly debated subject of global 

homogenization, or the loss of specialist species (Clavel et al. 2010). 

With regard to cross-scale redundancy in birds remaining the same, it may be that 

the overall net effect of the establishment of NIS birds in these ecosystems has offset 

losses of species due to other anthropogenic impacts (e.g., habitat fragmentation, 

degradation or destruction) (Forys and Allen 2002). Birds had higher species diversity 

than mammals, which some authors suggest would decrease the probability of a whole 

functional group becoming extinct (Fonseca & Ganade 2001). This may also be a result 

of no niche replacement, but conservation of broad functional patterns via functional 

complementarity (Rosenfeld 2002). Sundstrom et al. (2011) postulated that the loss of 

one or more species within a functional group may decrease competition between other 
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species within that group, thus inherently increasing the remaining species’ ability to 

survive. 

 The results of this study clearly have significant implications for the field of 

landscape ecology and conservation biology. Humans continually altering the landscape 

at an increasing rate, current patterns of global change (i.e., climate change and 

globalization), and an increased rate of invasions (Vitousek et al. 1996, Mooney and 

Cleland 2001, Lodge and Shrader-Frechette 2003), will continue to change the 

composition of animal communities both locally, regionally and globally. Although there 

is no overwhelming evidence that invasive species cause a disproportionate share of 

incipient and actual extinctions on mainlands (reviewed in Gurevitch and Padilla 2004), 

this study suggests invasive species negatively impact key components of ecosystems 

(i.e., diversity of functional groups, functional redundancy and cross-scale resilience).   

Davis and Thompson (2001) state traits between native and non-indigenous 

species are effectively indistinguishable; therefore, future analyses should include 

abundance data for all species in order to ascertain the level of functional extinctions 

(Carlton et al. 1999). Future analyses of functional diversity must also account for the 

potential variation in functional roles of species in heterogeneous environments (see 

Wellnitz and Poff 2001) and the potentially disproportionate effect of both a particular 

functional group and/or one of its members (Hoey and Bellwood 2009). Sustaining 

ecosystem resilience will require the conservation of both species diversity and diversity 

of function across multiple scales within an ecosystem. 
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Table 3.1. Functional groups used to classify the vertebrate fauna of California, Chile, 

South Africa, Spain and Southwestern Australia based on foraging strata and diet. 

Diet Foraging Strata Abbreviation 

Carnivore Aerial CaAe 

Carnivore Aquatic CaAq 

Carnivore Arboreal CaAr 

Carnivore Terrestrial CaTe 

Granivore Aquatic GrAq 

Granivore Arboreal GrAr 

Granivore Foliage GrFo 

Granivore Terrestrial GrTe 

Herbivore Aerial HeAe 

Herbivore Aquatic HeAq 

Herbivore Arboreal HeAr 

Herbivore Foliage HeFo 

Herbivore Fossorial HeFs 

Herbivore Terrestrial HeTe 

Insectivore Aerial InAe 

Insectivore Aquatic InAq 

Insectivore Arboreal InAr 

Insectivore Bark InBa 

Insectivore Foliage InFo 

Insectivore Fossorial InFs 
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Table 3.1. Continued 

 Diet Foraging Strata Abbreviation 

Insectivore Terrestrial InTe 

Omnivore Aquatic OmAq 

Omnivore Bark OmBa 

Omnivore Foliage OmFo 

Omnivore Terrestrial OmTe 

Nectivore Aerial NeAe 

Nectivore Foliage NeFo 

Piscivore Aerial PiAe 

Piscivore Aquatic PiAq 

Piscivore Terrestrial PiTe 
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Table 3.2. Overall number of native species in five Mediterranean-climate ecosystems, the overall percentage of  

endangered and non-indigenous species (NIS) and the percentage of NIS species in each region after a hypothetical  

removal of threatened species. 

Region 

Number of Native Bird 

and Mammal Species % Endangered % NIS 

% NIS After Extinction of 

Threatened Species  

California 148 12.8 13.5 15.5  

Chile 150 3.3 13.3 13.8  

Spain 165 20 10.3 12.9  

South Africa 157 8.3 11.5 12.5  

Southwestern 

Australia 188 16.5 10.6 12.7  
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Table 3.3. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem  

mammal body mass aggregations. Probability levels less than or equal to 0.005 were considered significant  

matches between the lump and gap architecture of the compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California <.0001* <.0001* 0.0326 <.0001* 

Chile --- <.0001* <.0001* 0.4484 

Spain 

 

--- 0.5239 0.4445 

South Africa      --- 0.3378 
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Table 3.4. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem mammal body  

mass aggregations using. Values approaching 1 indicate a positive correlation and values approaching -1  

indicate a negative correlation. Values greater than ±30 indicate a strong relationship between the lump and gap  

architecture of the compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California 0.2895* 0.3932* -0.1016 0.4488* 

Chile --- 0.3790* 0.4681* 0.0486 

Spain 

 

--- -0.0301 0.0455 

South Africa      --- -0.0519 
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Table 3.5. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem  

bird body mass aggregations using. Probability levels less than or equal to 0.005 were considered significant  

matches between the lump and gap architecture of the compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California 0.0023* 0.1059 <.0001* 0.1184 

Chile --- 0.0566 0.9393 0.9634 

Spain 

 

--- 0.2529 0.2389 

South Africa      --- 0.0235 
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Table 3.6. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem bird body mass  

aggregations. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a  

negative correlation. Values greater than ±30 indicate a strong relationship between the lump and gap  

architecture of the compared ecosystems. 

  Chile Spain 

South 

Africa 

Southwestern 

Australia 

California 0.1771 0.0940 0.5017* -0.0860 

Chile --- 0.1143 -0.0046 0.0027 

Spain 

 

--- -0.0692 -0.0682 

South Africa      --- -0.1366 
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Table 3.7. Alpha diversity of function for the vertebrate fauna of California, Chile, South 

Africa, Spain, and Southwestern Australia. (Shannon Diversity Index (H1), divergence 

from equiprobability (D1), equitability (Evenness), Non-indigenous species (NIS), and 

Endangered species (E). A high H1 value indicates a high degree of diversity.  

        
  Birds    Mammals  
California H1 D1 Evenness  H1 D1 Evenness 
Functional Groups w/o NIS 3.096 0.712 81.305  2.449 0.358 87.241 
Functional Groups w/NIS 3.280 0.808 80.241  2.743 0.427 86.545 
Functional Groups w/o E 
w/NIS 

3.283 0.717 82.064  2.790 0.380 88.016 

        
Chile        
Functional Groups w/o NIS 3.623 0.625 85.279  2.803 0.519 84.390 
Functional Groups w/NIS 3.638 0.610 85.635  2.910 0.550 84.098 
Functional Groups w/o E 
w/NIS 

3.607 0.641 84.911  3.017 0.443 87.197 

        
South Africa        
Functional Groups w/o NIS 2.724 0.735 78.749  1.845 0.740 71.366 
Functional Groups w/NIS 2.822 0.878 76.266  2.064 0.936 68.794 
Functional Groups w/o E 
w/NIS 

2.836 0.864 76.639  
2.187 0.813 72.915 

        
Spain        
Functional Groups w/o NIS 2.853 0.732 79.577  2.672 0.650 80.432 
Functional Groups w/NIS 3.030 0.877 77.547  2.616 0.706 78.744 
Functional Groups w/o E 
w/NIS 

3.116 0.791 79.750  
2.420 0.580 80.680 

        
Southwestern Australia        
Functional Groups w/o NIS 3.223 0.581 84.743  2.187 0.621 77.890 
Functional Groups w/NIS 3.322 0.678 83.051  2.386 0.614 79.530 
Functional Groups w/o E 
w/NIS 

3.323 0.677 83.071  2.608 0.392 86.930 
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Table 3.8. Beta diversity of function for the bird fauna of each Mediterranean-climate ecosystem. (Shannon Diversity Index (H1), 

divergence from equiprobability (D1), equitability (Evenness), Non-indigenous species (NIS), and Endangered species (E). A high H1 

value indicates a high degree of diversity. 

 San Diego v Chile Chile v South Africa South Africa v Southwestern 
Australia 

 

 H1 D1 Evenness H1 D1 Evenness H1 D1 Evenness  
Functional Groups w/o NIS 2.997 0.173 94.533 3.017 0.304 90.835 2.236 0.086 96.296  
Functional Groups w/NIS 2.774 0.226 92.483 2.924 0.398 88.001 2.663 0.144 94.877  
Functional Groups w/o E 
w/NIS 

2.774 0.226 92.483 2.943 0.379 88.596 2.663 0.144 94.877  

           
 San Diego v South Africa Chile v Spain Spain v Southwestern Australia  
Functional Groups w/o NIS 2.936 0.234 92.629 3.051 0.119 96.241 1.485 0.515 74.234  
Functional Groups w/NIS 2.703 0.297 90.094 2.407 0.178 93.103 1.122 1.200 48.312  
Functional Groups w/o E 
w/NIS 

2.520 0.284 89.879 2.407 0.178 93.103 1.122 1.200 48.312  

           
 San Diego v Spain 

 
Chile v Southwestern 

Australia 
    

Functional Groups w/o NIS 2.379 0.206 92.024 2.674 0.648 80.486     
Functional Groups w/NIS 2.264 0.321 87.576 2.514 0.656 79.297     
Functional Groups w/o E 
w/NIS 

2.466 0.341 87.950 2.453 0.717 77.378     

           
 San Diego v Southwestern 

Australia 
South Africa v Spain     

Functional Groups w/o NIS 1.923 0.662 74.400 2.604 0.204 92.746     
Functional Groups w/NIS 1.912 0.895 68.111 2.749 0.251 91.631     
Functional Groups w/o E 
w/NIS 

2.142 0.858 71.410 2.781 0.219 92.688     
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Table 3.9. Beta diversity of function for the mammal fauna of California, Chile, South Africa, Spain, and Southwestern 

Australia. (Shannon Diversity Index (H1), divergence from equiprobability (D1), equitability (Evenness), Non-indigenous 

species (NIS), and Endangered species (E). A high H1 value indicates a high degree of diversity. 

 San Diego v Chile Chile v South Africa South Africa v Southwestern  
Australia 

 H1 D1 Evenness H1 D1 Evenness H1 D1 Evenness 
Functional Groups w/o NIS 2.252 0.070 96.972 2.369 0.216 91.627 2.656 0.152 94.596 
Functional Groups w/NIS 1.585 0.085 94.639 2.611 0.197 92.990 2.822 0.178 94.073 
Functional Groups w/o E w/NIS 1.585 0.085 94.639 2.611 0.197 92.990 2.918 0.082 97.277 
          
 San Diego v South Africa Chile v Spain Spain v Southwestern 

Australia 
Functional Groups w/o NIS 1.784 0.538 76.846 0.811 0.189 81.128 2.113 0.209 91.014 
Functional Groups w/NIS 1.890 0.695 73.099 1.449 0.136 91.410 2.396 0.189 92.700 
Functional Groups w/o E w/NIS 1.949 0.636 75.403 2.230 0.092 96.023 1.189 0.189 90.564 
          
 San Diego v Spain 

 
Chile v Southwestern 

Australia 
   

Functional Groups w/o NIS 2.198 0.125 94.627 2.128 0.194 91.652    
Functional Groups w/NIS 1.730 0.270 86.479 2.171 0.151 93.498    
Functional Groups w/o E w/NIS 2.055 0.267 88.486 2.156 0.166 92.838    
          
 San Diego v Southwestern 

Australia 
South Africa v Spain    

Functional Groups w/o NIS 1.842 0.158 92.119 1.906 0.094 95.282    
Functional Groups w/NIS 1.793 0.208 89.624 2.411 0.173 93.294    
Functional Groups w/o E w/NIS 2.000 0.000 100.000 2.413 0.172 93.351    
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Table 3.10. Gamma diversity of function for the vertebrate 

fauna of California, Chile, South Africa, Spain, and 

Southwestern Australia. (Shannon Diversity Index (H1), 

divergence from equiprobability (D1), equitability (Evenness), 

Non-indigenous species (NIS), and Endangered species (E).  

A high H1 value indicates a high degree of diversity.  

 H1 D1 Evenness 

Birds    

Gamma Diversity without NIS 3.409 1.176 74.343 

Gamma Diversity with NIS 3.477 1.108 75.838 

Functional Groups without E and with NIS 3.509 1.076 76.530 

    

Mammals    

Gamma Diversity without NIS 2.630 1.177 69.086 

Gamma Diversity with NIS 2.758 1.050 72.433 

Functional Groups without E with NIS 2.849 0.959 74.825 
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Table 3.11. Each body mass aggregation represents a unique scale within the California Mediterranean-climate  

ecosystem. The total number of mammal species within each functional group and the number of functional groups lost  

at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after  

the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of 

functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered  

species.  

Body Mass 
Aggregation CaTe GrTe HeAr HeAq HeFs HeTe InTe OmTe Membership Gained Membership Lost 

Functional 
Groups Lost 

1 
 

4  1  
  

(1) 2  
 

1 0 - 
2 1  7(6) 2  

 
1  1  

 
(2) 1 1 - 

3 2(1) 
    

3  1  (2) 1 1 - 
4 4  

  
(1) 

   
1  1 - - 

5 2(1)         1    1(0) 0 2 1 
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Table 3.12. Each body mass aggregation represents a unique scale within the Chile Mediterranean-climate ecosystem. The 

total number of mammal species within each functional group and the number of functional groups lost at each scale.  

Numbers in parentheses represent the total number of mammal species within each functional group after the introduction  

of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that 

gained or lost species after the introduction of invasive species and the extinction of endangered species. 

Body Mass 
Aggregation CaAq CaAr CaTe GrTe HeAq HeAr HeFs HeTe InAq InTe OmTe 

Membership 
Gained 

Membership 
Lost 

Functional 
Groups 
Lost 

1 (1) 
 

(1) 4  (1) 2  1  6  
 

2  
 

3 0 - 
2 

 
1  3(4) 

 
1(2) 

  
1(3) 1  1  

 
3 0 - 

3 1  
 

1  
    

1(0) 
   

0 1 1 
4     1    (1)     2      (1) 2 1 - 
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Table 3.13. Each body mass aggregation represents a unique scale within the Spain Mediterranean-climate ecosystem.  

The total number of mammal species within each functional group and the number of functional groups lost at each  

scale. Numbers in parentheses represent the total number of mammal species within each functional group after the 

introduction of invasive species and the extinction of endangered species. Membership is defined as the number of  

functional groups that gained or lost species after the introduction of invasive species and the extinction of  

endangered species. 

Body Mass 
Aggregation CaAq CaTe GrTe HeAq HeAr HeFs HeTe InAq InFs InTe 

Membership 
Gained 

Membership 
Lost 

Functional 
Groups Lost 

1 
  

2  
      

4  - - - 
2 

  
1(2) 

  
1  4  1  

 
2  1 0 - 

3 
      

3(1) 1  3  
 

0 1 - 
4 

 
1  

 
1(0) 2(1) 

 
(2) 

   
1 2 1 

5 
 

2  
       

2(3) 1 0 - 
6 

 
1(3) 

    
3  

   
1 0 - 

7 1(0) 1(0) 
    

3  
  

1  0 2 2 
8   1          4        - - - 
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Table 3.14. Each body mass aggregation represents a unique scale within the South Africa Mediterranean-climate  

ecosystem. The total number of mammal species within each functional group and the number of functional groups lost  

at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after  

the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of 

functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered  

species. 

Body Mass 
Aggregation CaAq CaTe GrAr HeFs HeTe InFs InTe OmTe Membership Gained Membership Lost 

Functional 
Groups Lost 

1 
    

2(3) 
 

5  
 

1 0 - 
2 

    
6  1  3  

 
- - - 

3 
 

1  
  

8(7) 2  2  (2) 1 1 - 
4 

  
(1) 1  

  
3  

 
1 0 - 

5 
 

5(6) 
  

4  
   

1 0 - 
6 1  6(5) 

  
8(7) 

 
2  (1) 1 2 - 

7   1(0)     5(0)       0 2 2 
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Table 3.15. Each body mass aggregation represents a unique scale within the southwestern Australia Mediterranean-climate 

ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at  

each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the 

introduction of invasive species and the extinction of endangered species. Membership is defined as the number of  

functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered  

species. 

Body Mass 
Aggregation CaTe GrTe HeAr HeTe InAq InAr InTe OmTe 

Membership 
Gained 

Membership 
Lost 

Functional Groups 
Lost 

1 
 

3(2) 1  5(3) 
 

2(1) 7(5) 
 

0 4 - 
2 

 
1(0) 

 
2(0) 

 
1(0) 1  (2) 1 3 3 

3 1(0) 
 

1(0) 6(1) 1  
 

2  
 

0 3 2 
4 (2) 

 
1  5(0) 

  
1  

 
1 1 1 

5 1      2(3)       (1) 2 0 - 
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Table 3.16. Each body mass aggregation (BMA) represents a unique scale within the California Mediterranean-climate 

ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at 

each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the 

introduction of invasive species and the extinction of endangered species. The number of functional groups that gained (G) or 

lost (L) species after the introduction of invasive species and the extinction of endangered species. 

BMA 
Ca 
Ae 

Ca 
Aq 

Gr 
Fo 

Gr 
Te 

He 
Ae 

He 
Aq 

He 
Fo 

He 
Te 

In 
Ae 

In 
Aq 

In 
Ba 

In 
Fo 

In 
Te 

Om 
Aq 

Om 
Ba 

Om 
Fo 

Om 
Te G L FL 

1 
    

4  
      

4  
     

- - - 
2 

  
3(2) (2) 

    
5(4) 

  
10(8) 7  

    
1 3 - 

3 
   

1  
    

4  
 

1  
 

4(3) 
    

0 1 - 
4 

   
3(2) 

 
1  

 
3  

 
1  4  3  

    
0 1 - 

5 
   

(1) 
    

6  
 

1  1  4  
    

1 0 - 
6 

           
1(0) 3(2) 

    
0 2 1 

7 2(1) 2  (1) 5  
  

(2) 
 

2(1) 1  
  

4(5) 
 

1  (1) 2  4 2 - 
8 12(8) 1  

 
(1) 

 
1(0) 1  (1) 

    
2(3) (1) 

  
2  4 2 1 

9 2(1)                               (1) 1 1 - 
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Table 3.17. Each body mass aggregation (BMA) represents a unique scale within the Chile Mediterranean-climate ecosystem. 

The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. 

Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of 

invasive species and the extinction of endangered species. The number of functional groups that gained (G) or lost (L) species 

after the introduction of invasive species and the extinction of endangered species. 

BMA 
Ca 
Ae 

Ca 
Aq 

Gr 
Aq 

Gr 
Fo 

Gr 
Te 

He 
Ae 

He 
Aq 

He 
Fo 

He 
Te 

In 
Ae 

In 
Aq 

In 
Ba 

In 
Fo 

In 
Te 

Ne 
Ae 

Om 
Aq 

Pi 
Ae 

Pi 
Aq 

Pi 
Te G L FL 

1 
         

1  
 

1  6  2  1  
    

- - - 
2 

    
5  

    
3  

 
1  3  2  1  

    
- - - 

3 
    

4(1) 1  
 

1  
 

2  1(0) 1  1  8(9) 
     

2 1 1 
4 1  

        
1  

   
8  

   
1  

 
- - - 

5 2  
   

2(3) 1  1(2) 1  
 

4  
  

3  
  

2  
  

2 0 - 
6 6  

  
1  (1) 

 
3  1  

 
1  2  

  
2(3) 

    
1  2 0 - 

7 1  1  3  
 

1  
 

2  
   

2  
    

2  
 

1  
 

- - - 
8 6  1  

    
1  

 
(1) 

      
1(0) 3  1  1 1 1 

9 3            1(2)           1            1 0 - 
 

 

 

 

 



 
 

   

88 
Table 3.18. Each body mass aggregation (BMA) represents a unique scale within the Spain Mediterranean-climate ecosystem. 

The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. 

Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of 

invasive species and the extinction of endangered species. The number of functional groups that gained (G) or lost (L) species 

after the introduction of invasive species and the extinction of endangered species. 

BMA 
Ca 
Ae 

Ca 
Aq 

Ca 
Te 

Gr 
Aq 

Gr 
Fo 

Gr 
Te 

He 
Aq 

He 
Fo 

He 
Te 

In 
Ae 

In 
Aq 

In 
Ba 

In 
Fo 

In 
Te 

Om 
Aq G L FL 

1 1(0) 
   

(1) 10(12) 
  

9(8) 
 

1  14(13) 20(15) 2 4 1 
2 

    
1  1(0) 

   
4  1  

 
1  2  

 
0 1 1 

3 
     

1  
   

4(3) 1  1  1  3  
 

0 1 - 
4 8(6) 1  

 
(1) 

 
5  1  (1) 1  2(0) 2(1) 

 
2  3  

 
2 3 1 

5 6(4) 2  1  
     

(1) 
     

(1) 2 1 - 
6 7(3)   1                      1(0)   0 2 1 
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Table 3.19. Each body mass aggregation (BMA) represents a unique scale within the South Africa  

Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of  

functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within  

each functional group after the introduction of invasive species and the extinction of endangered species. The number of 

functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of  

endangered species. 

BMA CaAe GrFo GrTe HeFo HeTe InAe InBa InFo InTe NeAe NeFo OmAq OmTe G L FL 
1 

 
1  2  

  
1(2) 

 
6  4  1  2  

  
1 0 - 

2 
 

1  6(7) 
  

5  1  1  4  
 

1  
  

1 0 - 
3 

  
1(2) 1  

 
2(3) 

  
5  

    
2 0 - 

4 
  

2  4  
 

3  
 

(1) 11(12) 1  
  

2 0 - 
5 1  

 
2(3) 

     
4  

    
1 0 - 

6 4(3) 
 

2  
 

3  
   

6  
  

(1) (1) 3 0 - 
7 1                2(0)         0 1 1 

 

 

 

 

 

 



 
 

   

90 
Table 3.20. Each body mass aggregation (BMA) represents a unique scale within the southwestern Australia Mediterranean-

climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost 

(FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after 

the introduction of invasive species and the extinction of endangered species. The number of functional groups that gained (G) 

or lost (L) species after the introduction of invasive species and the extinction of endangered species. 

BMA 
Ca 
Ae 

Ca 
Aq 

Ca 
Te 

Gr 
Fo 

Gr 
Te 

He 
Aq 

He 
Fo 

He 
Te 

In 
Ae 

In 
Aq 

In 
Ba 

In 
Fo 

In 
Te 

Ne 
Fo 

Om 
Te 

Pi 
Aq G L FL 

1 
   

1  
       

2  
    

- - - 
2 

   
1  1(3) 

  
1  3  

 
1  10(9) 8(7) 3  

  
1 2 - 

3 
        

4  
   

1  2  
  

- - - 
4 

    
3(2) 

 
2  

 
4  

 
1(0) 5  5  7  

  
0 2 1 

5 
    

3  
 

1  
 

4  
 

1  
 

8(7) 
   

0 1 - 
6 

   
1(0) 2  

      
1  1  2  

  
0 1 1 

7 
    

3(4) 
  

1  1  
  

1  3  
   

1 0 - 
8 

   
1  1(2) 

       
1  2  

  
1 0 - 

9 3  
   

3(4) 
   

2  
   

2  
 

1  
 

1 0 - 
10 

   
1  1(2) 

 
1  

     
2(0) 

  
(1) 2 1 - 

11 8  2  2  1(2) 1  
 

1  2  1  
   

1(0) 
  

(1) 2 1 1 
12 1          1(2)   2(1)   (1)     2(1)       2 2 - 
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  Table 3.21. Results of Wilcoxon signed rank tests  

  comparing functional group richness preinvasion and  

  post invasion for each terrestrial vertebrate group and  

  for both taxa combined. 

Taxonomic Group z P          

Birds 1.539 0.156          

Mammals 0.108 0.940          

Combined 1.156 0.251          
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Table 3.22. Results of Wilcoxon signed ranked tests comparing the average 

number of body mass aggregations and standard deviation (SD) in 

California, Chile, South Africa, Spain, and Southwestern Australia that had 

at least one member of a functional group pre- and postinvasion. 

Taxonomic 

Group   

Average 

Number (SD) of 

body mass 

aggregations 

preinvasion  

Average 

Number (SD) of 

body mass 

aggregations 

postinvasion   z P  

Birds    3.129 (0.26)  3.11 (0.244)  -0.408 0.697  

Mammals   2.375 (0.240)  1.75 (0.228)  -3.501 <0.001  

Combined     2.880 (0.190)   2.778 (0.183)   -1.930 0.055  
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            Figure 3.1. Juxtaposition of bird body mass aggregations across five Mediterranean-

climate ecosystems. 
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Figure 3.2. Juxtaposition of mammal body mass aggregations across five Mediterranean-

climate ecosystems. 
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Figure 3.3. Comparison of the number of species belonging to each functional group across all body mass aggregations pre- 

and postinvasion for all the birds of Mediterranean-climate ecosystems.  Explanations for the functional group abbreviations 

are provided in Table 3.1. 
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Figure 3.4. Comparison of the number of species belonging to each functional group across all body mass aggregations pre- 

and postinvasion for all the mammals of Mediterranean-climate ecosystems.  Explanations for the functional group 

abbreviations are provided in Table 3.1. 
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CHAPTER 4: CHANGES IN BODY MASS DISCONTINUITIES OVER 

PALEOECOLOGIC TIME 

 

 Recent population trends for 1,686 vertebrate species indicate a ~30% decline 

over the last 35 years (Loh et al. 2008). Human activities, both directly and indirectly, 

have contributed to the increasing rates of extinction of both described and undescribed 

species (Hilton-Taylor et al. 2008). In order to gain a better understanding of the dramatic 

ecological changes currently taking place, the complex relationship between animals and 

their environment must be understood from different perspectives. Biological systems are 

generally influenced by external, internal and historical processes (Marquet et al. 2008) 

and paleoecological data provides a temporal perspective on rates, patterns and causes of 

ecological change (Willard & Cronin 2007). Discerning patterns and processes of 

speciation events in the fossil record has been a topic of recent debate (reviewed in 

Benton & Pearson 2001), yet no study to date has utilized body mass distributions to 

elucidate speciation events. 

The combination of physiological, ecological and historical factors make body 

mass one of the most integrative attributes of a species (Schmidt-Nielsen 1984, Allen et 

al. 2006, Marquet et al. 2008). The ecological significance of patterns found in body mass 

distributions has been well documented and reflect the spatiotemporal distribution of 

resources within ecosystems. Many studies have reported a discontinuous body mass 

distribution reflecting the ecological structure of the landscape (Restrepo et al. 1997, 

Bakker & Kelt 2000, Raffaelli et al. 2000, Havlicek & Carpenter 2001, Cumming & 

Havlicek 2002, Sendzimir et al. 2003).  These studies support the textural discontinuity 
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hypothesis (TDH), which states that hierarchical landscape structures with scale-specific 

pattern entrain attributes of animals inhabiting the landscape (Holling 1992).  

The TDH implies that differences in body mass distributions between two faunal 

assemblages would indicate differences in landscape (Lambert & Holling 1998). The 

edges of body-mass aggregations, or scale breaks, in this discontinuous distribution may 

be regions of the greatest reward or highest cost (Holling et al. 2008). Poorly understood 

biological phenomena such as invasions and extinctions (Allen et al. 1999, Allen 2006), 

migrations and nomadism (Allen & Saunders 2002), population dynamics (Skillen & 

Maurer 2008) and possibly speciation may evolve at these scale breaks (Holling et al. 

2008). However, evolution may lead to extinction of species without external forcing 

(Bak & Sneppen 1993). 

Body size distributions have been analyzed at various scales; 1) local, biome and 

continental (Brown & Nicoletto 1991, Marquet & Cofre 1999), 2) hemispheric 

(Blackburn & Gaston 1994), and 3) Paleobiological scale (Jablonski 1997). However, 

there is very little information on the effects of paleoecological time on changes in body 

mass distributions. In Cenozoic mammals, climate has been suggested as a driver of body 

mass evolution and the analysis of body mass distributions is a good measure of habitat 

and climate (Gunnel et al. 1995). Legendre (1989) observed differences in body mass 

distributions between wet and dry habitats in the late Eocene and Oligocene of 

Occidental Europe. However, Alroy et al. (2000) did not find any link between climate 

and patterns in body mass distributions. Instead, they suggest that intrinsic, biotic factors 

seem to have played a more important role in broad patterns of North American 

mammalian evolution than external factors such as climate change. 
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Late Miocene global mammalian turnover has been attributed to changes in flora 

(i.e. a change in habitat) (Cerling et al. 1998). Holling et al. (2002, 2008) suggest it takes 

extreme disturbances over paleoecological time and space to change body mass 

distributions in a major way. Lambert and Holling (1998) reported that body mass 

distributions of Pleistocene mammals, after massive extinctions of large herbivores in 

North and South America approximately 11,000 years ago, remained the same in species 

under 41kg, but changed significantly in species over 41kg (species over 1,000kg were 

completely eliminated). Based on their results, they suggest that differences observed in 

body mass distributions were partly due to changes in key mesoscale (10m to 10km) 

aspects of the landscape. Smith et al. (2004) suggest that over evolutionary time, as 

lineages speciate and diversify, species do not occupy a greater range of body sizes. The 

Siberia megafauna extinction at the end of the Pleistocene may have triggered an 

irreversible regime shift from steppe grassland to tundra (Zimov et al. 1995, Lambert & 

Holling 1998, Folke et al. 2004).  

Chronofaunas are discrete communities of species that are tracked through 

millions of years, resulting in the ability to identify the origination of new species and the 

extinction of others (Olson 1952, Olson 1966, MacFadden 2000). It has been suggested 

that the Eocene Epoch (55 to 34 million years ago (Ma)) was a period in the North 

American mammal faunal record that underwent rapid ecomorphological transitions 

(Janis & Wilhelm 1993, Hunter & Jernvall 1995, Jernvall et al. 1996). A likelihood ratio 

was calculated by Alroy et al. (2000) to determine how the dominance of different orders 

changed (from the late Paleocene through the Pleistocene) in relation to what would be 

expected at random given the observed origination and extinction rates. They reported 
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that four of the five highest likelihood ratios were observed in the Bridger and Uinta 

NALMA, due primarily to the radiation of artiodactyls and perissodactyls with a 

concurrent terminal decline of primates and “condylarths”, suggesting this span of time 

was one of major ecological transition and the most important period in the entire 

Tertiary. Mean body mass of mammals increased slowly throughout the Cenozoic and 

might have been due to high speciation or low extinction rates of larger species (Alroy et 

al. 2000).  

The Bridger and Uinta NALMA may provide an ideal timeframe to examine 

speciation events and paleoecologic habitat reconstruction would be necessary to explore 

the TDH. Paleoecologic habitat reconstruction is generally done at either a global or 

regional scale and then extrapolated to a local scale. However, habitats for a sequential 

series of mammalian fossil assemblages have been reconstructed at a local scale for the 

Bridgerian North American Land Mammal Age (NALMA) and Uintan NALMA 

(Townsend 2004). A closer examination of body mass distributions from each 

assemblage may provide insightful information about their respective habitats and 

speciation events. Here I examined whether the vertebrate body mass structures are 

similar among the faunal zones. I also investigated whether speciation events were 

nonrandomly distributed in vertebrate body mass structures within each faunal zone. 

 

METHODS 

 The Cenozoic Era spans approximately 65 Ma to present day and consists of the 

Paleogene, Neogene and Quarternary Periods (MacFadden 2000). The Paleogene Period 

Study Area & Data Collection 
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consisted of the Paleocene, Eocene and Oligocene Epochs. The Eocene Epoch spanned 

55 to 34 Ma and was characterized by a continual decrease in mean annual temperature 

(Bains et al. 2000) and a slow drying trend (Wing 1998). The Eocene Epoch was 

delineated into early (Wasatchian), middle (Bridgerian, Uintan, Duchesnean), and late 

(Chadronian) NALMA (Prothero 1998). I focused on the middle Bridgerian to the late 

Uintan mammalian fossil specimens, which spanned approximately 50 to 41 Ma.  

The Bridgerian NALMA occurred at the beginning of the middle Eocene interval 

and spanned approximately five million years from 50.7 to 46 Ma (Woodburne and 

Swisher 1995). The Bridgerian formation was located in the Green River Basin of 

southwest Sweetwater County, Wyoming (Figure 4.1). In this analysis, the Bridgerian 

NALMA was organized into five sequential faunal assemblage zones (FAZ); Bridger 

FAZ 1) 35 mammalian genera, 3 unique to this FAZ, collected from 68 to 79m level, 

composed of taxa from nine localities and was predominantly made up of rodents, 

Bridger FAZ 2) 28 mammalian genera, 3 unique to this FAZ, collected from 122 to 161m 

level, composed of taxa from more than eighteen localities and was predominantly made 

up of rodents, Bridger FAZ 3) 28 mammalian genera, 4 unique to this FAZ, collected 

from the 163m level and 200 to 207m level, composed of taxa from twelve localities and 

was predominantly made up of rodents, primates and insectivores, Bridger FAZ 4) 18 

mammalian genera collected from 210 to 257m level, composed of taxa from six 

localities (Townsend 2004). Bridger FAZ 4 represents the last faunal assemblage 

considered to be truly Bridgerian (McCarroll et al. 1996). Bridger FAZ 5 included 22 

mammalian genera collected from 307 to 390m level, was composed of taxa from twelve 
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localities and is less diverse at the ordinal level than earlier FAZs (Townsend 2004). This 

zone is considered to be earliest Uintan in age (Evanoff et al. 1994). 

The Uintan NALMA occurred at the middle of the middle Eocene and spanned 

approximately 6.5 million years from 40 to 46.5 Ma (Townsend 2004) and contains 

approximately 31% of modern mammalian families (Black & Dawson 1966). The Uintan 

formation was located in the Uinta Basin of east-central Uintah County, Utah and 

includes 483km2(Figure 4.1). In this analysis, the Uintan NALMA was organized into 

three sequential faunal assemblages; Uintan FAZ 1) 19 mammalian genera, 3 unique to 

this FAZ, collected from 0 to 87m level, composed of taxa from seventeen localities and 

was predominantly made up of rodents, primates and proteutherians, Uintan FAZ 2) 25 

mammalian genera, 9 unique to this FAZ, collected from 96 to 128m level, composed of 

taxa from nineteen localities and was predominantly made up of rodents, Uintan FAZ 3) 

20 mammalian genera, 4 unique to this FAZ, collected from 134 to 366m level, 

composed of taxa from 29 localities and was predominantly made up of rodents and 

artiodactyls (Townsend 2004). 

All assemblages were time-averaged, due to the use of numerous localities in the 

construction of each assemblage. This resulted in the absence of a defined boundary or 

stratigraphic extent of each zone. The taphonomic contexts of both formations are 

similar, therefore it is assumed that any bias within or between assemblages will be 

statistically insignificant (Townsend 2004). Morphometric data on more than 2000 fossil 

specimens were taken on Bridgerian and Uintan mammalian fossils held at the American 

Museum of Natural History, the National Museum of Natural History (Smithsonian 
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Institution), Yale Peabody Museum, Carnegie Museum of Natural History, the University 

of Colorado Museum and Washington University (Townsend 2004).  

 Townsend (2004) used univariate, bivariate and discriminant function analyses to 

reconstruct the habitats for each FAZ. There were many primates and an equal number of 

terrestrial taxa in Bridger FAZ 1, which would suggest that although there were trees 

present, it was not completely canopied. Thus, Bridger FAZ 1 was most likely open 

woodland habitat (Townsend 2004). Bridger FAZ 2 had a very similar species makeup to 

Bridger FAZ 2, therefore it was most likely open woodland habitat too (Townsend 2004).  

Habitat Reconstructions & FAZ Composition 

The fauna in Bridger FAZ 3 contained the second highest percentage of arboreal 

mammals found in the entire sequence of FAZs, suggesting a large amount of canopy 

cover. Thus, Bridger FAZ 3 was most likely heavily wooded and densely forested 

(Townsend 2004). Bridger FAZ 4 most likely represented closed woodland or forested 

habitat, but this zone is the most ambiguous (due to missing taxa as a result of collecting 

bias or taphonomic considerations) (Townsend 2004). The fauna in Bridger FAZ 5 most 

likely represented closed woodland habitat (due to the high percentage of insectivores) or 

possibly forested (due to the high percentage of obligate arborealists and frugivores) 

(Townsend 2004).  

Uinta FAZ 1 had fewer folivores and ground-dwelling taxa, but more insectivores 

(although very few compared to the Bridgerian FAZs) than the other Uinta FAZs, thus 

the fauna in this zone most likely represented woodland habitat. Uinta FAZ 2 consists of 

more terrestrial and folivorous taxa than in any prior FAZs, thus representing open 

habitat with very few trees (Townsend 2004). Uinta FAZ 3 was composed of more 
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folivores than frugivores, more terrestrial taxa than arboreal taxa, few small-bodied 

mammals and no insectivores. Uinta FAZ 3 had fauna that likely represented open habitat 

with the least amount of trees found in any FAZ (Townsend 2004). 

Body Mass Estimates

 Townsend (2004) used various phylogenetically consistent equations and the area 

of the crown of the lower first molar to determine body mass estimates of fossil 

mammals. The means of molar areas were used to calculate the final body mass values. 

Where possible, body mass estimates were obtained from published sources. The body 

sizes were recorded in grams and subsequently logarithmically transformed. 

   

 Body mass pattern or structure refers to the distribution of body mass 

aggregations and gaps along the body mass axis. Body mass distributions were analyzed 

for discontinuities using simulations of actual data compared to a null distribution (a 

continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 

1997). A body-mass aggregation consisted of three or more species with body masses 

that did not exceed the expectation of the null distribution and was defined by the upper 

and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass 

aggregations were defined as significantly large areas between adjacent body masses that 

exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of 

discontinuities in the data was determined by calculating the probability that the observed 

discontinuities were chance events (compared observed values with output of 1,000 

simulations run against the null set (Restrepo et al. 1997). Two other methods were also 

used to confirm the location of discontinuities. I used Bayesian Classification and 

Discontinuity Analysis 
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Regression Trees (Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 

1999) to further validate any patterns detected in body mass distributions. A multiple 

method approach in detecting significance in body mass patterns has been suggested as 

the best protocol (Allen et al. 2006, Stow et al. 2007). 

Chi-square and Phi correlation analyses were used to determine differences in 

body mass patterns between geologic layers. The null hypothesis of the Chi-square 

analyses is that there are equal distributions among each of the four cells in a 2 x 2 table 

(one in the gap condition while the other is in the lump condition and vice versa, both in 

the lump condition and both in the gap condition), which would indicate that the two 

groups are unrelated. Gap space between body mass aggregations was calculated in two 

ways; total number of gaps (a more liberal approach) and the actual, calculated gap space 

(a more conservative approach).  That is, a liberal approach would be limited by the 

smallest and largest species in each comparison and a conservative approach would be 

limited by the range of shared data between the two groups. A Bonferroni correction was 

applied to account for multiple comparisons in the same analysis (Miller 1981). 

In order to provide additional information, a correlation of binary variables, using 

Phi correlation, was also utilized in order to elucidate more information and to determine 

the relationship between the different reconstructed paleo faunas. Species within each 

faunal zone were assigned a binary variable (where 1 represented a body mass 

aggregation and 0 represented a gap), based on the log10 body mass axis, and divided 

into a 0.01 gram increment bin. The Phi coefficient ranges from -1 to 1. Values 

approaching 1 indicate a positive correlation and values approaching -1 indicate a 
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negative correlation. Fleiss et al. (2003) suggested that values greater than ±0.30 indicate 

a strong relationship. 

Speciation Analysis

After completing the discontinuity analyses, new species placement (based on 

adjacent chronological faunas) within these distributions was determined.  New species 

could be distributed in the body-mass patterns in various ways; randomly, within a 

limited range of body masses, at the edge of aggregations, only within body mass 

aggregations or only in the gaps (Figure 2.1). Both gaps and edges of body mass 

distributions represent changes in scale and areas of high variability (see Allen et al. 

1999). Chi-square and t-test analyses were used to determine the significance of the 

locations of new species within each FAZ. 

     

Chi-square goodness of fit testing was used to determine if new species occurred 

in gaps between body mass aggregations in the observed distribution more often than 

expected values if their distribution were random. As in the discontinuity analysis, gap 

space between body mass aggregations was calculated in two ways; total number of gaps 

(a more liberal approach) and the actual, calculated gap space (a more conservative 

approach). Wilcoxon two-sample tests were then used to determine the distance to body 

mass aggregation edge of new species compared to those species already present. T-tests 

were also used to determine the distance to body mass aggregation edge of new species 

compared to those species present in the prior geologic layer. 

 

RESULTS 

Lump/Gap Structure 
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Liberal Approach 

 Sixteen of 28 pairwise comparisons were significant (4 unique to this approach) in 

the liberal chi-square analysis and 8 of 28 pairwise comparisons were significant (3 

unique to this approach) in the Phi correlation analysis (Tables 4.1 & 4.2). Bridger FAZ 

1, 2, 3 and 4 were all similar to each other and Phi coefficients between Bridger FAZ 1 

and 3, Bridger FAZ 1 and 4, Bridger FAZ 2 and 3 and Bridger FAZ 3 and 4 indicated 

strong positive relationships. Bridger FAZ 1 and 5 were similar to each other and the Phi 

coefficient indicated a strong positive relationship. Bridger FAZ 2 and 5 were similar to 

each other, and the Phi coefficient indicated a strong negative relationship. Bridger FAZ 

3 and 4 were not similar in body mass pattern to Bridger FAZ 5.  

 Bridger FAZ 2, 3 and 5 were not similar in body mass pattern to Uinta FAZ 1. 

Bridger FAZ 1 and 4 were similar to Uinta FAZ 1, however low Phi coefficient values 

for each comparison indicated no strong relationships were evident. Bridger FAZ 5 was 

similar to Uinta FAZ 2, however a low Phi coefficient indicated no strong relationship. 

Bridger FAZ 1 and 5 were similar to Uinta FAZ 3 and Phi coefficients for each 

comparison indicated strong negative relationships. Bridger FAZ 4 was similar to Uinta 

FAZ 3, however a low Phi coefficient indicated no strong relationship. Bridger FAZ 3 

and Uinta FAZ 1 were not similar in body mass pattern to Uinta FAZ 3. Uinta FAZ 1 was 

similar to Uinta FAZ 2, however a low Phi coefficient for the comparison indicated no 

strong relationship. Uinta FAZ 1 was not similar in body mass pattern to Uinta FAZ 3. 

Uinta FAZ 2 was similar to Uinta FAZ 3, however a low Phi coefficient indicated no 

strong relationship. 

Conservative Approach 
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 Fourteen of 28 pairwise comparisons were significant (2 unique to this approach) 

in the conservative chi-square analysis and 7 of 28 pairwise comparisons were significant 

(2 unique to this approach) in the Phi correlation analysis (Tables 4.3 & 4.4). Bridger 

FAZ 1, 2, 3 and 4 were all similar to each other and Phi coefficients for each comparison 

indicated strong positive relationships, except in the Bridger FAZ 2 versus Bridger FAZ 4 

comparison. Bridger FAZ 1 was similar to Bridger FAZ 5, with a strong positive Phi 

coefficient. Bridger FAZ 2 was similar to Bridger FAZ 5, but the Phi coefficient 

indicated no strong relationship. Bridger FAZ 3 and 4 were not related to Bridger FAZ 5.  

 Bridger FAZ 1 was similar to Uinta FAZ 1 and had a Phi coefficient that 

indicated a strong positive relationship. Bridger FAZ 4 was also similar to Uinta FAZ 1, 

however a low Phi coefficient indicated no strong relationship. Bridger FAZ 2, 3 and 5 

were not similar in body mass pattern to Uinta FAZ 1. Bridger FAZ 1, 4 and 5 were not 

similar in body mass pattern to Uinta FAZ 2. Bridger FAZ 2 and 3 were similar to Uinta 

FAZ 2, however Phi coefficients for each comparison indicated no strong relationships. 

Bridger FAZ 1 and 5 were not similar in body mass pattern to Uinta FAZ 3. Uinta FAZ 1 

was not similar to Uinta FAZ 3. Uinta FAZ 2 and 3 were similar, however Phi 

coefficients for each comparison indicated no strong relationships. 

New species of mammals (X2=9.06, 6 df; P = 0.17) did not occur at body mass 

aggregation edges in the observed distribution more often than expected. Based on 

calculated gap space, new species mammals (X2=1.85, 6 df; P = 0.93) did not occur at 

body mass aggregation edges in the observed distribution more often than expected 

(Table 4.5). The distance to edge of new species was not less than those species already 

Speciation 
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present (Table 4.6). However, when new species were placed into the prior geologic 

layer, the distance to edge of new species was significantly less than those species 

already present in Bridger Zones 1 and 4 (Table 4.7). 

 

DISCUSSION 

 Discontinuous body-mass distributions were found in all Bridger and Uinta FAZs 

examined. Discontinuities in body mass distributions that have been constructed from the 

fossil record have also been shown in Miocene mammals (Lambert 2006) and Pleistocene 

mammals (Lambert & Holling 1998). Discontinuities in body mass distributions have 

also been shown in North American birds (Skillen and Maurer 2008), south Florida 

herpetofauna, birds, and mammals (Allen 2006, Allen et al. 1999), tropical forest birds 

(Restrepo et al. 1997), boreal region birds and mammals (Holling 1992) and in various 

other taxa (reviewed in Sendzimir et al. 2003).  This analysis extends these conclusions to 

include the Bridger and Uinta FAZs in southwestern Wyoming and northeastern Utah. 

New species of mammals did not occur at body mass aggregation edges in the 

observed distribution more often than expected in either analysis conducted. The distance 

to edge of new species was not less than those species already present and was only 

significant in two FAZs when new species were placed into the prior geologic layer. 

There are numerous plausible explanations as to why speciation events in these FAZs 

were not near discontinuities. Sample sizes in 7 of the 10 FAZs were fewer than 30 

species. A small sample size in statistical analyses can inflate the probability of 

committing Type I and Type II errors (Morrison 1988). In a chi-square goodness-of-fit 

test, the approximation of the sampling distribution of the test statistic improves as the 
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sample size increases (Ott & Longnecker 2001). This may also be due to the FAZ being 

in a state of transition or species could be exhibiting a delayed response to a past change 

in the environment (Alroy et al. 2000, Skillen & Maurer 2008). It has been suggested that 

North American mammal fossil record diversity has been inflated by 32 to 44% due to 

taxonomic biases which could affect speciation and extinction rates on both absolute and 

relative terms (Alroy 2002). There is also some debate as to the validity of “land-

mammal ages” due to the diachrony inherent in the North American mammal fossil 

record as a result of undersampling (Alroy 1998). Another factor that may explain why 

speciation events were not located near discontinuities is taxonomic discrepancies. Alroy 

(2003) suggests that taxonomic discrepancies in the North America mammal fossil record 

are correlated with body mass, whereby small bodied species’ names are highly 

unreliable.   

My results do not entirely correspond to the habitat reconstructions of Townsend 

(2004) and there was little agreement between the results of my liberal and conservative 

approaches to body mass distribution analysis. Bridger FAZ 1 and 2 were reconstructed 

as open woodland habitats and Bridger FAZ 3 and 4 were reconstructed as dense forest 

habitats, however, Chi-square analyses indicate that the body mass distributions of all 

four FAZs were similar and the corresponding Phi correlations were strong positive 

relationships. This suggests that these habitats were more alike than previously thought. 

My results parallel the taxonomic makeup of these FAZs. Bridger FAZ 1, 2, and 3 all 

exhibited similar patterns of ordinal diversity: primates, rodents, insectivores and 

perissodactyls were dominant. The Bridger FAZ 4 was somewhat different, with primates 
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and perissodactyls being the most dominant, but my results suggest not dominant enough 

to significantly change the faunal assemblage makeup.  

Bridger FAZ 3 and 4 body mass distributions were not similar to the Bridger FAZ 

5 body mass distribution and this evidence potentially supports the general view that 

Bridger FAZ 5 may be earliest Uintan in age (Evanoff et al. 1994). However, in the 

conservative approach, the Bridger FAZ 5 body mass distribution was not similar to 

Uinta FAZ 1 body mass distribution. Bridger FAZ 5 had a somewhat similar pattern of 

ordinal diversity as Bridger FAZ 3 and 4, but had fewer perissodactyls than any other 

Bridgerian FAZ. Thus, our results suggest that Bridger FAZ 5 may not be earliest Uintan 

in age and may represent a transition zone (Townsend 2004) between the Bridgerian and 

Uintan ages. 

Bridger FAZ 1 (open woodland) and Bridger FAZ 5 (forest) had different habitat 

reconstructions, however, Chi-square analyses indicate that the body mass distributions 

were similar and the corresponding Phi correlation was a strong positive relationship. 

These two FAZs had similar patterns of ordinal diversity, both dominated by primates, 

rodents, insectivores and perissodactyls. The Bridger FAZ 5 had fewer perissodactyls 

than the Bridger FAZ 1, but my results suggest not deficient enough to significantly 

change the faunal assemblage makeup. 

The Bridger FAZ 2 (open woodland) and 3 (dense forest) body mass distributions 

were not similar to the Uinta FAZ 1 (woodland) body mass distribution, which suggests 

that these two habitats were indeed different than the Uinta FAZ 1 habitat. Under the 

conservative approach, the Bridger FAZ 1 (open woodland) and Bridger FAZ 5 (forest) 

body mass distributions were not similar to the Uinta FAZ 3 (open) body mass 
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distribution, however under the liberal approach they were similar with a strong negative 

relationship. 

Uinta FAZ 1 was reconstructed as woodland habitat and Uinta FAZ 2 and 3 were 

reconstructed as open habitats, however, conservative and liberal Chi-square analyses 

indicate that the body mass distributions of FAZ 1 and 2 and FAZ 2 and 3 were similar 

with no strong Phi correlations and Uinta FAZ 1 and 3 body mass distributions were not 

similar. Thus, my results concerning the similarity of body mass distributions between 

the Uinta FAZs are inconclusive, yet similar in both conservative and liberal approaches. 

My results may have been inconclusive due to the difficulty to distinguish qualitatively 

distinct mechanisms using time-slice paleontological data (Alroy 2000). Raup & 

Sepkoski (1984) suggest periodicity in extinctions of the geologic past, so the data I 

examined may not have been at a time with a sufficient number of extinctions. 

Although some of my results describing the body mass distributions are in 

agreement with the habitat reconstructions of Townsend (2004), a majority of my results 

are not. These inconsistencies between the habitat reconstructions and the body mass 

distributions are most likely due to the fact that the species assemblages in each zone 

were time-averaged and that the fossil mammals came from multiple localities within a 

stratigraphic range, which likely resulted in a broad interpretation of habitat and a 

potentially imprecise reconstruction (Townsend 2004). Another possible explanation 

could be the methodology used by Townsend (2004) to reconstruct these faunal zones. 

Phylogeny reconstruction using morphological data has been a hotly debated subject in 

recent years (see Scotland et al. 2003 & Jenner 2004). 



119 
 

   

Biological systems are complex and their evolution can be influenced by internal 

(e.g; competition, predation), external (e.g; climate, human perturbation) and historical 

processes which most likely work together over the long-term to shape any given 

ecological system at any given moment in time (MacFadden 2000). This study identified 

and analyzed patterns in body mass distributions within paleoecological faunal 

assemblage zones, but the use of body mass may have been too coarse to detect 

speciation events. Sepkoski (1998) suggest periodicity in speciation events of the 

geologic past, so the data I examined may not have been at a time with a sufficient 

number of speciation events.  
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Table 4.1. Chi-Square probability levels for each pairwise comparison of Bridger and Uintan faunal assemblage zones using liberal  

data selection. Probability levels less than or equal to 0.001 were considered significant matches between the lump and gap  

architecture of the compared faunal assemblage zones. 

Geologic Layer Bridger Zone 2 Bridger Zone 3 Bridger Zone 4 Bridger Zone 5 Uinta Zone 1 Uinta Zone 2 Uinta Zone 3 

Bridger FAZ 1 <.0001* <.0001* <.0001*  <.0001*     0.0065    0.0026   <.0001* 

Bridger FAZ 2 --- <.0001* 0.0006* <.0001* 0.5503 0.0473 0.0062 

Bridger FAZ 3 --- --- <.0001*      0.2971 0.4595 0.0216 0.9860 

Bridger FAZ 4 --- --- ---      0.4131 0.0009*    0.7570 0.0001* 

Bridger FAZ 5 --- --- --- --- 0.0107    0.0007* <.0001* 

Uinta FAZ 1 --- --- --- --- --- 0.0012* 0.6403 

Uinta FAZ 2  ---  --- ---  ---  ---  ---  <.0001* 

 

 

 

 

 

 

 



 
 

   

121 
Table 4.2. Phi coefficients for each pairwise comparison of Bridger and Uintan faunal assemblage zones using liberal data selection.  

Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than  

±30 indicate a strong relationship between the lump and gap architecture of the compared faunal assemblage zones. 

Geologic Layer Bridger Zone 2 Bridger Zone 3 Bridger Zone 4 Bridger Zone 5 Uinta Zone 1 Uinta Zone 2 Uinta Zone 3 

Bridger FAZ 1 0.2111 0.4170*   0.5083* 0.3111* 0.1295 -0.1434 -0.2860* 

Bridger FAZ 2 --- 0.3229* 0.1710 -0.2939* -0.0297 0.0987 -0.1362 

Bridger FAZ 3 --- --- 0.6040*     -0.0509 -0.0375 0.1165 0.0009 

Bridger FAZ 4 --- --- ---     -0.0399 0.1727 0.0160 -0.2026 

Bridger FAZ 5 --- --- --- --- -0.1236 -0.1638 -0.2889* 

Uinta FAZ 1 --- --- --- --- --- 0.1716 0.0247 

Uinta FAZ 2  ---  ---  ---  --- ---  ---  0.2142 
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Table 4.3. Chi-Square probability levels for each pairwise comparison of Bridger and Uintan faunal assemblage  

zones using conservative data selection. Probability levels less than or equal to 0.001 were considered significant  

matches between the lump and gap architecture of the compared faunal assemblage zones. 

Geologic Layer 

Bridger Zone 

2 

Bridger Zone 

3 

Bridger Zone 

4 

Bridger Zone 

5 

Uinta Zone 

1 

Uinta Zone 

2 

Uinta Zone 

3 

Bridger FAZ 1 <.0001* <.0001* <.0001*  <.0001*     <.0001*    0.2957    0.1664 

Bridger FAZ 2 --- <.0001* <.0001* 0.0002* 0.2318 <.0001* 0.0104 

Bridger FAZ 3 --- --- <.0001*      0.5428 0.2613 <.0001* 0.0024 

Bridger FAZ 4 --- --- ---      0.1765 <.0001*    0.0948 0.0138 

Bridger FAZ 5 --- --- --- --- 0.4552    0.7501    0.1755 

Uinta FAZ 1 --- --- --- --- --- 0.0012* 0.0377 

Uinta FAZ 2  ---  ---  ---  ---   ---  --- 0.0004* 
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Table 4.4. Phi coefficients for each pairwise comparison of Bridger and Uintan faunal assemblage zones using  

conservative data selection. Values approaching 1 indicate a positive correlation and values approaching -1  

indicate a negative correlation. Values greater than ±30 indicate a strong relationship between the lump and gap  

architecture of the compared faunal assemblage zones. 

Geologic Layer 

Bridger Zone 

2 

Bridger Zone 

3 

Bridger Zone 

4 

Bridger Zone 

5 

Uinta Zone 

1 

Uinta Zone 

2 

Uinta Zone 

3 

Bridger FAZ 1 0.3370* 0.6056*   0.7385* 0.3763*   0.3503* 0.0552 -0.0929 

Bridger FAZ 2 --- 0.3818* 0.2560    -0.1877 0.0631 0.2291 -0.1720 

Bridger FAZ 3 --- ---   0.6768*     0.0311 0.0598 0.2477 0.2033 

Bridger FAZ 4 --- --- ---     0.0709 0.2344 0.0893 0.1653 

Bridger FAZ 5 --- --- --- --- 0.0397 0.0170 0.0909 

Uinta FAZ 1 --- --- --- --- --- 0.1716 -0.1395 

Uinta FAZ 2 ---  ---   --- ---  ---   --- 0.2373 
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Table 4.5. Results of Chi-Square analyses and standard deviations (SD) of Bridger and Uintan faunal assemblage 

zones comparing the observed distribution of new species in gaps between body mass aggregations. 

          

  Faunal Assemblage Zone Expected based on Gaps   Expected based on Vector Space Observed 

  Bridger FAZ 2 1.45 

 

1.91 2 

  Bridger FAZ 3 2.48 

 

5.06 4 

  Bridger FAZ 4 0.53 

 

1.02 1 

  Bridger FAZ 5 3.65 

 

5.27 6 

  Uinta FAZ 1 4.80 

 

6.79 8 

  Uinta FAZ 2 2.69 

 

3.38 4 

  Uinta FAZ 3 2.29 

 

3.08 5 

  X2 9.06(0.17)   1.85(0.93)   
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Table 4.6. Results of t-tests comparing mean (x) and standard deviation (SD) of Bridger and Uintan faunal assemblage 

zones comparing mean (x) distance to edge of mammals that are new species and species that remained from the 

previous geologic layer. 

Geologic Layer Remained New Species         

 

x(SD) x(SD) z P 

  Bridger FAZ 2 0.070(0.099) 0.082(0.082) 0.525 0.300 

  Bridger FAZ 3 0.075(0.090) 0.070(0.070) 0.000 0.500 

  Bridger FAZ 4 0.057(0.081) 0.109(0.154) 0.294 0.384 

  Bridger FAZ 5 0.065(0.092) 0.133(0.147) -0.896 0.185 

  Uinta FAZ 1 0.060(0.102) 0.070(0.080) -0.182 0.428 

  Uinta FAZ 2 0.061(0.077) 0.082(0.083) 0.500 0.309 

  Uinta FAZ 3 0.041(0.047) 0.040(0.062) -0.536 0.296     
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Table 4.7. Results of t-tests comparing mean (x) and standard deviation (SD) of Bridger and Uintan faunal 

assemblage zones comparing mean (x) distance to edge of mammals that are new species and species that are from 

the previous geologic layer. 

Geologic Layer Prior Geologic Layer New Species         

 

x(SD) x(SD) z P 

  Bridger FAZ 2 to Bridger FAZ 1 0.110(0.112) 0.04(0.065) -1.695 0.045* 

  Bridger FAZ 3 to Bridger FAZ 2 0.070(0.094) 0.090(0.081) 0.986 0.162 

  Bridger FAZ 4 to Bridger FAZ 3 0.070(0.080) 0.130(0.134) 0.848 0.198 

  Bridger FAZ 5 to Bridger FAZ 4 0.060(0.087) 0.050(0.108) -1.538 0.062* 

  Uinta FAZ 1 to Bridger FAZ 5 0.110(0.132) 0.070(0.122) -0.928 0.177 

  Uinta FAZ 2 to Uinta FAZ 1 0.060(0.081) 0.080(0.080) 0.487 0.313 

  Uinta FAZ 3 to Uinta FAZ 2 0.070(0.079) 0.040(0.064) -0.791 0.214     
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Figure 4.1. Map of Green River Basin (labeled as Bridger) and Uinta Basin. Basins are 

outlined in stipple and mountain ranges are outlined with hatch marks. Image adapted 

from Townsend (2004). 
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CHAPTER 5: CHANGES IN BODY MASS DISCONTINUITIES WITH CHANGES IN 

SCALE 

 

 Landscapes form hierarchies that are structured by vegetative, geomorphologic 

and contagious disturbance processes (Holling 1992). These hierarchies are linked to the 

availability of resources throughout the landscape and structurally different landscapes 

will have differently scaled resources (Skillen & Maurer 2008). Ecological patterns 

observed at one scale cannot usually be extrapolated to other scales (Gaston & Blackburn 

1999). The spatial and temporal patterns inherent in landscapes may reflect numerous 

processes, interacting on distinct scales, which potentially shape the assembly of animal 

communities and has been the subject of much debate.  

In order to understand these patterns, one must be able to understand interactions 

taking place between organisms and each other and organisms with their environment. 

Studies have suggested predation (Winemiller 1989), age class (Yamahira et al. 1996) 

and diet (Siaw-Yang 1988) affect community structure at a local scale.  Tropho-dynamics 

and productivity could reinforce clumping in body-mass distributions by increasing 

amplitude of the clumps (Holling 1992).  Oksanen et al. (1979) suggest body mass 

discontinuities are caused by interspecific aggression modulated by habitat structure.  

There are conflicting results as to the relationship between habitat architecture and 

observed body mass patterns.  Leaper et al. (2001) suggest that habitat architecture may 

not be as closely related to body-size patterns at a very fine, marine benthos scale, 

whereas Schwinghamer (1981) suggests a relationship. 
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Other studies have demonstrated the influence of community interactions on body 

mass distributions (Oksanen et al. 1979, Stubblefield et al. 1993, and Nummi et al. 2000). 

These studies support Hutchinson’s (1959) community interaction hypothesis, which 

states that in the process of community formation species may be displaced, unfilled 

niches may be occupied, and niches may be portioned. Community interaction may 

become important only at a local scale, once community structure (under the premise of 

the textural discontinuity hypothesis) has formed (Allen et al. 2006). Historical processes 

that occur over evolutionary time have a major role in determining the species 

composition of a community (Mouquet et al. 2003). Rodriguez et al. (2006) also suggest 

environmental factors, such as climate, along with chance events play a role in the 

development of community structure.    

Analysis of body mass patterns have been suggested as methods to provide insight 

about these underlying processes, as they are important in ecosystem level biotic 

structure (Forys & Allen 2002). Many studies have reported a discontinuous body mass 

distribution reflecting the architecture of the landscape (Restrepo et al. 1997, Raffaelli et 

al. 2000, Havlicek & Carpenter 2001). These studies support Holling’s (1992) textural 

discontinuity hypothesis, which states that hierarchical landscape structures with scale-

specific pattern entrain attributes of animals inhabiting the landscape.  

Organisms of different body sizes have different requirements for resources and 

operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot 

simultaneously interact with multiple scales, but has to specialize at a single scale or shift 

between two scales (Allen & Saunders 2002). Allen et al. (1999) suggest that the gaps 

between body mass aggregations represent scale breaks and that these points in the body 
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mass distribution are highly susceptible to change in structure and ecological processes. 

Variations in body size may not only reflect cross-scale structure, but may also operate 

over micro-, meso-, and macroscales. In order to test Holling’s (1992) textural 

discontinuity hypothesis, I determined whether discontinuous body mass patterns existed 

within each ecoregion, biome, continental and hemispheric scale. A lack of discontinuous 

body mass patterns would provide strong evidence against the textural discontinuity 

hypothesis. 

Ecoregions are defined as large units of land which contain unique assemblages of 

species sharing similar environmental conditions (Olson et al. 2001). Ecoregions within 

biomes, or communities in the same biogeographical region, provide replicated examples 

of ecosystems that should be similar in history (Rodriguez et al. 2006). Thus, each biome 

enables the comparison of scale specific vertebrate community structure and the 

ecoregions within them should exhibit similar body mass patterns. In order to test 

Holling’s (1992) textural discontinuity hypothesis, I examined whether the vertebrate 

body mass structures are similar among the ecoregions within each biome. A lack of 

similarity would provide strong evidence against the textural discontinuity hypothesis. If 

body mass structure reflects landscape structure at these different scales, this will support 

the textural discontinuity hypothesis and create a fundamental link between landscape 

and community ecology.   

 

METHODS 

 I examined two terrestrial vertebrate groups: birds and mammals of the 

contiguous western hemisphere. Islands were not included in this study due in part to the 
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highly variable body size of animals on islands (Foster 1964). Humans were not included 

in mammal data because “the spatial grain and ambit of the human is restricted not by 

body-mass class, but by technological innovation” (Holling 1992). Digital distribution 

maps of birds (Ridgely et al. 2007) and mammals (Patterson et al. 2007) were obtained 

from NatureServe, Arlington, VA. Digital distribution maps of birds and mammals were 

also obtained online from the World Wildlife Fund (WWF) (Olson et al. 2004). Data sets 

were combined and duplicate entries were removed in order to obtain a more accurate 

distribution database. Ecoregions, biomes, and continents were delineated according to 

WWF protocol (Figure 5.1, Olson et al. 2001). 

 I examined mammal and bird body mass distributions at four distinct scales. I 

define scale as a range of spatial and temporal frequencies (see Peterson et al. 1998). The 

ecoregion scale included regions that ranged from ~2,000 km2 to ~800,000 km2. The 

biome scale included areas that ranged from ~100,000 km2 to ~9,000,000km2. The 

continental scale included North America (~20,800,000 km2) and South America 

(~17,800,000 km2). The western hemisphere scale was the combination of North and 

South America’s land masses (km2). 

Body-mass estimates

 In most cases, body mass estimates for birds were compiled from Dunning (1993) 

and estimates for mammals were obtained from Silva and Downing (1995).  Where 

possible, body mass estimates from the region of interest were used, otherwise estimates 

were taken from the nearest geographic location.  Male and female body mass estimates 

were averaged when weights for both sexes are provided.  Body sizes were recorded in 

grams and subsequently logarithmically transformed.   
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 Body mass pattern or structure refers to the distribution of body mass 

aggregations and gaps along the body mass axis. Body mass distributions were analyzed 

for discontinuities using simulations of actual data compared to a null distribution (a 

continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 

1997). A body-mass aggregation consisted of three or more species with body masses 

that did not exceed the expectation of the null distribution and was defined by the upper 

and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass 

aggregations were defined as significantly large areas between adjacent body masses that 

exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of 

discontinuities in the data was determined by calculating the probability that the observed 

discontinuities were chance events (compared observed values with output of 1,000 

simulations run against the null set (Restrepo et al. 1997).   

Discontinuity Analysis 

The number of species in my data sets vary from < 30 to > 150, therefore I 

maintained a constant statistical power of approximately 0.50 when setting alpha for 

detecting discontinuities (Lipsey 1990). Two other methods were also used to confirm the 

location of discontinuities. I used Bayesian Classification and Regression Trees 

(Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 1999) to further 

validate any patterns detected in body mass distributions. A multiple method approach in 

detecting significance in body mass patterns has been suggested as the best protocol 

(Allen et al. 2006, Stow et al. 2007). Abundance data for each individual species was not 

integrated into my analyses. Changes in dominance of species (greater numbers of 

individuals) could change aggregation and gap locations, but body mass distribution 
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patterns will be conserved despite changes in species composition or number (Havlicek & 

Carpenter 2001). 

 Differences between taxa in the average gap size and in the average number of 

body mass aggregations, at each scale, were tested with a Mann-Whitney Rank Sum test 

because the data were not normally distributed. Correlations between the number of 

species in an ecosystem and the number of body mass aggregations were tested with a 

Pearson Product Moment Correlation (if the data was normally distributed) and a 

Spearman Rank Order Correlation (if the data was not normally distributed). 

Body Mass Distribution Pattern Analysis 

I tested for similarities in body mass distributions found within systems of similar 

landscape structure (biomes) by implementing a bootstrapping method (Chernick 2008) 

using R statistical software (R 2010). I wanted to determine whether the ecoregions 

within each biome were more similar to each other than by chance. All comparisons were 

made first by dividing the log10 body mass axis into 0.001 increments. Then, each 

increment was assigned either a 0 or 1 condition, with 0 representing a gap and 1 

representing a body mass aggregation. Upper and lower limits were determined by the 

largest and smallest body masses in the comparison. The sum of observations that were 

within each body mass aggregation across each of the ecoregions within a biome were 

calculated. Then, the variance of all the sums of observations across ecoregions, in each 

biome, was calculated to determine the observed variance.  

Each biome contained a unique number of ecoregions and that number 

determined the size of each resample. Each biome was resampled with replacement, 

1,000 times, to determine the approximate distribution or simulated variance. If the 
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simulated variance is the same as the observed (actual) variance, then the ecoregions in 

that particular biome are not similar to each other because simply selecting a random 

assortment of all possible ecoregions in the western hemisphere would result in a similar 

variance. The exact rank, or location of the observed variance, within the 1,000 simulated 

variances was used to determine if the simulated versus observed variances were 

significantly different. An exact rank of 950 or higher (α = 0.05) was the level of 

significance. A binomial distribution was calculated in order to determine whether all the 

observed variances for ecoregions within each biome were higher than the simulated 

variances by chance alone. 

A Phi correlation analysis was used to determine differences in ecoregion body 

mass distributions between biomes. Species in each ecoregion within a biome were 

assigned a binary variable (where 1 represented a body mass aggregation and 0 

represented a gap), based on the log10 body mass axis, and divided into a 0.001 gram 

increment bin. The Phi coefficient ranges from -1 to 1. Values approaching 1 indicate a 

positive correlation and values approaching -1 indicate a negative correlation. Fleiss et al. 

(2003) suggested that values greater than ±0.30 indicate a strong relationship. 

I analyzed the temperate broadleaf and mixed forest biome, boreal forests and 

taiga biome, temperate grasslands, savannas and shrublands biome, and the deserts and 

xeric shrublands biome. These four biomes were selected due to the similar number of 

ecoregions within each biome. I compared the mean phi correlation of ecoregions within 

one biome to the mean phi correlation of ecoregions in a different biome. A Kruskal-

Wallis One Way Analysis of Variance on Ranks was used to determine significant 

differences in mean phi correlation values. 
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RESULTS 

 All bird and mammal body-mass distributions were discontinuous at the 

ecoregion, biome, continental, and hemisphere scales.  I observed discontinuities in 253 

mammal and 263 bird communities in 14 biomes located throughout the Western 

Hemisphere. There were between 6 - 20 body mass aggregations in each community. The 

numbers of body mass aggregations were positively correlated to the number of mammal 

species in each ecoregion within 12 out of 14 biomes (Table 5.1) and in each ecoregion 

within 11 out of 14 biomes in birds (Table 5.2). The numbers of body mass aggregations 

were positively correlated to the number of species in each biome, in mammals 

(Correlation Coefficient = 0.943, p < 0.001) and in birds (Correlation Coefficient = 

0.968, p < 0.001). At the continental scale both taxa were combined and the numbers of 

body mass aggregations were positively correlated to the number of species (Correlation 

Coefficient = 0.997, p = 0.003).  

In general, mammal communities at the ecoregion scale, had larger gaps on 

average than bird communities (p = < 0.001) (Table 5.3). Bird communities at the 

ecoregion scale, had more discontinuities than mammal communities as shown by a 

higher number of aggregations on average (p = < 0.001) (Table 5.4). When all mammal 

and bird body masses were combined into one distribution for each biome (i.e. biome 

scale), the average size of gaps in mammals was larger than birds (p = < 0.001). The 

average gap size in mammal body mass distributions at the biome scale were smaller than 

the gap size found at the ecoregion scale (p = < 0.001) (Table 5.5). At the biome scale, 

the average gap size in bird body mass distributions was smaller than the gap size at the 
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ecoregion scale (p = 0.004) (Table 5.6). The number of body mass aggregations were 

higher at the biome scale than in the ecoregion scale in both mammals (p = < 0.001) and 

birds (p = 0.006). As in the ecoregion and biome level scales, bird body mass 

aggregations had a smaller gap size (p = 0.330) and more aggregations (p = 0.330) than 

mammals at the continental scale, but were not significantly different (Table 5.7). At the 

hemisphere scale, both birds and mammals had equal size gaps, but birds had more 

aggregations (Table 5.8).  

In mammals and birds, as scale increased from ecoregion to biome, the number of 

body mass aggregations increased (Figure 5.2). As scale increased from biome to 

continent in mammals, the number of body mass aggregations observed in both North 

America and South America equaled the highest number of body mass aggregations 

observed in the biome scale. In birds, as scale increased from biome to continent, the 

numbers of body mass aggregations in both North America and South America were as 

high as the upper half of body mass aggregations observed in the biome scale. In 

mammals, the highest numbers of body mass aggregations were observed at the 

hemisphere scale. In birds, at the hemisphere scale, the numbers of body mass 

aggregations observed were similar to the numbers of body mass aggregations observed 

at the South America continent scale, but higher than the numbers of body mass 

aggregations observed at the North America continent scale. 

 The observed variance in the sum of observations that were within each bird body 

mass aggregation across each of the ecoregions within a biome were higher than the 

observed variance in the sum of observations that were within each mammal body mass 

aggregation across each of the ecoregions within a biome (Table 5.9). The observed 
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variances in the sum of observations that were within each mammal body mass 

aggregation across each of the ecoregions within a biome were higher than the simulated 

variances in every biome and there was less than a 0.006% chance it is not a random 

effect (Table 5.10). In 9 out of 14 biomes, the simulated variance is not the same as the 

observed variance in the sum of observations that were within each mammal body mass 

aggregation across each of the ecoregions, which indicates that the ecoregions in those 

particular biomes are similar to each other. The observed variances in the sum of 

observations that were within each bird body mass aggregation across each of the 

ecoregions within a biome were higher than the simulated variances in all but three 

biomes and there was less than a 2% chance it is not a random effect (Table 5.11). In 7 

out of 14 biomes, the simulated variance is not the same as the observed variance in the 

sum of observations that were within each bird body mass aggregation across each of the 

ecoregions, which indicates that the ecoregions in those particular biomes are similar to 

each other. 

 Body mass distributions of ecoregions within the temperate broadleaf and mixed 

forest biome were more similar to each other than to the body mass distributions of 

ecoregions within the boreal forests and taiga biome, temperate grasslands, savannas and 

shrublands biome, and the deserts and xeric shrublands biome. Body mass distributions 

of ecoregions within the boreal forests and taiga biome were more similar to each other 

than to the body mass distributions of ecoregions within the temperate grasslands, 

savannas and shrublands biome, and the deserts and xeric shrublands biome. There was 

no difference in body mass distributions of ecoregions within the temperate grasslands, 
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savannas and shrublands biome compared to the body mass distributions of ecoregions 

within the deserts and xeric shrublands biome (Table 5.12). 

   

DISCUSSION 

 Discontinuous body-mass distributions were found in all bird and mammal 

communities that were examined.  Discontinuities in body mass distributions have also 

been shown in North American birds (Skillen and Maurer 2008), south Florida 

herpetofauna, birds, and mammals (Allen 2006, Forys & Allen 2002), Pleistocene and 

Miocene mammals (Lambert 2006, Lambert and Holling 1998), tropical forest birds 

(Restrepo et al. 1997), and boreal region birds and mammals (Holling 1992) and in 

various other taxa (reviewed in Sendzimir et al. 2003).  This analysis extends these 

conclusions to include bird and mammal communities in almost every ecosystem of the 

western hemisphere. 

 As scale increased from ecoregion to hemisphere, each body mass distribution 

pattern was very distinct. There were no general patterns observed in any body mass 

distributions across scales or taxa. In some instances, some gaps and/or body mass 

aggregations remained at or near the exact location along the body mass axis as scale 

increased from ecoregion to hemisphere. In other cases, as scale increased, some gaps 

and/or body mass aggregations were observed at different locations along the body mass 

axis. Although there were no clear general patterns observed, gaps and/or body mass 

aggregations that remained at or near the same location along the body mass axis as scale 

increased may be the result of historical events. Marquet and Cofre (1999) observed a 

strong historic component, the Great American Biotic Interchange, which they suggest 
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explain the structure of multiple body mass modes in South American mammals at 

different spatial scales. 

At the ecoregion, biome, continental, and hemisphere scales bird communities 

had more aggregations than mammal communities. Mammals had larger gap sizes than 

birds at every scale except hemispheric. These differences may be due to how each taxa 

perceive and interact with landscape structure. It has been suggested that birds live in a 

more three dimensional world and mammals live in a one dimensional world (Holling 

1992). If this were the case, birds would be able to access a greater number of resources 

enabling the use of a more complex landscape structure and allow birds to occupy more 

niches. More niches could account for a greater number of aggregations, which would 

contradict the textural discontinuity hypothesis. TDH would posit that as a landscape 

becomes more structurally complex, the opportunity to fill new niches increases, not vice 

versa.  

Birds and mammals also have different locomotory modes, affording birds the 

ability to utilize both terrestrial and aerial resources in any given landscape (Sendzimir 

1998). Another explanation might be in our lack of understanding in the interaction 

between animals and the different structures in their environment. We cannot assume that 

different structural types in the landscape, in the eyes of an animal, are equally weighted 

in importance. Also, the body mass pattern analysis methodology used might not have 

been the appropriate manner to analyze the data at these various scales (Sendzimir 1998).  

Only 64% of the biomes in mammals had ecoregions with similar structure and 

only 50% of the biomes in birds had ecoregions with similar structure. This lack of 

universal congruence between ecoregions within a biome, in both mammals and birds, 
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could be the result of the information put into the analysis. Current landscape 

classification schemes are presumably quite subjective in nature. They may also be too 

coarse and even exclude key components of a complex system (Strand 2011, Gallant 

2009). If key components, or enough components in general, were excluded from one or 

more ecoregions within a biome then the similarity between ecoregions within a 

particular biome could be considerably diminished.  

Phi correlation analyses comparing the body mass distributions of ecoregions 

between two different biomes indicated that the temperate broadleaf and mixed forest 

biome and boreal forests and taiga biome were unique among the biomes examined, 

which provides support that the ecoregions within these biomes were correctly classified 

into their respective biome categorization. Analyses comparing the body mass 

distributions of ecoregions between the temperate grasslands, savannas and shrublands 

biome with the body mass distributions of ecoregions within the deserts and xeric 

shrublands biome failed to detect any difference between them. As mentioned above, 

landscape classification schemes may be too coarse or exclude key components of a 

complex system which might have differentiated the body mass distributions of the 

ecoregions between these two biomes. 

Ecosystems are a complex juxtaposition of numerous variables, many of which 

are poorly understood. Ecosystems are affected by different processes at different scales. 

Vegetative processes control the microscale, disturbance and environmental processes at 

the mesoscale and geomorphologic and evolutionary processes at the macroscale (Holling 

1992). Analysis of animal-landscape interactions can now be used as an additional 

parameter when modeling ecosystems. Local community composition depends on local 
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and regional processes (Gaston & Blackburn 1999). Therefore, body mass distribution 

analysis at multiple scales will allow the identification of subsets of animal communities 

within subsets of the landscape structure.  

This will provide a more refined and useful approach to the study of animal-

landscape interactions. Processes unique at a specific landscape scale can be tied to 

animal communities that exist only at that scale, which makes the textural discontinuity 

hypothesis a key management tool. Correct use and knowledge of this paradigm shift in 

ecology will help simplify the complexity of nature so that effective conservation efforts 

can be realized. 
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Table 5.1. The correlation between body mass aggregations the number of  

mammal species in each ecoregion. The number of ecoregions within each biome,  

the correlation coefficient and p-values. 

Biome # of Ecoregions Correlation Coefficient P 

1 71 0.853 0.001 

2 26 0.911 0.001 

3 9 0.953 0.001 

4 19 0.573 0.011 

5 29 0.859 0.001 

6 15 0.709 0.003 

7 8 0.856 0.002 

8 19 0.568 0.011 

9 6 0.683 0.136 

10 9 0.939 0.002 

11 10 0.449 0.172 

12 4 0.937 0.063 

13 22 0.906 0.001 

14 6 0.939 0.017 
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Table 5.2. The correlation between body mass aggregations the number of bird species in 

each ecoregion. The number of ecoregions within each biome, the correlation coefficient 

and p-values. 

Biome Number of Ecoregions Correlation Coefficient P 

1 72 0.921 0.001 

2 27 0.943 0.001 

3 9 0.962 0.001 

4 19 0.781 0.001 

5 30 0.73 0.001 

6 17 0.917 0.001 

7 8 0.913 0.001 

8 19 0.775 0.001 

9 6 0.765 0.103 

10 9 0.973 0.001 

11 15 0.939 0.001 

12 4 0.889 0.111 

13 22 0.962 0.001 

14 6 0.96 0.002 
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Table 5.3. Mammal summary statistics, including standard deviations (SD), of all ecoregions within each biome.  

The total number of ecoregions within each biome, the average distance of gaps between body mass aggregations  

within each biome, the total number of body mass aggregations within each biome and the average number of body  

mass aggregations within each biome. 

     

Biome Habitat 
Number of 
Ecoregions 

Average 
Distance 
of Gaps 

Number of 
Aggregations 

Average 
Number of 

Aggregations 

1 
Tropical and Subtropical Moist Broadleaf 
Forests 71 0.12(0.05) 618 8.70(1.21) 

2 
Tropical and Subtropical Dry Broadleaf 
Forests 26 0.15(0.06) 207 7.96(1.11) 

3 Tropical and Subtropical Coniferous Forests 9 0.16(0.07) 71 7.89(1.45) 
4 Temperate Broadleaf and Mixed Forests 19 0.23(0.04) 142 7.47(0.61) 
5 Temperate Coniferous Forests 29 0.18(0.04) 214 7.64(0.87) 
6 Boreal Forests/Taiga 15 0.28(0.05) 91 6.59(0.76) 

7 
Tropical and Subtropical Grasslands, Savannas 
and Shrublands 8 0.10(0.04) 72 9(1.41) 

8 
Temperate Grasslands, Savannas and 
Shrublands 19 0.17(0.04) 150 7.89(0.81) 

9 Flooded Grasslands and Savannas 6 0.15(0.05) 45 7.5(0.550 
10 Montane Grasslands and Shrublands 9 0.12(0.04) 76 8.44(1.33) 
11 Tundra 10 0.32(0.08) 61 6.1(0.57) 
12 Mediterranean Forests, Woodlands and Scrub 4 0.20(0.04) 29 7.25(0.96) 
13 Deserts and Xeric Shrublands 22 0.18(0.09) 165 7.5(1.26) 
14 Mangroves 6 0.10(0.03) 57 9.59(1.22) 
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Table 5.4. Bird summary statistics, including standard deviations (SD), of all ecoregions within each biome. The  

total number of ecoregions within each biome, the average distance of gaps between body mass aggregations  

within each biome, the total number of body mass aggregations within each biome and the average number of  

body mass aggregations within each biome. 

Biome Habitat 
Number of 
Ecoregions 

Average 
Distance 
of Gaps 

Number of 
Aggregations 

Average Number 
of Aggregations 

1 
Tropical and Subtropical Moist 
Broadleaf Forests 72 0.02(0.02) 1264 17.56(2.38) 

2 
Tropical and Subtropical Dry Broadleaf 
Forests 27 0.03(0.03) 437 16.19(3.01) 

3 
Tropical and Subtropical Coniferous 
Forests 9 0.03(0.01) 138 15.33(1.80) 

4 
Temperate Broadleaf and Mixed 
Forests 19 0.05(0.02) 217 12.06(0.54) 

5 Temperate Coniferous Forests 30 0.05(0.01) 340 11.33(0.88) 
6 Boreal Forests/Taiga 17 0.07(0.02) 176 10.35(1.17) 

7 
Tropical and Subtropical Grasslands, 
Savannas and Shrublands 8 0.02(0.01) 145 18.13(2.23) 

8 
Temperate Grasslands, Savannas and 
Shrublands 19 0.04(0.01) 230 12.11(0.81) 

9 Flooded Grasslands and Savannas 6 0.03(0.02) 88 14.67(1.97) 
10 Montane Grasslands and Shrublands 9 0.05(0.03) 154 17.11(3.62) 
11 Tundra 15 0.10(0.04) 122 8.13(1.64) 

12 
Mediterranean Forests, Woodlands and 
Scrub 4 0.06(0.02) 50 12.50(1.29) 

13 Deserts and Xeric Shrublands 22 0.04(0.02) 307 13.95(2.21) 
14 Mangroves 6 0.02(0.01) 102 17.00(2.00) 
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Table 5.5. All mammal species within each biome combined into one body mass distribution.  

The average distance of gaps between body mass aggregations within each biome (including  

standard deviations (SD)), the total number of body mass aggregations within each biome  

and the total number of species within each biome. 

   

Biome Habitat 

Average 
Distance 
of Gaps 

Number of 
Aggregations Number of Species 

1 
Tropical and Subtropical Moist 
Broadleaf Forests 0.02(0.03) 18 862 

2 
Tropical and Subtropical Dry 
Broadleaf Forests 0.02(0.02) 17 671 

3 
Tropical and Subtropical Coniferous 
Forests 0.06(0.06) 12 301 

4 
Temperate Broadleaf and Mixed 
Forests 0.07(0.04) 12 223 

5 Temperate Coniferous Forests 0.08(0.06) 13 275 
6 Boreal Forests/Taiga 0.15(0.06) 8 88 

7 
Tropical and Subtropical Grasslands, 
Savannas and Shrublands 0.02(0.03) 15 457 

8 
Temperate Grasslands, Savannas and 
Shrublands 0.06(0.08) 14 346 

9 Flooded Grasslands and Savannas 0.06(0.05) 11 230 
10 Montane Grasslands and Shrublands 0.04(0.02) 14 421 
11 Tundra 0.22(0.10) 7 64 

12 
Mediterranean Forests, Woodlands 
and Scrub 0.09(0.08) 9 161 

13 Deserts and Xeric Shrublands 0.03(0.03) 17 584 
14 Mangroves 0.05(0.04) 15 423 
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Table 5.6. All bird species within each biome combined into one body mass distribution. The average  

distance of gaps between body mass aggregations within each biome (including standard deviations  

(SD)), the total number of body mass aggregations within each biome and the total number of species  

within each biome. 

   

Biome Habitat 

Average 
Distance of 

Gaps 
Number of 

Aggregations 
Number of 

Species 

1 
Tropical and Subtropical Moist Broadleaf 
Forests 0.01(0.01) 32 3304 

2 
Tropical and Subtropical Dry Broadleaf 
Forests 0.01(0.02) 28 2646 

3 
Tropical and Subtropical Coniferous 
Forests 0.02(0.02) 20 926 

4 Temperate Broadleaf and Mixed Forests 0.03(0.03) 16 525 
5 Temperate Coniferous Forests 0.02(0.03) 16 473 
6 Boreal Forests/Taiga 0.05(0.04) 12 268 

7 
Tropical and Subtropical Grasslands, 
Savannas and Shrublands 0.01(0.02) 25 1868 

8 
Temperate Grasslands, Savannas and 
Shrublands 0.02(0.02) 19 832 

9 Flooded Grasslands and Savannas 0.02(0.03) 21 1231 
10 Montane Grasslands and Shrublands 0.01(0.04) 27 1861 
11 Tundra 0.06(0.04) 11 193 

12 
Mediterranean Forests, Woodlands and 
Scrub 0.03(0.03) 16 415 

13 Deserts and Xeric Shrublands 0.01(0.02) 26 1868 
14 Mangroves 0.01(0.03) 26 1845 
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Table 5.7. Species combined into one body mass distribution for each 

continent. The average distance of gaps between body mass aggregations 

within each continent (including standard deviations (SD)), the total number 

of body mass aggregations within each continent and the total number of 

species within each continent. 

Continent 

Average Distance of 

Gaps 

Number of 

Aggregations 

Number of 

Species 

Mammals       

North 

America 0.04(0.04) 17 609 

 

South 

America 0.02(0.02) 18 829 

    Birds       

North 

America 0.01(0.01) 23 1534 

 

South 

America 0.01(0.02) 31 3136 
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Table 5.8. Mammal and bird body mass distribution summary statistics for the 

entire western hemisphere. The average distance of gaps between body mass 

aggregations, including standard deviations (SD), the total number of body mass 

aggregations and the total number of species. 

  

Average Distance of 

Gaps 

Number of 

Aggregations 

Number of 

Species 

Mammals 0.01(0.02) 22 1261 

Birds 0.01(0.01) 32 3560 
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Table 5.9. The observed variance is the sum of observations that were within each mammal and bird body mass  

aggregation across each of the ecoregions within a biome, including standard deviations (SD), at the ecoregion, biome  

and continental scales. 

      Mammals Birds 
Biome Habitat Variance Variance 

1 Tropical and Subtropical Moist Broadleaf Forests 650.23(25.5) 722.54(26.88) 
2 Tropical and Subtropical Dry Broadleaf Forests 71.53(8.46) 90.68(9.53) 
3 Tropical and Subtropical Coniferous Forests 8.6(2.93) 13.49(3.67) 
4 Temperate Broadleaf and Mixed Forests 42.67(6.53) 61.54(7.84) 
5 Temperate Coniferous Forests 88.79(9.42) 148.81(12.2) 
6 Boreal Forests/Taiga 34.13(5.84) 51.35(7.16) 
7 Tropical and Subtropical Grasslands, Savannas and Shrublands 8.73(2.96) 9.92(3.15) 
8 Temperate Grasslands, Savannas and Shrublands 32.99(5.74) 56.5(7.52) 
9 Flooded Grasslands and Savannas 4.38(2.09) 5.51(2.35) 
10 Montane Grasslands and Shrublands 12.12(3.48) 10.12(3.18) 
11 Tundra 16.1(4.01) 31.1(5.58) 
12 Mediterranean Forests, Woodlands and Scrub 2.33(1.53) 2.56(1.6) 
13 Deserts and Xeric Shrublands 43.52(6.6) 63.11(7.94) 
14 Mangroves 4.79(2.19) 5.46(2.34) 

Biome 
 

18.12(4.26) 23.75(4.87) 
Western 
Hemisphere   0.5(0.7) 0.58(0.76) 
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Table 5.10. The sum of observations that were within each mammal body mass aggregation across each of the ecoregions  

within a biome. The observed variance of all the sums of observations across ecoregions, in each biome. An exact rank of  

950 or higher (α = 0.05) was the level of significance. A binomial distribution was calculated in order to determine whether  

all the observed variances for ecoregions within each biome were higher than the simulated variances by chance alone. 

   
Biome Habitat Simulated Observed 

Exact 
Rank 

1 Tropical and Subtropical Moist Broadleaf Forests 405.7 650.23 1000 
2 Tropical and Subtropical Dry Broadleaf Forests 56.73 71.53 998 
3 Tropical and Subtropical Coniferous Forests 7.676 8.6 850 
4 Temperate Broadleaf and Mixed Forests 30.89 42.67 1000 
5 Temperate Coniferous Forests 70.2 88.79 1000 
6 Boreal Forests/Taiga 19.92 34.13 1000 
7 Tropical and Subtropical Grasslands, Savannas and Shrublands 6.158 8.73 996 
8 Temperate Grasslands, Savannas and Shrublands 31.04 32.99 768 
9 Flooded Grasslands and Savannas 3.703 4.38 882 
10 Montane Grasslands and Shrublands 7.618 12.12 1000 
11 Tundra 9.246 16.1 1000 
12 Mediterranean Forests, Woodlands and Scrub 1.859 2.33 920 
13 Deserts and Xeric Shrublands 41.37 43.52 753 
14 Mangroves 3.699 4.79 971 

  Binomial Distribution   6.10E-05   
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Table 5.11. The sum of observations that were within each bird body mass aggregation across each of the ecoregions  

within a biome. The observed variance of all the sums of observations across ecoregions, in each biome. An exact rank  

of 950 or higher (α = 0.05) was the level of significance. A binomial distribution was calculated in order to determine  

whether all the observed variances for ecoregions within each biome were higher than the simulated variances by chance  

alone. 

   Biome Habitat Simulated Observed Exact Rank 
1 Tropical and Subtropical Moist Broadleaf Forests 663.7 722.54 1000 
2 Tropical and Subtropical Dry Broadleaf Forests 94.86 90.68 169 
3 Tropical and Subtropical Coniferous Forests 11.15 13.49 999 
4 Temperate Broadleaf and Mixed Forests 47.59 61.54 1000 
5 Temperate Coniferous Forests 116.6 148.81 1000 
6 Boreal Forests/Taiga 38.15 51.35 1000 
7 Tropical and Subtropical Grasslands, Savannas and Shrublands 8.844 9.92 949 
8 Temperate Grasslands, Savannas and Shrublands 47.34 56.5 1000 
9 Flooded Grasslands and Savannas 5.132 5.51 805 
10 Montane Grasslands and Shrublands 11.05 10.12 114 
11 Tundra 29.86 31.1 764 
12 Mediterranean Forests, Woodlands and Scrub 2.376 2.56 760 
13 Deserts and Xeric Shrublands 63.26 63.11 483 
14 Mangroves 5.12 5.46 772 

  Binomial Distribution   0.02   
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Table 5.12. Mean (x) and standard deviation (SD) of Phi coefficients and difference in  
ranks for each comparison between biomes. 

Biome Comparisons x 
Difference in 
Ranks p 

Temperate Broadleaf and Mixed Forests 0.568(0.1560)     
with Boreal Forests/Taiga 0.48(0.1210) 233.577 <0.05 
with Temperate Grasslands, Savannas and 
Shrublands 0.469(0.1210) 281.236 <0.05 
with Deserts and Xeric Shrublands 0.417(0.0968) 478.105 <0.05 
Boreal Forests/Taiga 0.637(0.1410) 

  with Temperate Grasslands, Savannas and 
Shrublands 0.414(0.0794) 662.276 <0.05 
with Deserts and Xeric Shrublands 0.398(0.0671) 727.445 <0.05 
Temperate Grasslands, Savannas and 
Shrublands 0.506(0.1490) 

  Deserts and Xeric Shrublands 0.454(0.1180) 149.355 >0.05 
Deserts and Xeric Shrublands 0.472(0.1480)     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 
 

   

 

Figure 5.1. Biomes of the Western Hemisphere. Image adapted from Olson et al. (2001). 
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Figure 5.2. The number of discontinuities detected by Bayesian CART and SAS cluster 

analysis at four different scales. The average number of discontinuities was used at the 

ecoregion, biome and continental scale.  
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CHAPTER 6: A SOCIO-ECOLOGICAL ANALYSIS OF GLOBAL INVASIONS AND 

EXTINCTIONS 

 

Multiple forces, exacerbated by human activity, work together to cause the 

decline of many species (Wilson 2002). Human population size, CO2 production, 

biomass consumption, energy use and geographical range size are orders of magnitude 

greater than any other species (Fowler & Hobbs 2003). The debate, as to what aspect(s) 

of humanity is responsible for environmental degradation, has been going on since the 

1970s (Ehrlich & Holdren 1971, Commoner et al. 1971) and current governance regimes 

are unable to mitigate the adverse ecological impacts of socio-ecological systems (UNEP 

2007).  

One of the major unresolved problems, at the forefront of worldwide 

environmental concerns, is the increase in invasive and endangered species. 

Unfortunately, even after 40 years of study, ecologists are still not able to determine the 

processes which govern invasions and extinctions with any predictive power (Bright 

1998). There are thousands of invasive plants and animal species that have established 

themselves throughout the world and the number is rising. Invasive species can alter the 

evolutionary pathway of native species via predation, hybridization, niche displacement, 

competitive exclusion and possibly extinction (Mooney & Cleland 2001). As native 

species decline, introduced non-indigenous species may become established and can 

affect ecosystem processes at varying scales and can potentially lead to the further 

extinction of native species (Williamson 1996, Vitousek et al. 1997a, Forys & Allen 

2002).  
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Biodiversity has been increasing for the past 600 million years (Signor 1990); yet 

recent studies indicate a global decline in biodiversity, no reduction in rate of decline, and 

an increase in pressures on biodiversity (Butchart et al. 2010). Changes in biodiversity 

due to human actions have been more profound in the last 50 years than in entire 

recorded human history, with an astonishing 52% of cycads, 32% of amphibians, 25% of 

conifers, 23% of mammals, and 12% of bird species threatened with extinction 

(Millennium Ecosystem Assessment 2005). According to The World Conservation 

Union’s (IUCN) Invasive Species Specialist Group (ISSG), 1159 species have possibly 

gone extinct and 22% of vertebrates, 41% of invertebrates and 70% of plants are 

endangered (Vie et al. 2009). The integrity of the ecosystem declines with the loss of 

native species (Noss 1995, Sanders et al. 2003) and may affect the delivery of ecosystem 

services (Ehrlich & Ehrlich 1992). Extinction rates are 100 to 1,000 times their pre-

human levels (Pimm et al. 1995, UNEP 2007). This potential loss of native species 

diversity may disrupt the numerous ecological processes that inherently shape landscape 

structure, such as predator-prey dynamics, dispersal, foraging behavior and functional 

group composition.   

The term “landscape structure” has many different definitions in science, 

business, government, and in different cultures. There is a critical need for integrated 

concepts and research capable of uniting the natural and social sciences (Pickett et al. 

1997). Studies have recognized the need to couple human systems with environment 

systems (Turner et al. 2003), the convergence of environmental and financial markets 

(Sandor et al. 2002), the importance of socio-cultural dynamics in natural resource 

management (Stratford & Davidson 2002) and the tremendous impact of humans on the 
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environment in comparison to other species (Fowler & Hobbs 2003). Numerous studies 

have focused on only one aspect of the socio-ecological relationship such as carbon 

emissions (Kratena 2004), water (Postel 2003) or human population growth (Struglia & 

Winter 2002).  

At present, only three projects have attempted to focus on and integrate multiple 

socio-ecological factors at a national scale, with an emphasis on their roles in an 

ecologically sustainable society, into an index of values that can be ranked and compared. 

In 2003, the Global Footprint Network was established in an effort to establish and 

maintain a sustainable future. As part of that effort, the Ecological Footprint was created. 

This metric, comprised of 5 levels and 6 sub-categories, calculates how much natural 

resources we have, how much we use and who uses it in order to track human demands 

on the biosphere (Ewing et al. 2008). The U.S. National Aeronautics and Space 

Administration’s (NASA) Socioeconomic Data and Applications Center (SEDAC) 

published three indexes, the 2005 Environmental Sustainability Index (ESI) (Esty et al. 

2005), the 2006 Environmental Performance Index (EPI) (Esty et al. 2006) and the 2008 

EPI (Esty et al. 2008). Each index was developed in order to explore the relationships, at 

a national scale, between multiple socio-ecological factors and their effect on a country’s 

environmental performance and sustainability.  

The 2005 ESI consisted of 76 socio-ecological variables that were grouped into 

21 subcategories, under 5 main categories. The 2006 EPI consisted of 16 socio-ecological 

variables that were grouped into 6 main categories. The 2008 EPI consisted of 26 socio-

ecological variables that were grouped into 10 subcategories, under 6 main categories. In 

2004, the Environmental Vulnerability Index (EVI) was created by the South Pacific 
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Applied Geoscience Commission and the United Nations Environment Program in order 

to provide a rapid and standardized method of assessing a country’s vulnerability to 

negative impacts on sustainable development (Kaly et al. 2004). This index incorporated 

50 indicators organized under 7 main categories. Final countrywide index results, the 

indicator selection process and indicator definitions can be found in their respective final 

reports.  

These indices utilized indicators that represented another layer of the ecosystem, 

previously unaccounted for in ecological research. These indices demonstrated that the 

economic, demographic, environmental and societal variables are not mutually exclusive, 

but highly integrated and have profound impacts on a country’s sustainability. Indices 

create a single condensed quantity based on multiple, multi-dimensional variables (Ebert 

& Welsch 2004). In order to ascertain which socio-ecological variables are important, I 

must utilize multi-modal inference and model selection. There is a clear need for better 

models that can help elucidate the complex interactions between humans and their 

environment (Balmford et al. 2005). 

The three aforementioned indices incorporated a diverse range and number of 

indicators, unique categorical organization of indicators, and were created in order to 

measure a country’s environmental performance and sustainability. A more relevant 

measure of a country’s sustainability or performance lies in its ecosystem resilience 

(Carpenter et al. 2001). Ecosystem resilience is defined as the magnitude of disturbance 

that can be absorbed by a system before it changes its structure and control (Holling & 

Gunderson 2002). I suggest that ecosystem resilience can be measured by the proportion 

of invasive and endangered bird and mammal species within a country. Those countries 
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with a higher proportion of invasive and endangered bird and mammal species would 

presumably have lower ecosystem resilience. 

I plan to utilize a unique set of socio-ecological factors to explore their 

relationships with the proportion of endangered and invasive birds and mammals within 

each country and resilience. I divided fifteen socio-ecological factors into three broad 

groups which included; (i) Economic, (ii) Ecological, and (iii) Social/Governance. The 

economic group included; 1) GDP per capita, 2) Export/Import ratio, 3) Tourism, 4) 

Under Nourishment, and 5) Energy Efficiency. The ecological group included; 1) 

Agriculture intensity, 2) Rainfall, 3) Water stress, 4) Wilderness protection, and 5) Total 

biodiversity.  The Social/Governance group included; 1) Life expectancy, 2) Adult 

literacy, 3) Pesticide regulations, 4) Political stability, and 5) Women in government. I 

also included three other factors and two reference indexes. 

 

Socio-ecological Factors 

 

Gross national product (GNP) has been shown to have an inverse relation to 

species richness; countries with high GNP are located in the upper latitudes with low 

biodiversity and countries with low GNP are located in the tropics with high biodiversity 

(Huston 1994). Gross domestic product per capita (GDP), a standard measure of 

affluence, has been shown to have a curvilinear relationship with environmental impact 

and this relationship has been termed the environmental Kuznets curve (EKC) (Cavlovic 

et al. 2000, Stern 2004, Dietz et al. 2007). Species richness of invasive plants (Liu et al. 

2005) and all invasive taxonomic groups combined (Lin et al. 2007) were both positively 

Economic 
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correlated with increased GDP per capita. International trade positively affects a 

country’s income (Frankel and Romer 1999). Therefore, limiting trade would limit a 

country’s income and subsequently diminish opportunities for biological invasions. In 

fact, a closed international trade policy helped Eastern European bloc countries limit 

invasive bird species introductions during the Cold War (Chiron et al. 2010). 

Commercial energy consumption was reported to be positively correlated with 

exports (developing countries were observed having a stronger correlation than 

developed countries) and imports by industrialized countries were associated with less 

energy consumption (Suri & Chapman 1998). International trade typically results in the 

exporting country bearing more ecological costs than the country importing those goods 

(Machado et al. 2001). International trade has grown at twice the rate of economic growth 

since 1950 (Kates & Parris 2003) and this globalization has resulted in a sharp increase in 

non-indigenous introductions (GISP 2001, Perrings et al. 2002). A 3-24% increase in 

invasive insects and plants by 2020 were predicted by using establishment rates of non-

indigenous species and international trade data for the past 100 years in the United States 

with projected trade forecasts for the United States (Levine & D’Antonio 2003). These 

non-indigenous introductions are hard to reverse, amount to severe economic losses, alter 

the structure of and function of ecosystems and decrease the diversity of native species 

(Vitousek et al. 1997a). 

International tourist arrivals are estimated to reach approximately 1.6 billion 

people per year by 2020 (UNWTO 2009a) combined with a similar number of domestic 

tourists (Holden 2009). Nature has been hypothesized and empirically shown to be an 

influential factor in tourism demand.  Based on tourism arrivals per capital (mass-
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tourism) and tourism expenditures per GDP (individual tourism), Freytag & Vietze 

(2010) suggest that nature is an influential factor in individual tourism demand. Tourism 

may provide new employment, income, local participation in ownership or management 

and eliminate dependence on exploitative natural resource activities (reviewed in Mbaiwa 

& Stronza 2009). However, eco-tourism has a paradoxical nature; the more attractive a 

site is, the more popular it becomes, which in turn brings more tourists and this heavy 

visitation will degrade the site and other numerous environmental impacts (Hillery et al. 

2001, reviewed in Holden 2009). In other words, there is a “resource paradox” in which 

tourism needs environmental resources, but it depends on the protection of those 

resources for sustained competitiveness (Williams & Ponsford 2009). Tourism in a 

country is positively correlated with its degree of biodiversity and a high degree of 

endangered biodiversity is negatively correlated with tourism (Freytag & Vietze 2009). 

Tourism infrastructure (i.e. roads, trails, fences, parking lots, tourist shops, etc.) 

limits available land and resources of the local people, promotes human sprawl, enables 

encroachment on wildlife and degradation of protected areas (Vanderpost 2006, Geneletti 

& Dawa 2009), causes noise pollution and results in poor waste management (Mbaiwa 

2003) and can even result in harmful provisioning of food to wildlife (Orams 2002). This 

loss of habitat and degradation of protected areas could negatively impact biodiversity 

and international tourism development, specifically in developing countries, has given 

little regard to the environmental impact caused by tourists (Honey 1999). Non-

indigenous species can enter a country unintentionally as a byproduct of tourism, 

enabling species to overcome geographic barriers (Chown et al. 1998, Wilcove et al. 

1998, GISP 2001, Perrings et al. 2002, Messing & Wright 2006). Climate change could 
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alter tourism and commerce, thereby potentially linking new geographic regions which 

may be subsequently invaded by non-indigenous species (Armstrong & Ball 2005, 

Hellmann et al. 2008). 

The Food and Agriculture Organization of the United Nations estimates that more 

than 1.02 billion people in the world are undernourished and most live in developing 

countries (FAO 2009). Malnutrition can reduce the economic performance of people and 

promote unsustainable farming practices that can lead to more poverty, political 

instability, violence, and environmental degradation (Gonzalez 2004, Chapman et al. 

2006, Gonzalez 2006). Smith et al. (2010) suggest that on a global scale, regions with 

high levels of undernourishment have weaker governance, which results in a failure of 

governments to regulate overfishing, bycatch and the environmental impacts of 

aquaculture. 

Energy efficiency is a measure of technology. As technology improves, humans 

become more energy efficient. Environmental impacts can therefore be potentially 

reduced via “refinement of production” or super industrialization (Mol 1995). Improved 

technology cannot substitute for an ecosystem service, but it allows humans the ability to 

determine the trade-offs among ecosystem services (Rodriguez et al. 2006). An increase 

in agricultural energy efficiency would reduce the withdrawal of freshwater, which would 

in turn lessen the impact on the environment (Kates & Parris 2003) and lead to 

improvements in the supply of ecosystem services (Carpenter et al. 2006).  

Land use is determined by what ecosystem services can be provided and are 

needed by humans (Nelson et al. 2006). Humans have appropriated, managed and 

Ecological 
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modified approximately 50% of the terrestrial ecosystem (Vitousek et al. 1997b). 

Agricultural land is now one of the largest terrestrial biomes in the world, occupying 

about 40% of the earth’s surface, and continual expansion has resulted in increased 

energy demand, water consumption, pesticide application and fertilizer use (Kates & 

Parris 2003, reviewed in Foley et al. 2005). Drainage, crop rotation, tillage, 

intercropping, grazing and the use of fertilizers and pesticides are the tools used in most 

agricultural activities and they have negative impacts on biodiversity (reviewed in 

McLaughlin & Mineau 1995). Using the past 35 years of global trends in agriculture, 

Tilman et al. (2001) have forecasted, by the year 2050, that the eutrophication and habitat 

destruction inherent in agriculture will lead to unprecedented species extinctions and loss 

of critical ecosystem services. Dobson et al. (1997) observed a positive correlation 

between agricultural activity and the density of endangered plants, mammals and birds at 

the state level in the United States of America. More invasive plant species were 

observed next to intensely farmed fields than next to moderate or low intensity farmed 

fields (Boutin & Jobin 1998). Human-modified ecosystems can provide the optimal 

environment for successful invasions (Vitousek et al. 1997a) and the disturbance or 

complete destruction of natural habitat via human agricultural activities is responsible for 

the global distribution of invasive weeds and pests (Huston 1994). 

Small mammal (Williams 1995, Badgley & Fox 2000, Heaney 2001), bird 

(Rensburg et al. 2002, Hawkins et al. 2003), amphibian and reptile species richness 

increased with an increase in annual rainfall (Woinarski et al. 1999). However, in the 

case of desert rodents, it has been shown that the highest species richness occurred at 

intermediate levels of rainfall, with biodiversity actually decreasing in areas of extremely 
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high rainfall (Abramsky & Rosenzweig 1984). Mean annual precipitation was positively 

correlated with the number of threatened bird and mammal species in a global country by 

country analysis (McKee et al. 2003) and positively correlated with the overall density of 

endangered species within the United States of America at the state level (Dobson et al. 

1997). There is no evidence of an increase in invasive birds or invasive mammals in 

relation to higher rainfall in the literature. However, a positive correlation between high 

rainfall and an increase in the biomass of non-indigenous plants has been reported in the 

deserts (Brooks & Pyke 2001) and grasslands (Hobbs & Mooney 1991) of North 

America. Annual variation in the abundance of invasive Argentine ants Linepithema 

humile was positively correlated to annual rainfall (Bolger 2007).  

Approximately one quarter of the fresh water supply on the earth has been 

modified, managed or appropriated by humans (Postel et al. 1996) and the costs (e.g., 

considerable biodiversity losses) outweigh the benefits (Postel 2003, reviewed in Foley et 

al. 2005). Agricultural use accounts for approximately 90% of total human consumption 

of freshwater resources (CSD 1997). Running water ecosystems, which may be the most 

impacted ecosystem on the planet, may be rapidly degrading due to damming, diversion 

and extraction (Malmqvist & Rundle 2002). On a state by state analysis in the United 

States of America, human water use was negatively correlated to the density of 

endangered reptiles (Dobson et al. 1997). Physiological differences in invasive plant 

species, such as higher reproductive effort (White et al. 1997) and more efficient water 

use (Lambrinos 2002), can negatively impact native plant species when water availability 

is limited.  
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Approximately 12% of the Earth’s land is protected and less than half of it is for 

the sake of biodiversity conservation (Hoekstra et al. 2005). Wilderness protection, if 

done correctly and based on science, is an essential factor in the preservation and 

conservation of the remaining biodiversity worldwide and the protection has been shown 

to be effective (DeFries et al. 2005, reviewed in Fischer et al. 2006). In order to protect 

and preserve global biodiversity, it is estimated that each country would have to set aside 

at least 50% of its land area (Soulé & Sanjayan 1998). However, more reserves in a 

country does not necessarily equate to the protection of more endangered species. In a 

study of 30 important reserves in Mexico, 10 reserves represented all the endangered 

mammals in their analysis (Ceballos 2007). Well managed, protected wilderness areas, 

via strict control and restoration measures, can help reduce, slow or even halt potential 

spread of invasive species (Randall 2000). Oceanic island reserves have a higher number 

of invasive species than mainland reserves, reserve size is inversely related to the 

proportion of invasive plants in mediterranean-type ecosystems, and reserves located in 

extreme climates have fewer invasive species than reserves located in moderate climates 

(reviewed in Cole & Landres 1996).  

The use of total biodiversity, or species richness, as an indicator has been used in 

other studies, but with mixed results. In areas of high species richness, there were 

relatively low proportions of threatened species. However, in hotspots that contained a 

high proportion of threatened species, there was also higher overall species richness 

(Orme et al. 2005). McKee et al. (2003) observed a positive correlation between the 

number of threatened bird and mammal species with species richness. There are also 

conflicting results in invasive species analyses. As species richness increased, invasive 
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species success declined in some studies (Chown et al. 1998, Levine 2000). However, 

invasive species richness was positively correlated with native species richness in another 

study (Lonsdale 1999). There is no single theory or process that can explain biological 

diversity (Huston 1994). 

Life expectancy has been extended by more than 20 years since 1950 and that 

improvement reflects a reduction in infant and child mortality due to improvements in 

water quality, sanitation, nutrition and immunizations (Kates & Parris 2003). Life 

expectancies are higher in high-income countries than in developed countries, but that 

gap has closed in recent years (Nelson et al. 2006). Life expectancy is a complex metric 

that has many direct and indirect components and has been used in other studies to 

determine the extent to which human well-being could increase without an accompanying 

increase in environmental deterioration (Dietz et al. 2007).  

Social/Governance 

Miller (2002) reports that fewer than 20% of Americans are literate enough to 

comprehend a science book, read a science article in a newspaper or understand a 

science-based television program. Literacy in many areas of science is lacking and may 

be insufficient to maintain an informed citizenry (Jordan et al. 2009). A high degree of 

adult literacy brings with it greater access to information, which in turn would suggest 

that better decisions would be made concerning the environment. In a study that 

compared approximately 140 countries, a higher adult literacy rate correlated with less 

pollution in the cases of sulfur dioxide, heavy particles, dissolved oxygen, fecal coliform 

pollution and sanitation (Torras & Boyce 1998).  
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The notion that pesticides are detrimental to the environment was first brought to 

the forefront of public concern by Rachel Carson, in her book entitled ‘Silent Spring’ 

(Carson 1962). Pesticide use has led to declines in amphibians (Sparling et al. 2001), 

birds (Anthony et al. 1993) and the decimation of pollination systems (Kearns et al. 1998) 

and numerous other deleterious effects (reviewed in Pimentel et al. 1992). The enactment 

and implementation of pesticide regulations can control direct, human-caused mortality 

of endangered species (Miller et al. 2002). Pesticides have been used to successfully 

control invasive species, but these attempts are very expensive and the targeted species 

may develop a resistance (Pimentel et al. 1992, Schmitz & Simberloff 1997, McKee et al. 

2009).  

The pygmy hippo Hexaprotodon liberiensis is now classified as endangered due 

to political instability and unrest in West African nations (IUCN 2006). Environmental 

degradation can lead to social collapse, famine, disputes within and between nations, and 

war and vice versa (McNeely 2000, Nelson et al. 2006). Political stability is essential to 

the success of ecological restoration projects, which are typically undergone to increase 

species richness in degraded ecosystems. It has been asserted that the persistence of these 

conservation projects is directly tied to the degree and frequency of political unrest 

(Soulé 1991). Di Castri (2000) presents new approaches and tools that could be used to 

promote environmental health, such as early monitoring of invasive species, but the 

success of these recommendations relies on many factors, including political stability. 

Risk assessment and risk management are political processes (Peterson et al. 2000). 

Studies have shown that women have a very different perspective than men on the 

subject of the environment. Since the turn of the twentieth century, women have been 
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political champions of the environmental protection and conservation movement 

(reviewed in Kleehammer 2011). Women are more concerned about the pain and 

suffering of animals (e.g., more opposed to hunting, predator control, and trapping), more 

involved in protest efforts and constitute the majority membership of humane societies 

and animal-welfare organizations (Kellert & Berry 1987). In a political survey conducted 

in the United States of America, women respondents answered in overwhelming majority 

that a female candidate would be more competent at protecting the environment than a 

male candidate (Sapiro 1981).  In the United Kingdom, the Labour and Green Parties 

have the highest proportion of women candidates (Norris & Lovenduski 1995). In 1992, 

at the Democratic National Convention, women candidates had a common theme of 

protecting the environment (Kahn & Gordon 1997).   A country with a high proportion of 

seats held by women in national parliament or government could result in more 

environmental protections, which could result in fewer endangered or invasive species. 

Total population has been suggested as a key driver of environmental impact 

(Ehrlich and Holdren 1971) and numerous studies have reported negative effects of 

population on environmental impact (Kates & Parris 2003, McKee et al. 2003, York et al. 

2003, Dietz et al. 2007). In one study, a positive relationship was found between the 

number of United States federally listed mammals and total human population (Kirkland 

& Ostfeld 1999). Human total population growth is an ultimate driver in the increase in 

biological invasions by non-indigenous species (Vitousek et al. 1997b, Mooney & 

Cleland 2001).   

Other Factors 
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Latitude and total land area were used in the analyses to account for climate and 

biogeography (York et al. 2003, Dietz et al. 2007). Diversity is lowest near the poles and 

increases towards the tropics for most plant and animal species (Huston 1994). Latitude 

has been shown to influence local environmental conditions which affect plant growth (Li 

et al. 1998). Environmental impacts have been reported to be greater the further a country 

is from the tropics (York et al. 2003). Non-indigenous species richness has been shown to 

peak in the subtropics and decline with latitude (Sax 2001) and this was also observed at 

a country level scale (Liu et al. 2005). Ecological niche models based on four future 

climate scenarios predicted that the invasive Argentine ant would retract its range in the 

tropics and expand into higher latitudes (Roura-Pascual et al. 2004). The species-area 

relationship states that species richness tends to increase with increasing sampling area 

(Gleason 1922, MacArthur & Wilson 1967, Rosenzweig 1995). Species richness of land 

mammals in 155 countries was positively correlated with total land area (Ceballos & 

Brown 1995). Studies have reported that as total land area increased, a country’s 

environmental impact increased, due to presumed effects of energy demand, efficiency 

and usage (York et al. 2003, Dietz et al. 2007).  

  

METHODS 

Data Collection 

 There were sufficient data to analyze 100 countries, which contain approximately 

87% of the world’s population, 43% of the world GDP per capita and 74% of the earth’s 

total land area (Appendix S-U). The region of Africa was represented by 26 countries. 

The region of Asia was represented by 29 countries. The region of Europe was 
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represented by 22 countries. The regions of North and Central America were represented 

by 12 countries. South America and Oceania were represented by 11 countries. Energy 

efficiency or total primary energy consumption was calculated by tabulating the 

consumption of petroleum, dry natural gas, coal, and net hydroelectric, nuclear, and 

geothermal, solar, wind, wood and waste electric power, and net electricity imports 

(electricity imports minus electricity exports) (Esty et al. 2006). Total biodiversity, 

included known mammals, birds, reptiles, plants, amphibians and fishes in each country 

as of 2004 (WRI 2005). Each country’s latitude was obtained from the Central 

Intelligence Agency’s World Factbook (CIA 2008a).  

Total population and GDP per capita for each country were reported in the 2008 

EPI and values represented the year 2005 (Esty et al. 2008). Total land area was reported 

in the 2008 EPI (Esty et al. 2008). Water stress was defined as the percentage of national 

territory with water withdrawals exceeding 40% of available water (Esty et al. 2008). 

Agricultural intensity was measured as the percentage of cropland area that is in 

agriculture-dominated landscapes. High agricultural intensity was defined as having more 

than 60% of a country’s lands cultivated, low intensity having at least 40% of the land 

uncultivated (Esty et al. 2008). Pesticide regulation was the legislative status of countries 

under the Rotterdam and Stockholm conventions and to what degree they have followed 

through on the convention bylaws (Esty et al. 2008).  

The numbers of international tourist arrivals per country were obtained by 

accessing the United Nations World Tourism Organization database (UNWTO 2009b). 

Undernourishment, or the percentage of the population between 2001 and 2003 that were 

malnourished, were obtained from the FAO (FAOc 2006). Annual rainfall data were 
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reported by the FAO and represent annual rainfall for the year 2002 (FAOb 2006). 

Average rainfall between 1971 and 2000 was not different than rainfall in 2002 (Mann-

Whitney Rank Sum Test, p=0.839). Adult literacy or the percentage aged 15 and above, 

between 1995 – 2005, that are literate were obtained from the United Nations 

Development Programme’s Human Development Report (UNDP 2007). Political 

stability within a country measured the likelihood that the government would be 

destabilized or overthrown by unconstitutional or violent means (Kaufmann et al. 2008).  

Women in government represent the proportion of seats held by women in 

national parliament as of 2007 (MDGD 2009). Exports were divided by imports to create 

an export/import ratio. Export and import data were obtained from the FAO and 

represented the year 2004 (FAOa 2006). Wilderness protection was defined as the 

amount of land classified by the United Nations Statistics Division as protected (“an area 

of land and/or sea especially dedicated to the protection and maintenance of biological 

diversity, and of natural and associated cultural resources, and managed through legal or 

other effective means”), divided by the total land area of a country (UNSD 2008). Life 

expectancy data were obtained from the CIA World Factbook and were calculated as the 

overall life expectancy at birth regardless of gender (CIA 2008b). 

 For the purpose of this study, endangered birds and mammals included those 

species that were classified by the IUCN Red List of Threatened Species as vulnerable, 

endangered, critically endangered, extinct in the wild and extinct (IUCN 2008). Invasive 

birds were determined using Birdlife International’s world bird database, avibase (BLI 

2008). Invasive mammals were determined using J.L. Long’s definitive book on 
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introduced mammals of the world (Long 2004). The total number of birds and mammals 

in each country were determined using the IUCN database (IUCN 2008). 

Data Analysis 

 Models are devices that make abstractions clear and understandable, by providing 

the ability to compare and contrast those abstractions with other models (Carpenter et al. 

2005). The Information Theoretic approach (Burnham & Anderson 2002; Johnson & 

Ohmland 2004) was used to model these data based on Akaike Information Criteria 

(AIC) (Akaike 1973). For the complete set of models, AIC, the difference in AIC for that 

model relative to the best-fitting model with the minimum AIC (termed ΔAIC) and the 

Akaike weight (termed wi ) were all calculated. The best-fitting  model was defined as 

that with the lowest AIC. Models that differed by less than 2 AIC units have substantial 

support in terms of explaining the data (Burnham & Anderson 2002). Evidence ratios 

were also calculated for each model (Burnham & Anderson 2002). Colinearity between 

explanatory variables was investigated using correlation matrices. Although associations 

were apparent, they were not sufficient to preclude their inclusion into the modeling 

process. All data were log transformed, when appropriate, so that every variable would be 

on the same scale. All analyses were performed in SAS version 9.1 (SAS 1999). 

An a-priori set of models was selected and included a combination of all socio-

ecological landscape factors, each socio-ecological landscape factor by itself and various 

combinations of socio-ecological landscape factors grouped into three broad classes. 

These three broad classes included; (i) Economic, (ii) Ecological, and (iii) 

Social/Governance. The economic class included; 1) GDP per capita, 2) Export/Import 

ratio, 3) Tourism, 4) Under Nourishment, and 5) Energy Efficiency. The ecological class 
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included; 1) Agriculture intensity, 2) Rainfall, 3) Water stress, 4) Wilderness protection, 

and 5) Total biodiversity.  The Social/Governance class included; 1) Life expectancy, 2) 

Adult literacy, 3) Pesticide regulations, 4) Political stability, and 5) Women in 

government. 

Analyses were separated by taxonomic group. The dependent variable in each of 

the four groups was; 1) the number of endangered mammals divided by the total number 

of mammals within a country, 2) the number of endangered birds divided by the total 

number of birds within a country, 3) the number of invasive mammals divided by the 

total number of mammals within a country, and 4) the number of invasive birds divided 

by the total number of birds within a country. In the resilience analysis, the dependent 

variable was calculated as the number of both endangered and invasive birds and 

mammals divided by the total number of birds and mammals in each country. 

The ESI and EVI were used as reference indexes in these analyses. The EPI was 

not used as one of the reference indexes because it was correlated with both the ESI and 

its predecessor the EVI (Pearson CC= 0. 434, Pearson CC= 0. 544). The ecological 

footprint was not used as reference index because it does not account for local impacts 

(Dietz et al. 2007). Each country’s percent of endangered and invasive birds and 

mammals, their combined percentage (i.e. resilience), ESI, EVI and total population can 

be found in Appendix A. Each country’s GDP per capita, total land area, latitude, life 

expectancy, water stress, agricultural intensity, pesticide regulations, adult literacy and 

tourism values can be found in Appendix B. Each country’s under nourishment, annual 

rainfall, energy efficiency, wilderness protection, total biodiversity, exports/imports, 

political stability and women in government values can be found in Appendix C. 
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RESULTS 

 The percentage of endangered birds in a country was best predicted by a model 

that included total biodiversity (wi = 0.442) and total land area (wi  = 0.275) (Table 6.1). 

As total biodiversity and total land area increased, the percentage of endangered birds in 

a country increased (Table 6.2). The island nation of New Zealand was the exception to 

this trend (Figures 6.1 & 6.2). The percentage of endangered mammals in a country was 

best predicted by the ecological class model (wi = 0.938) which included; 1) Agriculture 

intensity, 2) Rainfall, 3) Water stress, 4) Wilderness protection, and 5) Total biodiversity 

(Table 6.3). All variables had a positive correlation, except wilderness protection which 

was inversely correlated with the percentage of endangered mammals (i.e., as the amount 

of wilderness area protected decreased, the proportion of endangered mammals in a 

country increased). Only rainfall and water stress were significant in the model (Table 

6.4). 

The percentage of invasive birds in a country was best predicted by a model that 

included GDP per capita (wi = 0.938) (Table 6.5). As GDP per capita increases, the 

percentage of invasive birds increases (Table 6.6). The island nation of New Zealand was 

the exception to this trend (Figure 6.3). The percentage of invasive mammals in a country 

was best predicted by a model that included GDP per capita (wi = 0.837) (Table 6.7). As 

GDP per capita increases, the percentage of invasive mammals increases (Table 6.8). The 

island nations of New Zealand and the United Kingdom were the exceptions to this trend 

(Figure 6.4).  
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The resilience of a country was best predicted by a model that included life 

expectancy (wi = 0.526) (Table 6.9). As life expectancy increases, the resilience of a 

country decreases (i.e., as human life expectancy increases, the proportion of endangered 

and invasive birds and mammals in a country increases, which indicates less resilience) 

(Table 6.10). The island nation of New Zealand was the exception to this trend. Twenty-

three of the 26 countries in the Africa region were included in the top 25 most resilient 

countries (Figure 6.5).  

 

DISCUSSION 

Although the correlational nature of this study limits our ability to determine 

causal factors, the patterns observed in this study have provided insight into the dynamics 

of a complex, global, socio-ecological system. The percentage of endangered birds in a 

country was positively correlated with total biodiversity and total land area. These results 

were similar to other analyses on the relationship between the percentage of endangered 

birds and total biodiversity (McKee et al. 2003, Orme et al. 2005). Although there was no 

evidence in the literature describing a relationship between the percentage of endangered 

birds and total land area, I could presume that an increase in sampling area would result 

in an increase in species richness (reviewed in Huston 1994) and therefore a possibility of 

there being more endangered species present.  

The percentage of endangered mammals in a country was correlated with a 

combination of factors (i.e., the ecological class of variables). The results were similar to 

other analyses on the relationship between endangered mammals and agriculture intensity 

(Dobson et al. 1997), total annual rainfall and total biodiversity (McKee et al. 2003). 
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Water stress has been reported as a threat to endangered species populations throughout 

the United States (Flather et al. 1998). There is evidence that the preservation of more 

habitat will allow for the survival of more species (Bruner et al. 2001), therefore I might 

assume fewer endangered species to be present. The inverse correlation observed in this 

study between wilderness protection and the percentage of endangered mammals 

suggests that this may be true.  

The relationship between GDP per capita and invasive species has been observed 

in other studies. GDP per capita and invasives have been found to correlate with the 

richness of alien spiders (Kobelt & Nentwig 2008), plants (Liu et al. 2005), fishes 

(Leprieur et al. 2008), birds and mammals in Europe (Hulme 2007) and all taxonomic 

groups combined (Lin et al. 2007). The United Kingdom had a far greater percentage of 

invasive  mammals than predicted by the model. This may be due to the unique history of 

this island nation. Around 1775 AD, London was at the crossroads of the ‘globalization’ 

of European trade routes, establishing trade between the Dutch, Spanish, Portuguese and 

French (Di Castri 1989). This vast trade economy, at an early period in this island 

nation’s history, presumably has also meant a long history of biological invasions.   

The most resilient countries were those located in Africa and this may be due to 

the lack of invasive species in most of these countries. There were only 29 invasive bird 

species and 39 invasive mammal species reported in the 26 African countries included in 

this study. The lack of invasive species in these African countries may best be explained 

by international trade. Increased international trade has been positively correlated with an 

increase in invasive species (GISP 2001, Perrings et al. 2002). I obtained international 

trade data of the past 60+ years from the World Trade Organization (WTO 2008) and 
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found that African countries comprised approximately 50% or more of the countries in a 

list of the 25 countries with the least average amount (in U.S. dollars) of exports, imports 

and both figures combined. These countries have had very little international trade 

relative to a majority of the countries in this analysis due to a closed trade policy (Sachs 

& Warner 1997).  

In every analysis, New Zealand was an extreme outlier. New Zealand had the 

highest proportion of endangered birds, invasive birds, and invasive mammals, and had 

the highest proportion of endangered and invasive species combined. New Zealand’s 

complete lack of native terrestrial mammals (Diamond 1990) was a key factor in its 

outlier position relative to the rest of the countries analyzed. New Zealand has had a 

massive invasion by non-indigenous species since its human colonization, in the past 

700-800 years, and this has resulted in catastrophic biodiversity loss (Clout 2001). New 

Zealand’s invasive species crisis may be due in large part to its isolation, high endemism 

and recent human colonization (Norton 2009). Island ecosystems are often the most 

invaded and consequently threatened worldwide (Towns et al. 2006).  

No other analysis to date has calculated a measure of resilience for a country, thus 

there is no evidence in the literature regarding its relationship with human life 

expectancy. Dietz et al. (2007) found no relationship between life expectancy and 

environmental impact. The overall trend in high income countries, with improvements to 

the HDI (which includes human life expectancy as one of its variables), is one towards a 

disproportionately larger negative impact on their ecological footprint. However, some 

lower income countries have high level of development without high impact on 

ecosystem services (Moran et al. 2008).  
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Human population control is a potential option that may increase the resilience of 

a country. Total population was not a factor in the selected models, but population control 

may be one of many crucial steps that must be taken in order to conserve global 

biodiversity (McKee et al. 2003). Furthermore, more humans may equate to higher 

human population densities which has been shown to have a negative correlation with the 

size of protected areas (Luck 2007). Even though the population growth rate is decreasing 

in developed countries, developed countries still have a high level of consumption which 

may be equivalent to rapid population growth in developing countries that have low 

consumption (York et al. 2003). The total fertility rate of the world has been declining 

since 1965, but this has been counteracted by a decreasing death rate (UNPD 2008). The 

idea of having only one offspring per human, or replacement level fertility, would be one 

method of human population control and stabilization. Educated women tend to have 

fewer children than uneducated women, therefore an education program for young 

women would be effective in developing regions of the world (Osili & Long 2008).  

Humans are an integral part of the ecosystems in which they inhabit, accounting 

for the consumption of nearly 40% of potential terrestrial net primary productivity 

(Vitousek et al. 1986). As global climate change occurs, warming in some areas and 

cooling in others, species will be forced to shift their ranges (Thomas & Lennon 1999). 

These range shifts will be difficult for some species, impossible for others and beneficial 

to those that can quickly adapt (Parmesan et al. 1999). Conservation will only be 

successful if local communities are given the incentives, tools and capacity to manage 

ecosystems sustainably (Leader-Williams 2002) and understand that they are living on 

environmental capital rather than on interest (Jones 2003). The negative impacts of 
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humans will continue to increase as the global population grows, therefore humans must 

realize that the economic value of conserving what is left in nature is a magnitude of 

order greater than that of developing it (Costanza et al. 1997). Until that paradigm shift is 

achieved, we will continue to “have the appearance of a great deal of intellectual activity, 

but an outcome of social inertia” (Albrecht 2001).  
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Table 6.1. Model selection results for endangered birds. Bold values indicate variables in the best model. Evidence Ratio (ER). 
   Model AICc ΔAICc wi ER 

Total Biodiversity 214.13 0.00 0.44 1.00 
Total Land Area 215.08 0.94 0.23 1.60 
Life Expectancy 217.43 3.30 0.09 5.20 
Total Population 218.58 4.44 0.05 9.21 
Agricultural Intensity + Annual Rainfall +Water Stress + Wilderness Protection + 
Total Biodiversity 219.54 5.40 0.03 14.91 
Adult Literacy 220.46 6.33 0.02 23.68 
Under Nourishment 220.70 6.56 0.02 26.63 
Pesticide Regulations 221.10 6.97 0.01 32.62 
Water Stress 221.43 7.30 0.01 38.46 
Null 221.84 7.71 0.01 47.22 
Export Import Ratio 222.52 8.39 0.01 66.29 
Energy Efficiency 222.75 8.62 0.01 74.37 
Annual Rainfall 223.05 8.91 0.01 86.19 
Tourism 223.08 8.94 0.01 87.53 
Environmental Vulnerability Index  223.13 9.00 0.01 89.79 
GDP per capita 223.70 9.57 0.00 119.46 
Wilderness Protection  223.79 9.66 0.00 125.02 
Agricultural Intensity 223.85 9.71 0.00 128.57 
Environmental Sustainability Index  223.88 9.75 0.00 130.84 
Women in Government 223.96 9.83 0.00 135.98 
Political Stability 223.96 9.83 0.00 136.25 
Latitude 223.97 9.84 0.00 136.66 
Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability + 
Women in Government 224.42 10.29 0.00 171.26 
GDP per capita + Export Import Ratio + Tourism + Under Nourishment + Energy 
Efficiency 227.43 13.30 0.00 771.01 
All variables 236.31 22.18 0.00 1000.4 
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Table 6.2. Parameter estimates for variables selected in the best models in the endangered birds analysis.   
Variable Estimate Standard Error t Value Pr > |t| 
Intercept 2.41576 0.38245 6.32 <.0001 
Total Biodiversity 0.09117 0.02864 3.18 0.002 

     
Intercept 2.77852 0.3239 8.58 

 
<.0001 

Total Land Area 0.04528 0.015 3.02 0.0032 
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Table 6.3. Model selection results for endangered mammals.     

Model AICc ΔAICc wi 
Evidence 
Ratio 

Ag. Intensity + Ann. Rainfall +Water Stress + Wilderness Protection + Total Biodiversity 353.704 0.000 0.938 1.00 
Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability + Women in 
Government 361.023 7.319 0.024 38.84 
Total Biodiversity 363.402 8.731 0.012 78.67 
Water Stress 364.166 9.495 0.008 115.27 
Political Stability 365.664 10.993 0.004 243.79 
Total Population 365.962 11.291 0.003 282.96 
Environmental Sustainability Index  366.407 11.736 0.003 353.47 
Latitude 367.070 12.399 0.002 492.41 
Life Expectancy 368.364 13.694 0.001 940.40 
Environmental Vulnerability Index  368.877 14.206 0.001 1215.37 
Null 369.554 14.756 0.001 1600.66 
GDP per capita  369.473 14.802 0.001 1637.30 
Annual Rainfall 369.714 15.043 0.001 1846.97 
Total Land Area 370.190 15.519 0.000 2343.27 
Agricultural Intensity 370.221 15.550 0.000 2379.88 
Under Nourishment 370.291 15.620 0.000 2464.65 
All variables 363.166 15.708 0.000 2576.05 
Pesticide Regulations 370.653 15.982 0.000 2953.67 
Women in Government 370.816 16.145 0.000 3204.48 
Wilderness Protection 371.210 16.539 0.000 3902.23 
Tourism 371.389 16.718 0.000 4267.59 
Export Import Ratio  371.472 16.801 0.000 4448.42 
Energy Efficiency 371.505 16.834 0.000 4522.43 
Adult Literacy 371.546 16.875 0.000 4616.09 

GDP per capita + Export Import Ratio + Tourism + Under Nourishment + Energy Efficiency 370.805 17.101 0.000 5169.33 
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Table 6.4. Parameter estimates for variables selected in the best model(s) in the endangered mammals analysis. 

Variable Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 4.21526 1.82371 2.31 0.023 
Agricultural Intensity 0.05029 0.04093 1.23 0.2222 
Annual Rainfall 0.33938 0.12343 2.75 0.0072 
Water Stress 0.14313 0.04013 3.57 0.0006 
Wilderness Protection -0.07443 0.05017 -1.48 0.1413 
Total Biodiversity 0.10826 0.06668 1.62 0.1078 
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Table 6.5. Summary of model selection results for invasive birds. Evidence Ratio (ER).   
Model AICc ΔAICc wi ER 
GDP per capita 57.040 0.000 0.879 1.00 
GDP per capita + Export Import Ratio + Tourism + Under Nourishment + Energy 
Efficiency 61.762 4.722 0.083 10.60 
Life Expectancy 64.650 7.610 0.020 44.93 
Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability + 
Women in Government 66.333 9.293 0.008 104.20 
Political Stability 66.350 9.310 0.008 105.11 
Under Nourishment 71.228 14.188 0.001 1204.90 
Adult Literacy 72.777 15.737 0.000 2613.90 
Pesticide Regulations 74.712 17.672 0.000 6877.77 
Latitude 74.965 17.925 0.000 7803.68 
Environmental Vulnerability Index  76.748 19.708 0.000 19036.24 
Women in Government 78.143 21.103 0.000 38230.92 
Wilderness Protection  78.557 21.516 0.000 47013.97 
Tourism 78.733 21.693 0.000 51351.53 
Null 79.771 22.731 0.000 86280.22 
Environmental Sustainability Index  79.786 22.746 0.000 86946.65 
Annual Rainfall 80.828 23.788 0.000 146400.31 
Energy Efficiency 80.830 23.790 0.000 146554.11 
Total Biodiversity 80.998 23.957 0.000 159324.77 
Total Land Area 81.010 23.970 0.000 160323.67 
Water Stress 81.037 23.997 0.000 162518.97 
Agricultural Intensity 81.340 24.300 0.000 189084.64 
Total Population 81.704 24.664 0.000 226828.61 
Export Import Ratio 81.886 24.846 0.000 248425.93 
All variables 82.153 25.113 0.000 283908.51 
Agricultural Intensity + Annual Rainfall +Water Stress + Wilderness Protection + 
Total Biodiversity 83.303 26.263 0.000 504536.59 
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Table 6.6. Parameter estimates for variables selected in the best model in the invasive birds analysis.   
Variable Estimate Standard Error t Value Pr > |t| 
Intercept 0.15755 0.1856 0.85 0.398 
GDP per capita 0.06531 0.01242 5.26 <.0001 
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Table 6.7. Summary of model selection results for invasive mammals. Evidence Ratio (ER).     
Model AICc ΔAICc wi ER 
GDP per capita 418.705 0.000 0.837 1.00 
Political Stability 422.967 4.262 0.099 8.42 
Latitude 425.283 6.578 0.031 26.82 
Life Expectancy + Adult Literacy + Pesticide Regulations + Political 
Stability + Women in Government 426.261 7.556 0.019 43.74 
GDP per capita + Export Import Ratio + Tourism + Under 
Nourishment + Energy Efficiency 427.430 8.725 0.011 78.47 
Life Expectancy 431.141 12.436 0.002 501.70 
Adult Literacy 433.987 15.282 0.000 2081.83 
Under Nourishment 434.133 15.428 0.000 2239.48 
Pesticide Regulations 434.323 15.618 0.000 2462.67 
Women in Government 435.917 17.212 0.000 5464.35 
Environmental Sustainability Index  436.273 17.568 0.000 6528.94 
Environmental Vulnerability Index  440.229 21.524 0.000 47192.96 
Tourism 440.453 21.748 0.000 52785.93 
Null 440.779 22.074 0.000 62122.01 
Total Biodiversity 440.981 22.276 0.000 68734.05 
Wilderness Protection  441.104 22.399 0.000 73093.89 
Export Import Ratio 441.250 22.545 0.000 78629.33 
Agricultural Intensity 442.300 23.595 0.000 132919.64 
Annual Rainfall 442.414 23.709 0.000 140716.15 
Energy Efficiency 442.683 23.978 0.000 160974.30 
Water Stress 442.685 23.980 0.000 161135.35 
Total Population 442.723 24.018 0.000 164226.20 
Total Land Area 442.890 24.185 0.000 178527.87 
Ag. Intensity + Ann. Rainfall +Water Stress + Wilderness Protection + 
Total Biodiversity 445.434 26.729 0.000 637108.76 
All variables 450.474 31.769 0.000 7918460.13 
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Table 6.8. Parameter estimates for variables selected in the best model in the invasive mammals analysis.   
Variable Estimate Standard Error t Value Pr > |t| 
Intercept 0.06318 1.13218 0.06 0.9556 
GDP per capita 0.39242 0.07576 5.18 <.0001 
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Table 6.9. Summary of model selection results for resilience (endangered + invasive birds and mammals). Evidence Ratio (ER). 

Model AICc ΔAICc wi ER 
Life Expectancy 312.859 0 0.526 1 
Total Biodiversity 316.466 3.607 0.087 6.07 
Pesticide Regulations 316.796 3.937 0.073 7.16 
Total Land Area 316.819 3.96 0.073 7.24 
Adult Literacy 317.581 4.722 0.05 10.6 
Under Nurishment 317.822 4.963 0.044 11.96 
GDP per capita 319.103 6.244 0.023 22.69 
Total Population 319.224 6.365 0.022 24.11 
Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability + 
Women in Government 319.745 6.886 0.017 31.28 
Tourism 320.37 7.511 0.012 42.76 
Environmental Vulnerability Index  320.687 7.828 0.01 50.1 
Political Stability 320.789 7.93 0.01 52.72 
Null 321.067 8.208 0.009 60.57 
Annual Rainfall 321.195 8.336 0.008 64.59 
Women in Government 321.673 8.814 0.006 82.02 
Wilderness Protection  321.909 9.05 0.006 92.3 
Export Import Ratio 321.947 9.088 0.006 94.07 
Water Stress 322.381 9.522 0.004 116.86 
Environmental Sustainability Index  322.421 9.562 0.004 119.22 
Latitude 322.601 9.742 0.004 130.45 
Agricultural Intensity + Annual Rainfall +Water Stress + Wilderness Protection 
+ Total Biodiversity 322.956 10.097 0.003 155.82 
Agricultural Intensity 323.19 10.331 0.003 175.13 
Energy Efficiency 323.193 10.334 0.003 175.39 
GDP per capita + Export Import Ratio + Tourism + Under Nourishment + 
Energy Efficiency 324.895 12.036 0.001 410.84 
All variables 338.079 25.22 0 1000.13 
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Table 6.10. Parameter estimates for variables selected in the best  

model in the resilience analysis. 

Variable Estimate 
Standard 

Error t Value Pr > |t| 
Intercept -4.1801 3.09793 -1.35 0.1803 
Life 
Expectancy 0.14422 0.04415 3.27 0.0015 
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Figure 6.1. Endangered birds in relation to total biodiversity. 
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Figure 6.2. Endangered birds in relation to total land area. 
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Figure 6.3. Invasive birds in relation to GDP per capita. 
 
 
 
 
 
 
 
 

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0.0 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0 35000.0 40000.0 45000.0

%
 o

f I
nv

as
iv

e 
Bi

rd
s

GDP per capita ($1000)

New Zealand

Jamaica

Dominican Republic

United States

Australia

Norway
Ireland



 
 

   

201 

 
 
 
Figure 6.4. Invasive mammals in relation to GDP per capita. 
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Figure 6.5. The percentage of endangered and invasive birds and mammals combined in relation to life expectancy. A higher 

percentage equates to a lower resilience. 
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CHAPTER 7: CONCLUSION 

 

In chapter 2 and chapter 3, I examined body mass distributions in five 

Mediterranean-climate ecosystems. Specifically, I examined the relationship between 

endangered and invasive bird and mammal species and their location along a body mass 

axis. I also explored changes in alpha, beta, and gamma diversity of function after the 

introduction of invasive bird and mammal species and the loss of endangered species. 

Discontinuous body-mass distributions were found in all Mediterranean-climate 

ecosystems and taxa examined. Discontinuities in body mass distributions have also been 

shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, 

birds, and mammals (Allen 2006, Allen et al. 1999), Pleistocene and Miocene mammals 

(Lambert 2006, Lambert and Holling 1998), tropical forest birds (Restrepo et al. 1997), 

and boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed 

in Sendzimir et al. 2003). This analysis extends these conclusions to include animal 

communities across Mediterranean-climate ecosystems of the world.  

More non-indigenous species (NIS) and endangered species were found to occur 

at the edges of body mass aggregations than could be expected by chance alone in 40% of 

datasets and in all datasets when analyzed by taxonomic group pooling ecosystems, thus 

supporting similar analyses which examined the distribution of NIS and endangered 

species in relation to body mass aggregations (Allen et al. 1999). However, this was not 

consistent across Mediterranean-climate ecosystems or taxa. Skillen and Maurer (2008) 

reported an average of 52% of declining species were closer to body mass aggregation 

edges than the median distance to the nearest body mass aggregation edge, but showed an 
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average of 72% of NIS were further away from body mass aggregation edges than the 

median distance (i.e., located in gaps).  

Parker et al. (1999) and Vitousek et al. (1996) describe many kinds of 

environmental effects associated with non-indigenous species: including genetic (loss of 

genetic diversity and evolutionary pressure due to hybridization), ecosystem (alteration of 

nutrient cycling and productivity), and population or community (species richness may 

increase, but abundance of native species declines). Although there were no significant 

differences between pre- and post- invasion Shannon Index values, results of this study 

demonstrated a trend of non-indigenous species positively affecting alpha diversity and 

affecting beta diversity of function in birds and mammals differently. 

Alpha diversity of function increased in 9 out of the 10 Mediterranean-climate 

ecosystems analyzed when NIS were introduced into the community. Removal of 

endangered species from the community after introducing NIS yielded mixed results.  

Alpha diversity of function increased in eight ecosystems and decreased in two. Beta 

diversity of function in birds decreased in 80% of the Mediterranean-climate pair-wise 

comparisons analyzed when NIS were introduced and remained the same or decreased in 

60% of the Mediterranean-climate pair-wise comparisons with the removal of endangered 

species from the communities. Beta diversity of function in mammals increased in 70% 

of the Mediterranean-climate pair-wise comparisons analyzed when NIS were introduced 

and remained the same or increased in 80% of comparisons when endangered species 

were subsequently removed from the communities. Gamma diversity of function in birds 

and mammals increased with the inclusion of NIS and after endangered species were 

removed. 
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Most functional group membership declines were in insectivorous birds and 

mammals.  Within each individual body mass aggregation, there were changes in species 

composition and functional groups present, however, there were no differences in 

functional group richness preinvasion and post invasion for each terrestrial vertebrate 

group or for both taxonomic groups combined. There was a decrease in cross-scale 

redundancy of functional groups in mammals and when both taxonomic groups were 

combined.  

Despite differences in pre- and post- invasion species communities, the number of 

functional groups in a given body mass aggregation (functional richness w/n scales) 

remained similar pre- and postinvasion. However, changes in the distribution of species 

within functional groups across different body mass aggregations in mammals and when 

both taxonomic groups were combined, further validate an apparent decrease in 

functional redundancy and cross-scale resilience. The loss of cross-scale resilience and 

simplification of these communities due to human influences is well documented and 

may also have unforeseen consequences (i.e., functional groups involved have changed) 

(Regier and Baskerville 1986, Peterson et al. 1998, Forys and Allen 2002). With regard to 

cross-scale redundancy in birds remaining the same, it may be that the overall net effect 

of the establishment of NIS birds in these ecosystems has offset losses of species due to 

other anthropogenic impacts (e.g., habitat fragmentation, degradation or destruction) 

(Forys and Allen 2002). This may also be a result of no niche replacement, but 

conservation of broad functional patterns via functional complementarity (Rosenfeld 

2002). 
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In my fourth chapter, I examined changes in body mass distributions and 

speciation events over paleoecologic time. Discontinuous body-mass distributions were 

found in all Bridger and Uinta faunal assemblage zones (FAZ) examined. Discontinuities 

in body mass distributions that have been constructed from the fossil record have also 

been shown in Miocene mammals (Lambert 2006) and Pleistocene mammals (Lambert & 

Holling 1998). New species of mammals did not occur at body mass aggregation edges in 

the observed distribution more often than expected in either analysis conducted. The 

distance to edge of new species was not less than those species already present and was 

only significant in two FAZs when new species were placed into the prior geologic layer. 

This study identified and analyzed patterns in body mass distributions within 

paleoecological faunal assemblage zones, but the use of body mass may have been too 

coarse to detect speciation events. 

In my fifth chapter, I examined changes in body mass distributions with changes 

in scale. Specifically, I examined whether the vertebrate body mass structures are similar 

among the ecoregions within each biome. A lack of similarity would provide strong 

evidence against the textural discontinuity hypothesis. If body mass structure reflects 

landscape structure at these different scales, this will support the textural discontinuity 

hypothesis and create a fundamental link between landscape and community ecology. All 

bird and mammal body-mass distributions were discontinuous at the ecoregion, biome, 

continental, and hemisphere scales. At the ecoregion, biome, continental, and hemisphere 

scales bird communities had more aggregations than mammal communities. Mammals 

had larger gap sizes than birds at every scale except hemispheric.   
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In my last chapter, I examined what socio-ecological factors within a country 

might help determine the number of endangered and invasive birds and mammals. The 

percentage of endangered birds in a country was positively correlated with total 

biodiversity and total land area. These results were similar to other analyses on the 

relationship between the percentage of endangered birds and total biodiversity (McKee et 

al. 2003, Orme et al. 2005). Although there was no evidence in the literature describing a 

relationship between the percentage of endangered birds and total land area, I could 

presume that an increase in sampling area would result in an increase in species richness 

(reviewed in Huston 1994) and therefore a possibility of there being more endangered 

species present.  

The percentage of endangered mammals in a country was correlated with a 

combination of factors (i.e., the ecological class of variables). The results were similar to 

other analyses on the relationship between endangered mammals and agriculture intensity 

(Dobson et al. 1997), total annual rainfall and total biodiversity (McKee et al. 2003). 

Water stress has been reported as a threat to endangered species populations throughout 

the United States (Flather et al. 1998). There is evidence that the preservation of more 

habitat will allow for the survival of more species (Bruner et al. 2001), therefore I might 

assume fewer endangered species to be present. The inverse correlation observed in this 

study between wilderness protection and the percentage of endangered mammals 

suggests that this may be true. The relationship between GDP per capita and invasive 

species has been observed in other studies. GDP per capita and invasives have been 

found to correlate with the richness of alien spiders (Kobelt & Nentwig 2008), plants (Liu 
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et al. 2005), fishes (Leprieur et al. 2008), birds and mammals in Europe (Hulme 2007) 

and all taxonomic groups combined (Lin et al. 2007).  

The idea of actively trying to reduce human life expectancy in order to increase 

the resilience of a country is one that will never be adopted by humanity. However, 

human population control is a potential option. Total population was not a factor in the 

selected models, but population control may be one of many crucial steps that must be 

taken in order to conserve global biodiversity (McKee et al. 2003). No other analysis to 

date has calculated a resilience factor for a country, thus there is no evidence in the 

literature regarding its relationship with human life expectancy. Dietz et al. (2007) found 

no relationship between life expectancy and environmental impact. The overall trend in 

high income countries, with improvements to the Human Development Index (which 

includes human life expectancy as one of its variables), is one towards a 

disproportionately larger negative impact on their ecological footprint. However, some 

lower income countries have high level of development without high impact on 

ecosystem services (Moran et al. 2008).  

My work consisted of loosely connected empirical analyses that built upon each 

other to improve our knowledge of cross-scale ecosystem structure and contributed to the 

basic foundations of the field of landscape ecology, thus providing a broader 

understanding of how animals interact with their environment. This work provided 

further support for Holling’s textural discontinuity hypothesis. The results of this research 

has provided future researchers with the ability to predict the impact and success of 

invasive species and the ability to determine which native species are at greatest risk of 

extinction.  This research elucidated the distribution of biological diversity in space and 
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time and the socio-ecological factors that are contributing to the worldwide increase in 

invasive and endangered species. Humans are an integral part of the ecosystems in which 

they inhabit, thus understanding their role is crucial. The negative socio-ecological 

impacts of humans will continue to increase, thereby altering the architecture of the 

landscape and changing the composition of animal communities.   
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APPENDIX A. Mediterranean-climate ecosystem mammals in California. Log 10 body mass in grams (g),  
Bayesian CART (BCART) group, functional group, and the species status. 
Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Sorex ornatus Ornate Shrew 0.698 1 InTe 

 Sorex vagrans Vagrant Shrew 0.707 1 InTe 
 Reithrodontomys megalotis Harvest Mouse 1.049 1 GrTe 
 Peromyscus maniculatus Deer Mouse 1.299 1 GrTe 
 Peromyscus boylii Brush Mouse 1.329 1 HeAr 
 Perognathus californicus California Pocket Mouse 1.367 1 GrTe 
 Peromyscus truei Pinyon Mouse 1.427 1 GrTe 
 Peromyscus californicus California Mouse 1.656 2 GrTe 
 Tamias obscurus Obscure Chipmunk 1.748 2 HeAr 
 Dipodomys stephensi Stephen's Kangaroo Kat 1.807 2 GrTe x 

Dipodomys heermanni Heermann Kangaroo Kat 1.857 2 GrTe 
 Tamias merriami Merriam's Chipmunk 1.875 2 GrTe 
 Dipodomys venustus Santa Cruz Kangaroo Rat 1.929 2 GrTe 
 Dipodomys elephantinus Big-eared Kangaroo Rat 1.93 2 GrTe 
 Thomomys bottae Botta Pocket Gopher 2.049 2 HeFs 
 Neotoma lepida Desert Wood Rat 2.164 2 HeTe 
 Mustela frenata Long-tailed Weasel 2.167 2 CaTe 
 Peromyscus eremicus Cactus Mouse 2.276 2 GrTe 
 Neotoma fuscipes Dusky-footed Woodrat 2.281 2 HeAr 
 Spermophilus beecheyi California Ground Squirrel 2.781 3 HeTe 
 Sylvilagus bachmani Brush Rabbit 2.785 3 HeTe 
 Sylvilagus auduboni Audubon Cottontail 2.879 3 HeTe 
 Spilogale gracilis Spotted Skunk 2.888 3 CaTe 
 Bassaricus astutus Ringtail 3.053 3 CaTe x 
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APPENDIX A. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Mephitis mephitis Striped Skunk 3.253 3 InTe 

 Urocyon cinereoargenteus Gray Fox 3.548 4 CaTe 
 Procyon lotor psora Raccoon 3.557 4 OmTe 
 Taxidea taxus Badger 3.857 4 CaTe 
 Lynx rufus Bobcat 3.889 4 CaTe 
 Canis latrans Coyote 4.102 4 CaTe 
 Odocoileus hemionus Mule Deer 4.635 5 HeTe 
 Felis concolor Cougar 4.754 5 CaTe 
 Felis onca  Jaguar 5.061 5 CaTe x 

Ursos arctos Grizzly Bear 5.19 5 OmTe x 
Non-Indigenous Species           
Mus musculus House Mouse 1.205 

 
HeTe 

 Rattus rattus Black Rat 2.328 
 

OmTe 
 Rattus norvegicus  Norway Rat 2.384 

 
OmTe 

 Sciurus niger Fox Squirrel 2.875 
 

OmTe 
 Didelphis virginianus Common Opossum 3.301 

 
OmTe 

 Castor canadensis Beaver 4.297   HeAq   
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APPENDIX B. Mediterranean-climate ecosystem mammals in Chile. Log 10 body mass in grams (g),  
Bayesian CART (BCART) group, functional group, and the species status. 
Latin name Common name Mass(g) BCART Functional Group Endangered 
Marmosa elegans Mouse Opossum 1.481 1 InTe 

 Oryzomys longicaudatus Rice Rat 1.560 1 GrTe 
 Akodon olivaceus Olivaceous Akodon 1.639 1 GrTe 
 Phyllotis darwini Darwin’s Leaf-eared Mouse 1.789 1 HeTe 
 Akodon longipilis Long-haired Akodon 1.796 1 InTe 
 Notiomys megalonyx Mole Mouse 1.830 1 GrTe 
 Chelemys macronyx Field Mole Mouse 1.865 1 GrTe 
 Euneonys mordax Biting Chinchilla Mouse 1.914 1 HeTe 
 Octodon bridgesi Bridges’ Degu 1.966 1 HeTe 
 Spalacopus cyanus Coruro 2.011 1 HeFs 
 Aconaemys fuscus Chilean Rock Rat 2.090 1 HeTe 
 Ctenomys maulinus Maule Tuco-Tuco 2.215 1 HeTe 
 Octodon degus Degu 2.264 1 HeAr 
 Abrocoma bennetti Chinchilla Rat 2.363 1 HeAr 
 Octodon lunatus Moon-toothed Degu 2.367 1 HeTe 
 Lagidium viscacia Mountain Vizcacha 3.188 2 HeTe 
 Galictis guia Grison 3.199 2 CaTe 
 Conepatus chinga Molina’s Hog-nosed Skunk 3.275 2 InTe 
 Felis Guigna Kokod 3.348 2 CaTe 
 Felis Colocolo Pampas Cat 3.470 2 CaAr 
 Myocaster coypus Nutria 3.579 2 HeAq 
 Dusicyon griseus Gray Fox 3.601 2 CaTe 
 Lutra felina Marine Otter 3.653 2 InAq 
 Dusicyon culpaeus Culpeo Fox 3.867 3 CaTe 
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APPENDIX B. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Lutra provocax Southern River Otter 3.880 3 CaAq 

 Pudu puda Pudu 3.989 3 HeTe X 
Felis concolor Mountain Lion 4.549 4 CaTe 

 Hippocamelus bisulcus Patagonian Huemul 4.845 4 HeTe X 
Lama guanicoe Guanaco 5.079 4 HeTe X 
Non-Indigenous Species           
Mus musculus House Mouse 1.230 

 
CaAq 

 Rattus rattus Black Rat 2.328 
 

CaTe 
 Rattus norvegicus Norway Rat 2.384 

 
HeAq 

 Ondatra zibethica Muskrat 3.009 
 

HeAq 
 Mustela vison Mink 3.167 

 
HeTe 

 Oryctolagus cuniculus European Rabbit 3.196 
 

HeTe 
 Lepus capensis Brown Hare 3.301 

 
HeTe 

 Felis catus Feral Cat 3.591 
 

CaTe 
 Castor canadensis North American Beaver 4.297 

 
HeAq 

 Dama dama Fallow Deer 4.686 
 

HeTe 
 Sus scrofa Wild Hog 4.740 

 
OmTe 

 Cervus elaphus Red Deer 5.188   HeTe   
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APPENDIX C. Mediterranean-climate ecosystem mammals in Spain. Log 10 body mass in grams (g),  
Bayesian CART (BCART) group, functional group, and the species status. 
Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Suncus etruscus Pygmy White-toothed Shrew 0.352 1 InTe 

 Sorex minutus Pygmy Shrew 0.477 1 InTe 
 Micromys minutus Harvest Mouse 0.756 1 GrTe 
 Sorex granarius Spanish Shrew 0.796 1 GrTe X 

Crocidura russula Greater White-toothed Shrew 0.806 1 InTe 
 Crocidura suaveolens Lesser White-toothed Shrew 0.825 1 InTe 
 Mus spretus Algerian Mouse 1.090 2 GrTe 
 Neomys fodiens Water Shrew 1.114 2 InAq 
 Neomys anomalus Miller's Water Shrew 1.134 2 InTe 
 Pitymys lusitanicus Lusitanian Pine Vole 1.212 2 HeTe 
 Microtus arvalis Common Vole 1.262 2 HeFs 
 Clethrionomys glareolus Bank Vole 1.288 2 HeTe 
 Apodemus sylvaticus Wood Mouse 1.344 2 InTe 
 Microtis agrestis Field Vole 1.344 2 HeTe 
 Pitymys duodecimcostatus Mediterranean Pine Vole 1.345 2 HeTe 
 Talpa caeca Blind Mole 1.505 3 InFs 
 Microtus nivalis Snow Vole 1.591 3 HeTe 
 Microtus cabrerae Cabrera's vole 1.645 3 HeTe X 

Galemys pyrenaicus Pyrenean Desman 1.760 3 InAq 
 Talpa europaea Common Mole 1.881 3 InFs 
 Talpa romana Roman Mole 1.966 3 InFs 
 Eliomys quercinus Garden Dormouse 1.980 3 HeTe X 

Mustela nivalis Weasel 2.150 4 CaTe 
 Arvicola sapidus Southern Water Vole 2.230 4 HeAq X 
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APPENDIX C. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Myoxis glis Edible Dormouse 2.284 4 HeAr 

 Sciurus vulgaris  Red Squirrel 2.398 4 HeAr X 
Erinaceus europaeus Western Hedgehog 2.805 5 InTe 

 Erinaceus algirus Algerian Hedgehog 2.845 5 InTe 
 Martes foina Beech Marten 3.000 5 CaTe 
 Mustela putorius Western Polecat 3.000 5 CaTe 
 Oryctolagus cuniculus Rabbit 3.196 6 HeTe 
 Lepus capensis Brown Hare 3.310 6 HeTe 
 Lepus granatensis Iberian Hare 3.334 6 HeTe 
 Felis silvestris Wildcat 3.385 6 CaTe 
 Vulpes vulpes Red Fox 3.678 7 CaTe 
 Lutra lutra Otter 3.796 7 CaAq X 

Meles meles Eurasian Badger 3.964 7 InTe 
 Lynx pardinus Pardel Lynx 4.043 7 CaTe X 

Macaca sylvanus Barbary Ape 4.049 7 HeTe 
 Capreolus capreolus Roe Deer 4.079 7 HeTe 
 Castor fiber European Beaver 4.145 7 HeTe 
 Canis lupus Wolf 4.632 8 CaTe 
 Sus scrofa Wild Boar 4.740 8 HeTe 
 Capra pyrenaica Spanish Ibex 4.760 8 HeTe X 

Cervus elaphus Red Deer 5.176 8 HeTe 
 Ursus arctos Brown Bear 5.247 8 HeTe 
 Non-Indigenous Species           

Mus musculus House Mouse 1.283 
 

GrTe 
 Rattus rattus Black Rat 2.092 

 
HeTe 
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APPENDIX C. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Rattus norvegicus Norway Rat 2.455 

 
HeTe 

 Atelerix algirus Algerian Hedgehog 3.097 
 

InTe 
 Genetta genetta Common Genet 3.236 

 
CaTe 

 Herpestes ichneumon Egyptian Mongoose 3.474 
 

CaTe 
 Ammotragus lervia Barbary Sheep 4.926   HeTe   
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APPENDIX D. Mediterranean-climate ecosystem mammals in South Africa. Log 10 body mass in grams (g),  
Bayesian CART (BCART) group, functional group, and the species status. 
Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Mus minutoides Pygmy Mouse 0.767 1 HeTe 

 Suncus varilla Lesser Dwarf Shrew 0.813 1 InTe 
 Dendromus melanotis Grey Climbing Mouse 0.826 1 InTe 
 Crocidura cyanea Reddish-grey Musk Shrew 0.934 1 InTe 
 Dendromus mesomelas Brant's Climbing Mouse 1.053 1 InTe 
 Malacothrix typica Large-eared Mouse 1.127 1 HeTe 
 Myosorex varius Forest Shrew 1.130 1 InTe 
 Acomys subspinosus Cape Spiny Mouse 1.325 2 HeTe 
 Steatomys krebsi Kreb's Fat Mouse 1.380 2 HeTe 
 Graphiurus murinus Woodland Dormouse 1.450 2 InTe 
 Gerbillurus paeba Hairy-footed Gerbil 1.511 2 HeTe 
 Rhabdomys pumilo Striped Mouse 1.559 2 HeTe 
 Macroscelides proboscideus Round-eared Elephant Shrew 1.582 2 InTe 
 Myomyscus verroxii Verreaux's Mouse 1.613 2 InTe 
 Desmmodillus auricularis Short-tailed Gerbil 1.664 2 HeTe 
 Aethomys namequensis Namaqua Rock Mouse 1.688 2 HeTe 
 Chrysochloris asiatica Cape Golden Mole 1.690 2 InFs 
 Amblysomus hottentotus Hottentot Golden Mole 1.832 3 InFs 
 Graphiurus ocularis Spectacled Dormouse 1.838 3 InTe 
 Cryptomys hottentotus Common Molerat 1.897 3 HeFs 
 Mystromys albicaudatus White-tailed Mouse 1.939 3 HeTe X 

Dasymys incomtus Water Rat 1.972 3 HeTe 
 Tatera afra Cape Gerbil 1.987 3 HeTe 
 Otomys saundersiae Saunder's Vlei Rat 2.013 3 HeTe 
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APPENDIX D. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Otomys irroratus Vlei Rat 2.072 3 HeTe 

 Crocidura flavescens Greater Musk Shrew 2.088 3 InTe 
 Otomys unisulcatus Bush Karoo Rat 2.095 3 HeTe 
 Otomys laminatus Laminate Vlei Rat 2.176 3 HeTe 
 Georychus capensis Cape Molerat 2.338 3 HeTe 
 Poecilogale albinucha Striped Weasel 2.338 3 CaTe 
 Bathyergus suillus Cape Dune Molerat 2.796 4 HeFs 
 Ictonyx striatus Striped Polecat 2.866 4 InTe 
 Herpestes pulverulenta Small Grey Mongoose 2.901 4 InTe 
 Cynictis penicillata Yellow Mongoose 2.919 4 InTe 
 Pronolagus rupestris Smith's Red Rock Rabbit 3.210 5 HeTe 
 Genetta tigrina Large-spotted Genet 3.270 5 CaTe 
 Genetta genetta Small-spotted Genet 3.279 5 CaTe 
 Lepus capensis Cape Hare 3.310 5 HeTe 
 Vulpes chama Cape Fox 3.423 5 CaTe 
 Procavia capensis Rock Dassie 3.480 5 HeTe 
 Atilax paludinosus Water Mongoose 3.531 5 CaTe 
 Lepus saxatilis Scrub Hare 3.556 5 HeTe 
 Felis libyca African Wildcat 3.633 5 CaTe 
 Proteles cristatus Aardwolf 3.840 6 InTe 
 Canis mesomelas Black-backed Jackal 3.898 6 CaTe 
 Mellivora capensis Honey Badger 3.899 6 CaTe 
 Oreotragus oreotragus Klipspringer 4.009 6 HeTe X 

Raphicerus melanotis Grysbok 4.011 6 HeTe X 
Felis caracal Caracal 4.029 6 CaTe 
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APPENDIX D. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Felis serval Serval 4.047 6 CaTe 

 Raphicerus campestris Steenbok 4.053 6 HeTe 
 Aonyx capensis Clawless Otter 4.061 6 CaAq 
 Hystrix africaeaustralis Porcupine 4.097 6 HeTe 
 Sylvicapra grimmia Grey Duiker 4.207 6 HeTe 
 Pelea capreolus Grey Ribbok 4.352 6 HeTe 
 Papio ursinus Chacma Baboon 4.365 6 HeTe 
 Panthera pardus Leopard 4.416 6 CaTe 
 Hyaena brunnea Brown Hyaena 4.583 6 CaTe X 

Orycteropus afer Aardvark 4.719 6 InTe 
 Damaliscus dorcas dorcas Bontebuck 4.826 6 HeTe X 

Alcelaphus buselaphus Hartebeest 5.134 7 HeTe X 
Panthera leo Lion 5.193 7 CaTe X 
Hippotragus leucophaeus Bluebuck 5.204 7 HeTe X 
Equus zebra Cape Mountain Zebra 5.388 7 HeTe X 
Tragelaphus oryx Eland 5.587 7 HeTe X 
Diceros bicornis Black Rhinoceros 5.939 7 HeTe X 
Non-Indigenous Species           
Mus musculus House Mouse 1.205 

 
HeTe 

 Rattus rattus Black Rat 2.045 
 

OmTe 
 Rattus norvegicus Norway Rat 2.455 

 
OmTe 

 Sciurus carolinensis Grey Squirrel 2.763 
 

GrAr 
 Felis catus Domestic Cat 3.533 

 
CaTe 

 Hemitragus jemlahicus Himalayan Tahr 4.167 
 

HeTe 
 Cervus dama Fallow Deer 4.686 

 
HeTe 
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APPENDIX D. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Sus scrofa Feral Pig 4.740   OmTe   
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APPENDIX E. Mediterranean-climate ecosystem mammals in southwestern Australia. Log 10 body mass in  
grams (g), Bayesian CART (BCART) group, functional group, and the species status. 
Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Tarsipes rostratus Honey Possum 0.954 1 HeAr 

 Cercartetus concinnus Western Pygmy-possum 1.114 1 InAr 
 Sminthopsis dolichura Little Long-tailed Dunnart 1.134 1 InTe 
 Sminthopsis crassicaudata Fat-tailed Dunnart 1.176 1 InTe 
 Sminthopsis griseoventer Grey-bellied Dunnart 1.243 1 InTe X 

Sminthopsis gilberti Gilbert's Dunnart 1.290 1 InTe 
 Sminthopsis granulipes White-tailed Dunnart 1.398 1 InTe 
 Pseudomys albocinereus Ash-grey Mouse 1.484 1 HeTe 
 Pseudomys occidentalis Western Mouse 1.531 1 HeTe X 

Pseudomys nanus Western Chestnut Mouse 1.531 1 HeTe X 
Notomys alexis Spinifex Hopping Mouse 1.544 1 GrTe 

 Pseudomys fieldi Shark Bay Mouse 1.653 1 HeTe X 
Antichinus flavipes Yellow-footed Antechinus 1.653 1 InTe 

 Phascogale calura Red-tailed Phascogale 1.712 1 InAr X 
Notomys mitchelli Mitchell's Hopping Mouse 1.716 1 GrTe 

 Notomys macrotis Big-eared Hopping Mouse 1.720 1 GrTe X 
Parantechinus apicalis Southern Dibbler 1.837 1 InTe X 
Pseudomys shortridgei Heath Rat 1.845 1 HeTe 

 Notomys longicaudatus Long-tailed Hopping Mouse 2.000 2 GrTe X 
Rattus tunneyi Pale Field-Rat 2.093 2 HeTe X 
Rattus fuscipes Bush Rat 2.122 2 InTe 

 Phascogale tapoatafa Brush-tailed Phascogale 2.287 2 InAr X 
Perameles bougainville Western Barred Bandicoot 2.354 2 HeTe X 
Myrmecobius fasciatus Numbat 2.673 3 InTe X 
 
 
 

     



 
 

   

235 
APPENDIX E. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Hydromys chrysogaster Water Rat 2.833 3 InAq 

 Potorous platyops Broad-faced Potoroo 2.845 3 HeTe X 
Isoodon obesulus Southern Brown Bandicoot 2.889 3 InTe 

 Pseudocheirus occidentalis Western ringtail Possum 3.000 3 HeAr X 
Dasyurus geoffroii Western Quoll 3.041 3 CaTe X 
Potorus tridactylus Long-nosed Potoroo 3.041 3 HeTe X 
Lagorchestes hirsutus Rufous Hare-wallaby 3.102 3 HeTe X 
Bettongia penicillata Brush-tailed Bettong 3.114 3 HeTe X 
Bettongia leseur Burrowing Betong 3.176 3 HeTe X 
Lagostrophus fasciatus Banded Hare-wallaby 3.230 3 HeTe X 
Trichosurus vulpecula Common Brushtail Possum 3.419 4 HeAr 

 Setonix brachyurus Quokka 3.512 4 HeTe X 
Onychogalea lunata Crescent Nailtail Wallaby 3.544 4 HeTe X 
Petrogale lateralis Black-footed Rock-wallaby 3.602 4 HeTe X 
Tachyglossus aculeatus Short-beaked Echidna 3.653 4 InTe 

 Macropus eugenii Tammar Wallaby 3.813 4 HeTe X 
Macropus irma Western Brush Wallaby 3.903 4 HeTe X 
Canis lupus Dingo 4.225 5 CaTe X 
Macropus robustus Common Wallaroo 4.327 5 HeTe 

 Macropus fuliginosus Western Grey Kangaroo 4.345 5 HeTe 
 Non-Indigenous Species           

Mus musculus House Mouse 1.217 
 

HeTe 
 Rattus rattus Black Rat 2.447 

 
OmTe 

 Rattus norvegicus Brown Rat 2.505 
 

OmTe 
 Oryctolagus cuniculus European Rabbit 3.199 

 
HeTe 

  
 

     



 
 

   

236 
APPENDIX E. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Felis catus Cat 3.626 

 
CaTe 

 Vulpes vulpes Red Fox 3.775 
 

CaTe 
 Capra hircus Goat 4.525 

 
HeTe 

 Sus scrofa Feral Hog 4.936   OmTe   
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APPENDIX F. Mediterranean-climate ecosystem birds in California. Log 10 body mass in grams (g), Bayesian CART 
(BCART) group, functional group, and the species status. 

Latin Name Common Name 
Mass 
(g) BCART Functional Group Endangered 

Calypte costae Costa's Hummingbird 0.491 1 HeAe 
 Cynanthus latirostris Broad-billed Hummingbird 0.491 1 HeAe 
 Archilochus alexandri Black-chinned Hummingbird 0.531 1 HeAe 
 Calypte anna Anna's Hummingbird 0.623 1 HeAe 
 Polioptila melanura Black-tailed Gnatcatcher 0.708 1 InFo 
 Psaltriparius minimus Bushtit 0.724 1 InFo 
 Polioptila caerulea  Blue-gray Gnatcatcher 0.778 1 InFo 
 Wilsonia pusilla Wilson's Warbler 0.839 1 InFo 
 Dendroica nigrescens Black-throated Gray Warbler 0.922 2 InFo 
 Vireo bellii pusillus Least Bell's Vireo 0.929 2 InFo x 

Vermivora celata Orange-crowned Warbler 0.954 2 InFo 
 Dendroica petechia Yellow Warbler 0.978 2 GrFo x 

Carduelis psaltria Lesser Goldfinch 0.978 2 InFo 
 Thryomanes bewickii Bewick's Wren 0.996 2 InTe 
 Empidonax difficilis Pacific-slope Flycatcher 1.000 2 InAe 
 Geothlypis trichas Common Yellowthroat 1.004 2 InFo 
 Poecile gambeli  Mountain Chickadee 1.033 2 InFo 
 Troglodytes aedon House Wren 1.037 2 InTe 
 Carduelis lawrencei Lawrence's Goldfinch 1.039 2 GrFo 
 Cistothorus palustris Marsh Wren 1.051 2 InTe 
 Vireo huttoni huttoni Hutton's Vireo 1.064 2 InFo 
 Spizella atrogularis cana Black-chinned Sparrow 1.076 2 InTe 
 Spizella passerina Chipping Sparrow 1.090 2 InTe 
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APPENDIX F. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Catherpes mexicanus Canyon Wren 1.100 2 InTe 

 Contopus sordidulus  Western Wood-Pewee 1.107 2 InAe 
 Vireo vicinior Gray Vireo 1.107 2 InFo x 

Carduelis tristis  American Goldfinch 1.111 2 GrFo 
 Empidonax traillii Willow Flycatcher 1.127 2 InAe x 

Tachycineta thalassina Violet-green Swallow 1.151 2 InAe 
 Chamaea fasciata Wrentit 1.166 2 InFo 
 Vireo gilvus Warbling Vireo 1.170 2 InFo 
 Stelgidopteryx serripennis Northern Rough-winged Swallow 1.182 2 InAe 
 Passerina amoena Lazuli Bunting 1.190 2 InTe 
 Ammodramus savannarum Grasshopper Sparrow 1.230 3 InTe x 

Baeolophus inornatus Oak Titmouse 1.243 3 InAe 
 Sayornis nigricans  Black Phoebe 1.271 3 InAe 
 Aimophila ruficeps Rufous-crowned Sparrow 1.272 3 InTe 
 Amphispiza belli Sage Sparrow 1.286 3 InTe 
 Melospiza melodia Song Sparrow 1.291 3 InTe 
 Sitta carolinensis  White-breasted Nuthatch 1.324 3 InBa 
 Sayornis saya Say's Phoebe 1.326 3 InAe 
 Carpodacus mexicanus  House Finch 1.330 3 GrTe 
 Petrochelidon pyrrhonota  Cliff Swallow 1.334 3 InAe 
 Phainopepla nitens  Phainopepla 1.380 4 HeFo 
 Icterus cucullatus Hooded Oriole 1.386 4 InFo 
 Carpodacus purpureus Purple Finch 1.396 4 GrTe 
 Icteria virens auricollis Yellow-breasted Chat 1.403 4 InFo 
 Picoides pubescens Downy Woodpecker 1.431 4 InBa 
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APPENDIX F. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Myiarchus cinerascens Ash-throated Flycatcher 1.435 4 InAe 

 Sialia mexicana Western Bluebird 1.448 4 InAe 
 Passerina caerulea  Blue Grosbeak 1.453 4 InTe 
 Chondestes grammacus Lark Sparrow 1.462 4 GrTe 
 Pipilo chlorurus Green-tailed Towhee 1.468 4 InTe 
 Catharus ustulatus Swainson's Thrush 1.489 4 InFo 
 Eremophila alpestris Horned Lark 1.496 4 GrTe x 

Aeronautes saxatalis White-throated Swift 1.507 4 InAe 
 Passerella iliaca Fox Sparrow 1.509 4 InTe 
 Icterus bullockii Bullock's Oriole 1.526 4 InFo 
 Picoides nuttallii Nutall's Woodpecker 1.583 5 InBa 
 Campylorhynchus brunneicapillus  Cactus Wren 1.590 5 InTe 
 Tyrannus verticalis Western Kingbird 1.598 5 InAe 
 Pheucticus melanocephalus Black-headed Grosbeak 1.623 5 InFo 
 Molothrus ater Brown-headed Cowbird 1.642 5 InTe 
 Tyrannus vociferans  Cassin's Kingbird 1.659 5 InAe 
 Lanius ludovicianus  Loggerhead Shrike 1.676 5 InAe 
 Mimus polyglottos Northern Mockingbird 1.686 5 InTe 
 Progne subis subis Purple Martin 1.694 5 InAe 
 Chordeiles acutipennis  Lesser Nighthawk 1.698 5 InAe 
 Phalaenoptilus nuttallii Common Poorwill 1.713 5 InAe 
 Agelaius phoeniceus Red-winged Blackbird 1.721 5 InTe 
 Agelaius tricolor Tricolored Blackbird 1.769 6 InTe x 

Euphagus cyanocephalus Brewer's Blackbird 1.797 6 InTe 
 Coccyzus americanus Yellow-billed Cuckoo 1.806 6 InFo x 
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APPENDIX F. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Xanthocephalus xanthocephalus Yellow-headed Blackbird 1.810 6 InTe x 
Porzana carolina Sora 1.873 7 GrTe x 
Aphelocoma californica Western Scrub-Jay 1.904 7 OmTe 

 Melanerpes formicivorus Acorn Woodpecker 1.906 7 OmBa 
 Rallus limicola limicola Virginia Rail 1.914 7 InAq 
 Toxostoma redivivum California Thrasher 1.926 7 InTe 
 Ixobrychus exilis hesperis Least Bittern 1.936 7 CaAq 
 Charadrius vociferus Killdeer 1.985 7 InTe 
 Sturnella neglecta Western Meadowlark 2.003 7 InTe 
 Falco sparverius American Kestrel 2.063 7 InAe 
 Zenaida macroura  Mourning Dove 2.076 7 GrTe 
 Colaptes auratus Northern Flicker 2.102 7 InTe 
 Cyanocitta stelleri  Steller's Jay 2.107 7 OmTe 
 Megascops kennicottii  Western Screech Owl 2.155 7 CaAe 
 Athene cunicularia Burrowing Owl 2.190 7 InAe x 

Callipepla gambelii  Gambel's Quail 2.220 7 GrTe 
 Callipepla californica  California Quail 2.238 7 GrTe 
 Butorides virescens anthonyi Green Heron 2.326 7 CaAq 
 Oreortyx pictus Mountain Quail 2.367 7 GrTe 
 Asio otus wilsonianus Long-eared Owl 2.418 7 CaAe x 

Elanus leucurus White-tailed Kite 2.522 8 CaAe x 
Geoccyx californianus Greater Roadrunner 2.575 8 InTe 

 Patagioenas fasciata  Band-tailed Pigeon 2.593 8 HeFo 
 Circus cyaneus hudsonius Northern Harrier 2.639 8 CaAe 
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APPENDIX F. Continued. 
Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Accipiter cooperii Cooper's Hawk 2.642 8 CaAe 

 Corvus brachyrhynchos American Crow 2.651 8 OmTe 
 Tyto alba pratincola Barn Owl 2.719 8 CaAe 
 Buteo lineatus Red-shouldered Hawk 2.747 8 CaAe 
 Strix occidentalis  Spotted Owl 2.785 8 CaAe x 

Falco mexicanus Prairie Falcon 2.850 8 CaAe 
 Dendrocygna bicolor Fulvous Whistling-duck 2.851 8 HeAq x 

Falco peregrinus Peregrine Falcon 2.893 8 CaAe x 
Nycticorax nycticorax  Black-crowned Night Heron 2.946 8 CaAq 

 Buteo swainsoni Swainson's Hawk 2.995 8 CaAe x 
Buteo jamaicensis Red-tailed Hawk 3.052 8 CaAe 

 Corvus corax clarionensis Common Raven 3.079 8 OmTe 
 Bubo virginianus Great Horned Owl 3.117 8 CaAe 
 Cathartes aura Turkey Vulture 3.166 8 CaAe 
 Aquila chrysaetos Golden Eagle 3.623 9 CaAe 
 Gymnogyps californicus California Condor 4.004 9 CaAe x 

Non-Indigenous Species           
Lonchura punctulata Nutmeg Mannikin 1.146 

 
GrTe 

 Passer domesticus House Sparrow 1.442 
 

GrTe 
 Cardinalis cardinalis Northern Cardinal 1.650 

 
GrTe 

 Sturnus vulgaris European Starling  1.915 
 

InTe 
 Streptopelia decaocto Eurasian Collared-Dove 2.173 

 
GrTe 

 Aratinga erythrogenys Red-masked Conure  2.243 
 

HeFo 
 Aratinga acuticaudata Blue-crowned Parakeet 2.279 

 
HeFo 

 Calocitta colliei Black-throated Magpie-Jay 2.377 
 

OmFo 
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APPENDIX F. Continued. 
Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Amazona viridigenalis Red-crowned Parrot  2.468 

 
GrFo 

 Bubulcus ibis Cattle Egret 2.529 
 

InTe 
 Columba livia Rock Dove 2.550 

 
GrTe 

 Phasianus colchicus Ring-necked Pheasant 3.055 
 

HeTe 
 Aix galericulata Mandarin Duck 3.233 

 
OmAq 

 Meleagris gallopavo Wild Turkey 3.764   OmTe   
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APPENDIX G. Mediterranean-climate ecosystem birds in Chile. Log 10 body mass in grams (g), Bayesian CART  
(BCART) group, functional group, and the species status. 

Latin Name Common Name 
Mass 
(g) BCART Functional Group Endangered 

Sephanoides sephanoides Green-backed Firecrown 0.716 1 NeAe 
 Anairetes parulus Tufted Tit-Tyrant 0.771 1 InFo 
 Tachuris rubrigastra Many-colored Rush-Tyrant 0.857 1 InFo 
 Pseudocolopteryx flaviventris Warbling Doradito 0.875 1 InFo 
 Cistothorus platensis Sedge Wren 0.954 1 InFo 
 Leptasthenura aegithaloides Plain-mantled Tit-Spinetail 0.954 1 InFo 
 Pygochelidon cyanoleuca Blue-and-white Swallow 1.000 1 InAe 
 Troglodytes aedon House Wren 1.017 1 InFo 
 Sylviorthorhynchus desmursii Des Murs's Wiretail 1.037 1 InTe 
 Scytalopus magellanicus Magellanic Tapaculo 1.085 1 InTe 
 Aphrastura spinicauda Thorn-tailed Rayadito 1.086 1 InBa 
 Lessonia rufa Austral Negrito 1.130 2 InTe 
 Phleocryptes melanops Wren-like Rushird 1.152 2 InFo 
 Elaenia albiceps White-Crested Elaenia 1.201 2 InAe 
 Sicalis luteola Puna Yellow-Finch 1.204 2 GrTe 
 Carduelis barbata Black-chinned Siskin 1.220 2 GrTe 
 Phrygilus alaudinus Band-tailed Sierra-Finch 1.255 2 GrTe 
 Tachycineta meyeni Chilean Swallow 1.265 2 InAe 
 Anthus correndera Correndera Pipit 1.299 2 InTe 
 Asthenes pyrrholeuca Lesser Canastero 1.299 2 InFo 
 Patagona gigas Giant Hummingbird 1.305 2 NeAe 
 Phrygilus gayi Gray-hooded Sierra-Finch 1.312 2 GrTe 
 Zonotrichia capensis Rufous-collared Sparrow 1.312 2 GrTe 
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APPENDIX G. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Asthenes humicola Dusky-tailed Canastero 1.313 2 InFo 

 Pygarrhichas albogularis White-throated Treerunner 1.325 2 InBa 
 Hymenops perspicillata Spectacled Tyrant 1.380 2 InAe 
 Agelasticus thilius Yellow-winged Blackbird 1.477 3 InFo 
 Geositta cunicularia Common Miner 1.477 3 InTe 
 Diuca diuca Common Diuca-Finch 1.491 3 GrTe 
 Cinclodes fuscus Bar-winged Cinclodes 1.502 3 InTe 
 Laterallus jamaicensis Black Rail 1.530 3 InAq X 

Thraupis bonariensis Blue-and-yellow Tanager 1.556 3 HeAe 
 Phrygilus fructiceti Mourning Sierra-Finch 1.589 3 GrTe 
 Picoides lignarius Striped Woodpecker 1.592 3 InBa 
 Chilia melanura Crag Chilia 1.602 3 InTe 
 Phytotoma rara Rufous-tailed Plantcutter 1.602 3 HeFo 
 Charadrius alexandrinus Snowy Plover 1.617 3 InTe 
 Caprimulgus longirostris Band-winged Nightjar 1.635 3 InAe 
 Eugralla paradoxa Ochre-flanked Tapaculo 1.643 3 InTe 
 Thinocorus rumicivorus Least Seedsnipe 1.643 3 GrTe 
 Pyrope pyrope Fire-eyed Diucon 1.685 3 InAe 
 Upucerthia dumetaria Scale-throated Earthcreeper 1.693 3 InTe 
 Columbina picui Picui Ground-Dove 1.699 3 GrTe 
 Scelorchilus albicollis White-throated Tapaculo 1.705 3 InTe 
 Cinclodes patagonicus Dark-bellied Cinclodes 1.713 3 InTe 
 Charadrius falklandicus Two-banded Plover 1.813 4 InTe 
 Mimus thenca Chilean Mockingbird 1.820 4 InAe 
 Cinclodes nigrofumosus Chilean Seaside Cinclodes 1.824 4 InTe 
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APPENDIX G. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Nycticryphes semicollaris South American Painted Snipe 1.839 4 InTe 

 Glaucidium nanum Austral Pygmy-Owl 1.858 4 CaAe 
 Scelorchilus rubecula Chucao Tapaculo 1.881 4 InTe 
 Ixobrychus involucris Stripe-backed Bittern 1.948 4 PiAq 
 Curaeus curaeus Austral Blackbird 1.954 4 InTe 
 Turdus falcklandii Austral Thrush 1.975 4 InTe 
 Agriornis livida Great Shrike-Tyrant 1.997 4 InTe 
 Colaptes pitius Chilean Flicker 2.000 4 InTe 
 Sturnella loyca Long-tailed Meadowlark 2.053 5 InTe 
 Zenaida auriculata Eared Dove 2.057 5 GrTe 
 Falco sparverius American Kestrel 2.063 5 CaAe 
 Pteroptochos megapodius Moustached Turca 2.076 5 InTe 
 Gallinago gallinago Common Snipe 2.086 5 InAq 
 Metriopelia melanoptera Black-winged Ground Dove 2.097 5 GrTe 
 Oreopholus ruficollis Tawny-throated Dotterel 2.124 5 InAq 
 Porphyriops melanops Spot-flanked Gallinule 2.130 5 HeAq 
 Pteroptochos castaneus Chestnut-throated Huet-Huet 2.149 5 InTe 
 Sterna trudeaui Snowy-crowned Tern 2.185 5 PiAe 
 Athene cunicularia Burrowing Owl 2.189 5 CaAe 
 Himantopus mexicanus Black-necked Stilt 2.220 5 InAq 
 Sterna hirundinacea South American Tern 2.265 5 PiAe 
 Pardirallus sanguinolentus Plumbeous Rail 2.294 5 InAq 
 Columba araucana Chilean Pigeon 2.301 5 HeTe 
 Enicognathus ferrugineus Austral Parakeet 2.301 5 HeFo 
 Rollandia rolland White-tufted Grebe 2.395 6 InAq 
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APPENDIX G. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Cyanoliseus patagonus Burrowing Parrot 2.436 6 HeFo 

 Enicognathus leptorhynchus Slender-billed Parakeet 2.458 6 GrFo 
 Milvago chimango Chimango Caracara 2.471 6 CaAe 
 Larus maculipennis Brown-hooded Gull 2.505 6 InTe 
 Vanellus chilensis Southern Lapwing 2.515 6 InTe 
 Merganetta armata Torrent Duck 2.519 6 InAq 
 Elanus leucurus White-tailed Kite 2.522 6 CaAe 
 Falco femoralis Aplomado Falcon 2.523 6 InAe 
 Podiceps occipitalis Silvery Grebe 2.524 6 HeAq 
 Accipiter bicolor Bicolored Hawk 2.532 6 CaAe 
 Asio flammeus Short-eared Owl 2.540 6 CaAe 
 Egretta thula Snowy Egret 2.569 6 PiTe 
 Strix rufipes Rufous-legged Owl 2.582 6 CaAe 
 Anas cyanoptera Cinnamon Teal 2.586 6 HeAq 
 Anas flavirostris Speckled Teal 2.597 6 HeAq 
 Circus cinereus Cinereus Harrier 2.623 6 CaAe 
 Podilymbus podiceps Pied-billed Grebe 2.645 7 PiAq 
 Fulica leucoptera White-winged Coot 2.653 7 OmAq 
 Nothoprocta perdicaria Chilean Tinamou 2.661 7 GrTe 
 Anas platalea Red Shoveler 2.719 7 HeAq 
 Tyto alba Barn Owl 2.719 7 CaAe 
 Heteronetta atricapilla Black-headed Duck 2.726 7 GrAq 
 Oxyura jamaicensis Ruddy Duck 2.736 7 GrAq 
 Oxyura vittata Lake Duck 2.748 7 GrAq 
 Anas georgica Yellow-billed Pintail 2.766 7 InAq 
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APPENDIX G. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Fulica rufifrons Red-fronted Coot 2.791 7 OmAq 

 Plegadis chihi White-faced Ibis 2.793 7 CaAq 
 Haematopus palliatus American Oystercatcher 2.801 7 InAq 
 Fulica armillata Red-gartered Coot 2.824 7 HeAq 
 Falco peregrinus Peregrine Falcon 2.893 8 CaAe 
 Phalcoboenus megalopterus Mountain Caracara 2.900 8 CaAe 
 Anas sibilatrix Chiloe Wigeon 2.918 8 HeAq 
 Parabuteo unicinctus Harris's Hawk 2.926 8 CaAe 
 Buteo polyosoma Red-backed Hawk 2.936 8 CaAe 
 Casmerodius albus Common Egret 2.941 8 PiTe 
 Nycticorax nycticorax Black-crowned Night-Heron 2.946 8 PiAq 
 Polyborus plancus Crested Caracara 2.951 8 CaAe 
 Larus dominicanus Kelp Gull 2.954 8 CaAq 
 Anas specularis Spectacled Duck 2.989 8 OmAq X 

Netta peposaca Rosy-billed Pochard 3.000 8 HeAq 
 Phalacrocorax brasilianus Neotropic Cormorant 3.041 8 PiAq 
 Podiceps major Great Grebe 3.067 8 PiAq 
 Bubo virginianus Great Horned Owl 3.117 8 CaAe 
 Cathartes aura Turkey Vulture 3.166 9 CaAe 
 Theristicus caudatus Buff-necked Ibis 3.190 9 InTe 
 Coragyps atratus Black Vulture 3.318 9 CaAe 
 Geranoaetus melanoleucus Black-chested Buzzard-Eagle 3.353 9 CaAe 
 Cygnus melancoryphus Black-necked Swan 3.672 9 HeAq 
 Non-Indigenous Species           

Passer domesticus House Sparrow 1.442 
 

GrTe 
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APPENDIX G. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Molothrus bonariensis Shiny Cowbird 1.548 

 
InTe 

 Myopsitta monachus Monk Parakeet  2.079 
 

HeFo 
 Callipepla californica California Quail 2.238 

 
GrTe 

 Bubulcus ibis Cattle Egret 2.529 
 

InTe 
 Columba livia Rock Dove 2.550 

 
GrTe 

 Phasianus colchicus Ring-necked Pheasant 3.055 
 

HeTe 
 Cairina moschata Muscovy Duck 3.392   HeAq   
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APPENDIX H. Mediterranean-climate ecosystem birds in Spain. Log 10 body mass in grams (g), Bayesian CART  
(BCART) group, functional group, and the species status. 

Latin Name Common Name Mass (g) BCART Functional Group Endangered 
Aegithalos caudatus Long-tailed Tit 0.895 1 InFo 

 Phylloscopus bonelli Western Bonelli's Warbler 0.913 1 InFo 
 Certhia brachydactyla Short-toed Treecreeper 0.914 1 InBa 
 Cisticola juncidis Zitting Cisticola 0.940 1 InTe 
 Sylvia cantillans Subalpine Warbler 0.964 1 InFo 
 Troglodytes troglodytes Winter Wren 0.973 1 InFo 
 Sylvia undata Dartford Warbler 0.973 1 InTe 
 Parus ater Coal Tit 0.987 1 InFo 
 Sylvia conspicillata Spectacled Warbler 1.004 1 InFo 
 Parus caeurleus Blue Tit 1.029 1 InFo 
 Hippolais pallida Eastern Olivaceous Warbler 1.039 1 InFo X 

Hippolais polyglotta Melodious Warbler 1.041 1 InFo 
 Serinus serinus European Serin 1.077 1 GrTe 
 Parus cristatus Crested Tit 1.099 1 InFo 
 Riparia riparia Bank Swallow 1.119 1 InAe 
 Cettia cetti Cetti's Warbler 1.125 1 InTe 
 Sylvia melanocephala Sardinian Warbler 1.129 1 InTe 
 Delichon urbica Common House-Martin 1.161 1 InAe 
 Saxicola torquata Stonechat 1.185 1 InAe 
 Muscicapa striata Spotted Flycatcher 1.197 1 InAe 
 Hirundo rustica Barn Swallow 1.204 1 InAe 
 Carduelis carduelis European Goldfinch 1.210 1 GrTe 
 Phoenicurus ochruros Black Redstart 1.211 1 InTe 
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APPENDIX H. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Oenanthe hispanica Black-eared Wheatear 1.217 1 InTe X 
Erithacus rubecula European Robin 1.223 1 InTe 

 Motacilla cinerea Grey Wagtail 1.261 1 InTe 
 Motacilla flava Yellow Wagtail 1.268 1 InTe 
 Parus major Great Tit 1.272 1 InFo 
 Carduelis cannabina Eurasian Linnet 1.290 1 GrTe 
 Sylvia atricapilla Blackcap 1.291 1 InFo 
 Luscinia megarhynchos Common Nightingale 1.312 1 InTe 
 Motacilla alba White Wagtail 1.322 1 InTe 
 Sylvia hortensis Western Orphean Warbler 1.324 1 InFo 
 Fringilla coelebs Chaffinch 1.331 1 GrTe   

Calandrella brachydactyla Greater Short-toed Lark 1.347 1 InTe X 
Hirundo daurica Red-rumped Swallow 1.347 1 InAe 

 Ptyonprogne rupestris Eurasian Crag-Martin 1.364 1 InAe 
 Emberiza cia Rock Bunting 1.366 1 GrTe 
 Calandrella rufescens Lesser Short-toed Lark 1.377 1 InTe X 

Cercotrichas galactotes Rufous-tailed Scrub-Robin 1.387 1 InTe X 
Oenanthe oenanthe Northern Wheatear 1.389 1 InTe 

 Emberiza cirlus Cirl Bunting 1.408 1 GrTe 
 Lullula arborea Wood Lark 1.417 1 InTe 
 Carduelis chloris European Greenfinch 1.418 1 GrTe 
 Passer domesticus House Sparrow 1.442 1 GrTe 
 Anthus campestris Tawny Pipit 1.459 1 InTe 
 Acrocephalus arundinaceus Great Reed-Warbler 1.479 1 InFo 
 Lanius senator Woodchat Shrike 1.512 1 InAe X 
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APPENDIX H. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Alcedo atthis Common Kingfisher 1.550 1 CaAe X 
Galerida theklae Thekla Lark 1.566 1 InTe 

 Alauda arvensis Eurasian Skylark 1.585 1 InTe 
 Oenanthe leucura Black Wheatear 1.600 1 InTe X 

Apus apus Common Swift 1.630 1 InAe 
 Galerida cristata Crested Lark 1.650 1 GrTe 
 Milaria calandra Corn Bunting 1.694 1 GrTe 
 Merops apiaster European Bee-eater 1.741 2 InAe 
 Monticola solitarius Blue Rock Thrush 1.756 2 InAe 
 Coccothraustes coccothraustes Hawfinch 1.763 2 GrFo 
 Cinclus cinclus White-throated Dipper 1.778 2 InAq 
 Melanocorypha calandra Calandra Lark 1.783 2 InTe 
 Upupa epops Hoopoe 1.788 2 InTe 
 Larius excubitor Northern Shrike 1.802 2 InAe 
 Turnix sylvatica Small Buttonquail 1.813 2 GrTe X 

Caprimulgus ruficollis Red-necked Nightjar 1.836 2 InAe 
 Oriolus oriolus Eurasian Golden Oriole 1.847 2 InFo 
 Glareola pratincola Collared Pratincole 1.904 3 InAe X 

Dendrocopos major Great Spotted Woodpecker 1.906 3 InBa 
 Caprimulgus europaeus Eurasian Nightjar 1.929 3 InAe 
 Otus scops European Scops-Owl 1.930 3 InAe 
 Sturnus unicolor Spotless Starling 1.938 3 InTe 
 Turdus merula Eurasian Blackbird 1.967 3 InTe 
 Coturnix coturnix Common Quail 2.007 3 GrTe 
 Tachymarptis melba Alpine Swift 2.017 3 InAe 
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APPENDIX H. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Rallus aquaticus Water Rail 2.063 3 InAq 

 Cuculus canorus Common Cuckoo 2.065 3 InFo 
 Turdus viscivorus Mistle Thrush 2.071 3 InTe 
 Tachybaptus ruficollis Little Grebe 2.130 4 InAq 
 Streptopelia turtur Eurasian Turtle-Dove 2.135 4 GrTe X 

Coracias garrulus European Roller 2.167 4 InAe X 
Ixobrychus minutus Little Bittern 2.169 4 CaAq 

 Falco naumanni Lesser Kestrel 2.182 4 InAe X 
Clamator glandarius Great Spotted Cuckoo 2.186 4 InFo 

 Athene noctua Little Owl 2.196 4 CaAe 
 Garrulus glandarius Eurasian Jay 2.214 4 InFo 
 Picus viridis Green Woodpecker 2.244 4 InTe 
 Falco tinnunculus Eurasian Kestrel 2.304 4 CaAe 
 Accipiter nisus Eurasian Sparrowhawk 2.310 4 CaAe 
 Falco subbuteo Eurasian Hobby 2.324 4 CaAe X 

Pterocles alchata Pin-tailed Sandgrouse 2.376 4 GrTe X 
Corvus monedula Eurasian Jackdaw 2.376 4 InTe 

 Asio Otus Long-eared Owl 2.423 4 CaAe 
 Gallinula chloropus Common Moorhen 2.477 4 HeAq 
 Circus pygargus Montagu's Harrier 2.499 4 CaAe X 

Columba livia Rock Pigeon 2.550 4 GrTe 
 Pterocles orientalis Black-bellied Sandgrouse 2.608 4 GrTe X 

Strix aluco Tawny Owl 2.663 4 CaAe 
 Burhinus oedicnemus Eurasian Thick-knee 2.665 4 InAq X 

Alectoris rufa Red-legged Partridge 2.679 4 GrTe 
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APPENDIX H. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Columba palumbus Common Wood-Pigeon 2.689 4 HeTe 

 Corvus corone Carrion Crow 2.691 4 InTe 
 Tyto alba Barn Owl 2.719 4 CaAe 
 Podiceps cristatus Great Crested Grebe 2.889 5 CaAq 
 Falco peregrinus Peregrine Falcon 2.893 5 CaAe 
 Milvus migrans Black Kite 2.918 5 CaAe X 

Hieraaetus pennatus Booted Eagle 2.925 5 CaAe 
 Ardea purpurea Purple Heron 2.941 5 CaAq 
 Buteo buteo Eurasian Buzzard 2.942 5 CaAe 
 Accipiter gentilis Northern Goshawk 2.967 5 CaAe 
 Milvus milvus Red Kite 3.020 5 CaAe X 

Corvus corax Common Raven 3.054 5 CaTe 
 Circaetus gallicus Short-toed Eagle 3.230 6 CaAe 
 Hieraaetus fasciatus Bonelli's Eagle 3.312 6 CaAe X 

Neophron percnopterus Egyptian Vulture 3.320 6 CaAe X 
Bubo bubo Eurasian Eagle-Owl 3.347 6 CaAe 

 Aquila heliaca Imperial Eagle 3.514 6 CaAe X 
Ciconia ciconia White Stork 3.538 6 CaTe 

 Aquila chrysaetos Golden Eagle 3.623 6 CaAe X 
Otis tarda Great Bustard 3.862 6 InTe X 
Gyps fulvus Eurasian Griffon 3.870 6 CaAe 

 Non-Indigenous Species           
Estrilda astrild Common Waxbill  0.875 

 
GrFo 

 Amandava amandava Red Avadavat 0.996 
 

GrTe 
 Passer montanus Tree Sparrow  1.342 

 
GrTe 
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APPENDIX H. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Psittacula krameri Ring-necked Parakeet  2.155 

 
HeFo 

 Streptopelia decaocto Eurasian Collared-Dove 2.173 
 

GrTe 
 Callipepla californica California Quail 2.238 

 
GrTe 

 Oxyura jamaicensis Ruddy Duck 2.736 
 

GrAq 
 Alectoris chukar Chukar 2.762 

 
GrTe 

 Anas platyrhynchos Mallard 3.032 
 

OmAq 
 Phasianus colchicus Pheasant 3.051   HeTe   
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APPENDIX I. Mediterranean-climate ecosystem birds in South Africa. Log 10 body mass in grams (g), Bayesian  
CART (BCART) group, functional group, and the species status. 

Latin Name Common Name Mass (g) BCART Functional Group Endangered 
Estrilda astrlid Common Waxbill 0.875 1 GrFo 

 Anthoscopus minutus Cape Penduline-Tit 0.875 1 InFo 
 Cinnyris chalybeus Lesser Double-collared Sunbird 0.937 1 NeAe 
 Cisticola fulvicapilla Neddicky 0.954 1 InTe 
 Anthobaphes violacea Orange-breasted Sunbird 0.964 1 NeFo 
 Cryptillas victorini Victorin's Warbler 1.000 1 InTe 
 Prinia maculosa Karoo Prinia 1.000 1 InFo 
 Cisticola subruficapilla Grey-backed Cisticola 1.021 1 InFo 
 Cisticola textrix Cloud Cisticola 1.021 1 InTe 
 Sylvietta rufescens Long-billed Crombec 1.053 1 InFo 
 Apalis thoracica Bar-throated Apalis 1.083 1 InFo 
 Batis capensis Cape Batis 1.107 1 InFo 
 Cisticola tinniens Levaillant's Cisticola 1.111 1 InTe 
 Crithagra totta Cape Siskin 1.117 1 GrTe 
 Riparia paludicola Brown-throated Martin 1.127 1 InAe 
 Zosterops pallidus Orange River White-eye 1.127 1 NeFo 
 Serinus canicollis Cape Canary 1.140 1 GrTe 
 Saxicola torquatus African Stonechat 1.185 2 InAe 
 Parisoma subcaeruleum Chestnut-vented Tit-Babbler 1.193 2 InFo 
 Hirundo rustica Barn Swallow 1.204 2 InAe 
 Euplectes orix Southern Red Bishop 1.211 2 GrTe 
 Crithagra flaviventris Yellow Canary 1.212 2 GrTe 
 Nectarinia famosa Malachite Sunbird 1.233 2 NeFo 
  

 
 

     



 
 

   

256 
APPENDIX I. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Euplectes capensis Yellow Bishop 1.260 2 GrTe 

 Cercomela sinuata Sickle-winged Chat 1.270 2 InAe 
 Hirundo fuligula Rock Martin 1.279 2 InAe 
 Crithagra sulphuratus Brimstone Canary 1.283 2 GrTe 
 Parus afer Grey Tit 1.297 2 InBa 
 Cercotrichas coryphoeus Karoo Scrub-Robin 1.301 2 InTe 
 Calandrella cinerea Red-capped Lark 1.316 2 InTe 
 Motacilla capensis Cape Wagtail 1.318 2 InTe 
 Hirundo albigularis White-throated Swallow 1.328 2 InAe 
 Passer melanurus Cape Sparrow 1.340 2 GrTe 
 Cercomela familiaris Familiar Chat 1.342 2 InTe 
 Crithagra leucopterus Protea Seedeater 1.346 2 GrFo 
 Emberiza capensis Cape Bunting 1.350 2 GrTe 
 Sigelus silens Fiscal Flycatcher 1.408 3 InAe 
 Crithagra albogularis White-throated Canary 1.413 3 GrTe 
 Anthus leucophrys Plain-backed Pipit 1.431 3 InTe 
 Hirundo cucullata Greater Striped Swallow 1.431 3 InAe 
 Cossypha caffra Cape Robin-Chat 1.455 3 InTe 
 Mirafra apiata Cape Clapper Lark 1.487 3 InTe 
 Calendulauda albescens Karoo Lark 1.487 3 InTe 
 Sphenoeacus afer Cape Grassbird 1.497 3 InTe 
 Tricholaema leucomelas Acacia Pied Barbet 1.508 3 HeFo 
 Certhilauda curvirostris Cape Long-billed Lark 1.582 4 InTe 
 Pycnonotus capensis Cape Bulbul 1.597 4 HeFo 
 Promerops cafer Cape Sugarbird 1.606 4 NeFo 
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APPENDIX I. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Oena capensis Namaqua Dove 1.608 4 GrTe 

 Colius colius White-backed Mousebird 1.617 4 HeFo 
 Lanius collaris Common Fiscal 1.618 4 InTe 
 Ploceus capensis Cape Weaver 1.627 4 InTe 
 Apus barbatus African Black Swift 1.631 4 InAe 
 Galerida magnirostris Large-billed Lark 1.643 4 GrTe 
 Caprimulgus pectoralis Fiery-necked Nightjar 1.674 4 InAe 
 Macronyx capensis Cape Longclaw 1.677 4 InTe 
 Laniarius ferrugineus Southern Boubou 1.688 4 InTe 
 Colius striatus Speckled Mousebird 1.708 4 HeFo 
 Urocolius indicus Red-faced Mousebird 1.751 4 HeFo 
 Chaetops frenatus Cape Rockjumper 1.756 4 InTe 
 Monticola rupestris Cape Rock-Thrush 1.778 4 InTe 
 Upupa africana African Hoopoe 1.788 4 InTe 
 Telophorus zeylonus Bokmakierie 1.797 4 InTe 
 Creatophora cinerea Wattled Starling 1.826 4 InTe 
 Turdus olivaceus Olive Thrush 1.868 4 InTe 
 Tachymarptis melba Alpine Swift 1.881 4 InAe 
 Streptopelia senegalensis Laughing Dove 2.004 5 GrTe 
 Spreo bicolor Pied Starling 2.021 5 InTe 
 Geocolaptes olivaceus Ground Woodpecker 2.079 5 InTe 
 Onychognathus morio Red-winged Starling 2.124 5 InTe 
 Streptopelia capicola Cape Turtle-Dove 2.152 5 GrTe 
 Vanellus coronatus Crowned Lapwing 2.223 5 InTe 
 Falco rupicolus Rock Kestrel 2.304 5 CaAe 
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APPENDIX I. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Elanus caeruleus Black-shouldered Kite 2.522 6 CaAe 

 Bubulcus ibis Cattle Egret 2.529 6 InTe 
 Columba guinea Speckled Pigeon 2.547 6 GrTe 
 Scleroptila africanus Grey-winged Francolin 2.592 6 HeTe 
 Burhinus capensis Spotted Thick-knee 2.626 6 InTe 
 Circus ranivorus African Marsh-Harrier 2.705 6 CaAe x 

Corvus albus Pied Crow 2.723 6 HeTe 
 Pternistis capensis Cape Spurfowl 2.814 6 HeTe 
 Afrotis afra Southern Black Korhaan 2.840 6 InTe 
 Corvus capensis Cape Crow 2.843 6 InTe 
 Buteo vulpinus Steppe Buzzard 2.942 6 CaAe 
 Corvus albicollis White-necked Raven 2.954 6 InTe 
 Ardea melanocephala Black-headed Heron 3.025 6 InTe 
 Buteo rufofuscus Jackal Buzzard 3.066 6 CaAe 
 Numida meleagris Helmeted Guinea-fowl 3.114 6 GrTe 
 Sagittarius serpentarius Secretarybird 3.557 7 InTe x 

Aquila verreauxi Verreaux's Eagle 3.613 7 CaAe 
 Neotis denhami Denham's Bustard 3.615 7 InTe x 

Non-Indigenous Species           
Delichon urbicum Common House Martin 1.161 

 
InAe 

 Fringilla coelebs Chaffinch 1.330 
 

GrTe 
 Passer domesticus House Sparrow 1.442 

 
GrTe 

 Apus horus Horus Swift 1.447 
 

InAe 
 Sturnus vulgaris European Starling 1.915 

 
InTe 

 Cuculus clamosus Black Cuckoo 1.929 
 

InFo 
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APPENDIX I. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Streptopelia decaocto Eurasian Collared-Dove 2.173 

 
GrTe 

 Corvus splendens House Crow  2.477 
 

OmTe 
 Columba livia Rock Dove 2.550 

 
GrTe 

 Anas platyrhynchos Mallard  3.032   OmAq   
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APPENDIX J. Mediterranean-climate ecosystem birds in southwestern Australia. Log 10 body mass in grams (g),  
Bayesian CART (BCART) group, functional group, and the species status. 

Latin Name Common Name 
Mass 
(g) BCART Functional Group Endangered 

Smicrornis brevirostris Weebill 0.708 1 GrFo 
 Gerygone fusca Western Gerygone 0.783 1 InFo 
 Malurus leucopterus White-winged Fairywren 0.785 1 InFo 
 Acanthiza inornata Western Thornbill 0.845 2 InTe 
 Poephila guttata Zebra Finch 0.845 2 GrTe 
 Acanthiza uropygialis Chestnut-rumped Thornbill 0.874 2 InFo 
 Stipiturus malachurus Southern Emuwren 0.879 2 InTe x 

Acanthiza apicalis Inland Thornbill 0.881 2 InFo 
 Certhionyx niger Black Honeyeater 0.892 2 NeFo 
 Dicaeum hirundinaceum Mistletoebird 0.903 2 HeTe 
 Malurus lamberti Variegated Fairywren 0.903 2 InFo x 

Petroica goodenovii Red-capped Robin 0.903 2 InAe 
 Rhipidura fuliginosa Grey Fantail 0.903 2 InAe 
 Acanthiza chrysorrhoa Yellow-rumped Thornbill 0.944 2 InFo 
 Pardalotus xanthopygus Yellow-rumped Pardalope 0.944 2 InFo 
 Pardalotus punctatus Spotted Pardalote 0.964 2 InFo 
 Malurus pulcherrimus Blue-breasted Fairywren 0.978 2 InFo 
 Petroica multicolor Scarlet Robin 0.982 2 InTe 
 Malurus elegans Red-winged Fairywren 1.000 2 InFo 
 Malurus splendens Splendid Fairywren 1.000 2 InFo 
 Ephthianura tricolor Crimson Chat 1.024 2 InTe 
 Acanthorhynchus superciliosus Western Spinebill 1.033 2 NeFo 
 Sericornis brunneus Redthroat 1.052 2 InTe 
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APPENDIX J. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Cecropis ariel Fairy Martin 1.053 2 InAe 

 Emblema oculata Red-eared Firetail 1.070 2 GrFo 
 Daphoenositta chrysoptera Varied Sittella 1.076 2 InBa 
 Ephthianura albifrons White-fronted Chat 1.079 2 InTe 
 Pardalotus striatus Striated Pardalote 1.086 2 InFo 
 Aphelocephala leucopsis Southern Whiteface 1.101 2 InTe 
 Sericornis frontalis White-browed Scrubwren 1.107 2 InTe 
 Lichmera indistincta Brown Honeyeater 1.114 2 NeFo 
 Sericornis cautus Shy Hylacola 1.153 3 InTe 
 Melithreptus brevirostris Brown-headed Honeyeater 1.164 3 NeFo 
 Hirundo neoxena Welcome Swallow 1.167 3 InAe 
 Melithreptus lunatus White-naped Honeyeater 1.167 3 NeFo 
 Cheramoeca leucosternum White-backed Swallow 1.170 3 InAe 
 Cecropis nigricans Tree Martin 1.175 3 InAe 
 Microeca fascinans Jacky Winter 1.196 3 InAe 
 Lichenostomus ornatus Yellow-plumed Honeyeater 1.250 4 NeFo 
 Phylidonyris albifrons White-fronted Honeyeater 1.255 4 NeFo 
 Pachycephala rufiventris Rufous Whistler 1.258 4 InTe 
 Phylidonyris nigra White-cheeked Honeyeater 1.262 4 NeFo 
 Phylidonyris melanops Tawny-crowned Honeyeater 1.267 4 NeFo 
 Lichenostomus cratitius Purple-gaped Honeyeater 1.292 4 InFo 
 Lichenostomus penicillatus White-plumed Honeyeater 1.297 4 HeFo 
 Phylidonyris novaehollandiae New Holland Honeyeater 1.301 4 NeFo 
 Sericornis fuliginosus Field Wren 1.319 4 InFo 
 Melanodryas cucullata Hooded Robin 1.326 4 InAe 
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APPENDIX J. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Eopsaltria griseogularis Gray-breasted Robin 1.336 4 InTe 

 Amytornis textilis Thick-billed Grasswren 1.356 4 GrTe x 
Chrysococcyx basalis Horsfield's Bronze Cuckoo 1.358 4 InFo 

 Lichenostomus leucotis White-eared Honeyeater 1.364 4 HeFo 
 Myiagra inquieta Restless Flycatcher 1.380 4 InAe 
 Anthus novaeseelandiae Australasian Pipit 1.384 4 InTe 
 Lichenostomus virescens Singing Honeyeater 1.391 4 NeFo 
 Chrysococcyx lucidus Shining Bronze-Cuckoo 1.394 4 InFo 
 Cinclorhamphus mathewsi Rufous Songlark 1.398 4 GrTe 
 Certhionyx variegatus Pied Honeyeater 1.414 4 NeFo 
 Lalage tricolor White-winged Triller 1.415 4 InTe 
 Rhipidura leucophrys Willie-wagtail 1.442 4 InAe 
 Cinclorhamphus cruralis Brown Songlark 1.447 4 InTe 
 Falcunculus frontatus Crested Shrike-tit 1.456 4 InBa x 

Chrysococcyx osculans Black-eared Cuckoo 1.458 4 InFo 
 Merops ornatus Rainbow Bee-eater 1.459 4 InAe 
 Melopsittacus undulatus Budgerigar 1.462 4 GrTe 
 Pachycephala inornata Gilbert's Whistler 1.515 5 InTe 
 Pachycephala pectoralis Golden Whistler 1.515 5 InTe 
 Climacteris rufa Rufous Treecreeper 1.526 5 InBa 
 Artamus cinereus Black-faced Woodswalllow 1.544 5 InAe 
 Pomatostomus superciliosus White-browed Babbler 1.544 5 InTe x 

Artamus personatus Masked Woodswallow 1.549 5 InAe 
 Geopelia cuneata Diamond Dove 1.550 5 GrTe 
 Drymodes brunneopygia Southern Scrub Robin 1.568 5 InTe 
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APPENDIX J. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Artamus cyanopterus Dusky Woodswallow 1.602 5 InAe 

 Turnix velox Little Buttonquail 1.613 5 GrTe 
 Halcyon sancta Sacred Kkingfisher 1.620 5 InTe 
 Neophema elegans Elegant Parrot 1.633 5 GrTe 
 Glossopsitta porphyrocephala Purple-crowned Lorikeet 1.641 5 HeFo 
 Acanthagenys rufogularis Spiny-cheeked Honeyeater 1.643 5 InAe 
 Cuculus pyrrhophanus Fan-tailed Cuckoo 1.679 5 InTe 
 Aegotheles cristatus Australian Owlet-Nightjar 1.699 5 InTe 
 Halcyon pyrrhopygia Red-backed Kingfisher 1.719 5 InTe 
 Psephotus varius Mulga Parrot 1.778 6 GrTe 
 Oreoica gutturalis Crested Bellbird 1.792 6 InTe 
 Platycercus icterotis Western Rosella 1.801 6 GrFo x 

Manorina flavigula Yellow-throated Miner 1.829 6 NeFo 
 Cinclosoma castanotus Chestnut Quail-thrush 1.865 6 GrTe 
 Anthochaera chrysoptera Brush Wattlebird 1.871 6 NeFo 
 Colluricincla harmonica Grey Shrike-thrush 1.879 6 InFo 
 Cuculus pallidus Pallid Cuckoo 1.934 7 HeTe 
 Turnix varia Painted Buttonquail 1.944 7 GrTe 
 Caprimulgus guttatus Large-tailed Nightjar 1.945 7 InAe 
 Grallina cyanoleuca Magpie-lark 1.949 7 InTe 
 Nymphicus hollandicus Cockatiel 1.954 7 GrTe 
 Cracticus torquatus Grey Butcherbird 1.966 7 InFo 
 Peltohyas australis Inland Dotterel 1.966 7 InTe 
 Coracina novaehollandiae Black-faced Cuckoo-shrike 1.970 7 InTe 
 Coturnix australis Brown Quail 1.974 7 GrTe 
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APPENDIX J. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Polytelis anthopeplus Regent Parrot 2.057 8 GrTe 

 Anthochaera carunculata Red Wattlebird 2.097 8 NeFo 
 Purpureicephalus spurius Red-capped Parrot 2.107 8 GrFo 
 Barnardius zonarius Port Lincoln Parrot 2.125 8 NeFo 
 Coracina maxima Ground Cuckoo-shrike 2.126 8 InTe 
 Cracticus nigrogularis Pied Butcherbird 2.193 9 InTe 
 Falco cenchroides Australian Kestrel 2.193 9 InAe 
 Ninox novaeseelandiae Morepork 2.241 9 InAe 
 Accipiter cirrhocephalus Collared Sparrowhawk 2.255 9 CaAe 
 Ocyphaps lophotes Crested Pigeon 2.264 9 GrTe 
 Vanellus tricolor Banded Lapwing 2.265 9 InTe 
 Phaps elegans Brush Bronzewing 2.301 9 GrTe 
 Geophaps lophotes Crested Pigeon  2.316 9 GrTe 
 Strepera versicolor Grey Currawong 2.370 9 OmTe 
 Elanus notatus Black-shouldered Kite 2.398 9 CaAe 
 Falco longipennis Australian Hobby 2.403 9 CaAe 
 Cacatua leadbeateri Pink Cockatoo 2.491 10 HeFo 
 Phaps chalcoptera Common Bronzewing 2.491 10 GrFo 
 Gymnorhina tibicen Australian Magpie 2.497 10 InTe 
 Cacatua roseicapilla Galah 2.505 10 GrTe 
 Podargus strigoides Tawny Frogmouth 2.544 10 InTe 
 Circus assimilis Spotted Harrier 2.623 11 InAe 
 Ninox connivens Barking Owl 2.665 11 CaAe 
 Lophoictinia isura Square-tailed Kite 2.700 11 CaAe 
 Accipiter fasciatus Brown Goshawk 2.708 11 CaAe 
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APPENDIX J. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Tyto alba Barn Owl 2.719 11 CaAe 

 Cacatua sanguinea Little Corella 2.720 11 GrTe 
 Falco berigora Brown Falcon 2.740 11 CaTe 
 Ardea novaehollandiae White-faced Heron 2.742 11 CaAq 
 Tyto novaehollandiae Australian Masked-Owl 2.785 11 CaAe 
 Calyptorhynchus magnificus Red-tailed Black Cockatoo 2.796 11 HeFo 
 Ardea pacifica Pacific Heron 2.813 11 CaAq 
 Corvus coronoides Australian Raven 2.829 11 CaTe 
 Burhinus magnirostris Beach Thick-knee 2.836 11 InTe x 

Cacatua tenuirostris Long-billed Corella 2.869 11 HeTe 
 Falco peregrinus Peregrine Falcon 2.893 11 CaAe 
 Haliastur sphenurus Whistling Kite 2.903 11 CaAe 
 Calyptorhynchus funereus  Yellow-tailed Black-Cockatoo 2.904 11 GrFo 
 Hieraaetus morphnoides Little Eagle 2.924 11 CaAe 
 Chenonetta jubata Maned Duck 2.940 11 HeTe 
 Tadorna tadornoides Australian Shelduck 3.111 12 HeAq 
 Threskiornis spinicollis Straw-necked Ibis 3.255 12 InTe 
 Leipoa ocellata Malleefowl 3.273 12 HeTe x 

Aquila audax Wedge-tailed Eagle 3.544 12 CaAe 
 Ardeotis australis Australian Bustard 3.799 12 InTe x 

Dromaius novaehollandiae Emu 4.494 12 HeTe 
 Non-Indigenous Species           

Neochmia temporalis Red-browed Firetail  1.041 
 

GrTe 
 Taeniopygia guttata  Zebra Finch 1.079 

 
GrTe 

 Streptopelia senegalensis Laughing Turtledove 2.004 
 

GrTe 
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APPENDIX J. Continued. 

Latin Name Common Name Mass(g) BCART Functional Group Endangered 
Coturnix pectoralis Stubble Quail 2.019 

 
GrTe 

 Streptopelia chinensis Spotted Dove  2.199 
 

GrTe 
 Dacelo gigas Laughing Kookaburra 2.520 

 
CaTe 

 Ardeola ibis Cattle Egret 2.529 
 

InTe 
 Columba livia Domestic Pigeon 2.550 

 
GrTe 

 Egretta alba Large Egret 2.924 
 

PiAq 
 Cacatua galerita Sulphur-crested Cockatoo 2.950 

 
GrFo 

 Threskiornis molucca White Ibis 3.255 
 

InAq 
 Cygnus olor Mute Swan 4.031   HeAq   
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APPENDIX K. Body mass of mammals reconstructed in Bridger Zone 1  
faunal assemblage. Bayesian CART groups used to identify each body  
mass aggregation. 
Latin Name Mass(g) CART 
Pontifactor 21 1 
Mysops 40 1 
Uintasorex 40 1 
Entomolestes 49 1 
Centetodon 54 1 
Nyctitherium 73 1 
Apatemys 79 1 
Talpavus 107 1 
Trogolemur 121 1 
Uintanius 158 2 
Gazinius 229 2 
Scenopagus 242 2 
Microparamys 393 2 
Omomys 440 2 
Sciuravus 794 3 
Pauromys 857 3 
Oodectes 858 3 
Leptotomus bridgerensis 1160 3 
Paramys delicatus 1355 3 
Peradectes 1728 3 
Hemiacodon 1862 3 
Pantolestes 2228 3 
Antiacodon 2650 3 
Homacodon 5386 4 
Notharctus 5500 4 
Peratherium 5568 4 
Orohippus 8240 4 
Viverravus 10203 4 
Helohyus 13251 4 
Thisbemys corrugatus 14500 4 
Helaletes 15748 4 
Hyrachyus eximius 127880 5 
Mesonyx 303000 5 
Palaeosyops 418000 5 
Uintatherium 524283 5 
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APPENDIX L. Body mass of mammals reconstructed in Bridger Zone 2 faunal 
assemblage. Bayesian CART groups used to identify each body mass aggregation. 
Latin Name Mass(g) CART 
Entomolestes 49 1 
Apatemys 79 1 
Talpavus 107 1 
Washakius insignis 222 1 
Scenopagus 242 1 
Omomys 440 2 
Sciuravus 794 2 
Pauromys 857 2 
Leptotomus bridgerensis 1160 2 
Paramys delicatus 1355 3 
Peradectes 1728 3 
Hemiacodon 1862 3 
Microsus 2188 3 
Pantolestes 2228 3 
Antiacodon 2650 3 
Pseudotomus 3378 3 
Homacodon 5386 4 
Notharctus 5500 4 
Peratherium 5568 4 
Orohippus 8230 4 
Viverravus 10203 4 
Thisbemys corrugatus 14500 5 
Helaletes 15748 5 
Didelphodus 18446 5 
Patriofelis 21079 5 
Ischyrotomus oweni 32000 5 
Hyrachyus eximius 127880 6 
Uintatherium 524283 6 
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APPENDIX M. Body mass of mammals reconstructed in Bridger Zone 3 faunal 
assemblage. Bayesian CART groups used to identify each body mass aggregation. 
Latin Name Mass(g) CART 
Entomolestes 49 1 
Centetodon 54 1 
Taxymys 60 1 
Nyctitherium 73 1 
Apatemys 79 1 
Uintanius 158 1 
Scenopagus 242 2 
Microparamys 393 2 
Omomys 440 2 
Sciuravus 794 2 
Oodectes 858 2 
Paramys delicatus 1355 3 
Hemiacodon 1862 3 
Smilodectes 2001 3 
Microsus 2188 3 
Pantolestes 2228 3 
Microsyops 2300 3 
Antiacodon 2650 3 
Notharctus 5500 4 
Peratherium 5568 4 
Limnocyon verus 6290 4 
Orohippus 8230 4 
Viverravus 10203 4 
Helohyus 13251 4 
Thisbemys corrugatus 14500 4 
Helaletes 15748 4 
Hyrachyus eximius 127880 5 
Isectolophus 327000 5 
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APPENDIX N. Body mass of mammals reconstructed in Bridger Zone 4 faunal 
assemblage. Bayesian CART groups used to identify each body mass aggregation. 
Latin Name Mass(g) CART 
Nyctitherium 73 1 
Apatemys 79 1 
Scenopagus 242 1 
Omomys 440 1 
Hemiacodon 1862 2 
Pantolestes 2228 2 
Microsyops 2300 2 
Antiacodon 2650 2 
Notharctus 5500 3 
Peratherium 5568 3 
Orohippus 8230 3 
Thinocyon 9072 3 
Viverravus 10203 3 
Helohyus 13251 3 
Thisbemys corrugatus 14500 3 
Helaletes 15748 3 
Hyrachyus eximius 127880 4 
Mesonyx 303000 4 
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APPENDIX O. Body mass of mammals reconstructed in Bridger Zone 5 faunal 
assemblage. Bayesian CART groups used to identify each body mass aggregation. 
Latin Name Mass(g) CART 
Pontifactor 21 1 
Uintasorex 40 1 
Entomolestes 49 1 
Centetodon 54 1 
Taxymys 60 1 
Nyctitherium 73 1 
Apatemys 79 1 
Tillomys 81 1 
Trogolemur 121 1 
Namatomys 190 2 
Scenopagus 242 2 
Omomys 440 2 
Sciuravus 794 3 
Pauromys 857 3 
Paramys delicatus 1355 3 
Peradectes 1728 3 
Pantolestes 2228 3 
Microsyops 2300 3 
Notharctus 5500 4 
Peratherium 5568 4 
Triplopus 31000 5 
Isectolophus 327000 5 
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APPENDIX P. Body mass of mammals reconstructed in Uinta Zone 1 faunal 
assemblage. Bayesian CART groups used to identify each body mass aggregation. 
Latin Name Mass(g) CART 
Protoptychus 98 1 
Microparamys 393 1 
Sciuravus 794 2 
Pareumys 963 2 
Mesomeryx 1325 2 
Ischyrotomus compressidens 1673 2 
Leptotomus leptodus 2508 2 
Bunomeryx 2793 2 
Peratherium 5568 3 
Leptoreodon 7557 3 
Epihippus 11075 3 
Tapocyon 11210 3 
Protoreodon 14219 3 
Thisbemys medius 20600 4 
Isectolophus annectens 27500 4 
Triplopus 31000 4 
Epitriplopus 58500 4 
Achaenodon 334000 5 
Amynodon 375000 5 
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APPENDIX Q. Body mass of mammals reconstructed in Uinta Zone 2 faunal 
assemblage. Bayesian CART groups used to identify each body mass aggregation. 
Latin Name Mass(g) CART 
Protoptychus 98 1 
Trogolemur 121 1 
Spurimus 150 1 
Uintamys 404 2 
Mytonolagus 780 2 
Sciuravus 794 2 
Pareumys 963 2 
Mesomeryx 1325 2 
Ourayia 1832 3 
Leptotomus leptodus 2508 3 
Bunomeryx 2793 3 
Peratherium 5568 4 
Reithroparamys gidleyi 6900 4 
Epihippus 11075 4 
Tapocyon 11210 4 
Protoreodon 14219 4 
Thisbemys medius 20600 5 
Isectolophus annectens 27500 5 
Triplopus 31000 5 
Oxyaenodon dysodus 41075 5 
Simidectes 48888 5 
Epitriplopus 58500 5 
Limnocyon potens 88775 6 
Ischyrotomus eugenei 132000 6 
Amynodon 375000 6 
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APPENDIX R. Body mass of mammals reconstructed in Uinta Zone 3 faunal 
assemblage. Bayesian CART groups used to identify each body mass aggregation. 
Latin Name Mass(g) CART 
Microparamys 393 1 
Mytonolagus 780 1 
Sciuravus 794 1 
Pareumys 963 1 
Ourayia 1832 2 
Mytonomys 2144 2 
Leptotomus leptodus 2508 2 
Pentacemylus 4325 3 
Auxontodon 5278 3 
Leptoreodon 7557 3 
Epihippus 11075 4 
Tapocyon 11210 4 
Protoreodon 14219 4 
Diplobunops 18800 4 
Isectolophus annectens 27500 5 
Triplopus 31000 5 
Colodon 40500 5 
Simidectes 48888 5 
Epitriplopus 58500 5 
Proviverra 63772 5 
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APPENDIX S. The data of one hundred countries used in Chapter 6 analyses. Environmental Sustainability Index (ESI)  
and Environmental Vulnerability Index (EVI). 

Country 

Endangered 
Birds      
(%) 

Endangered 
Mammals 
(%) 

Invasive 
Birds 
(%) 

Invasive 
Mammals 
(%) 

Resilience 
(%) ESI EVI 

Total 
Population 
(1000) 

Albania 1.714 4.054 0.286 1.351 2.594 58.8 330 3,130 
Algeria 6.349 14.286 1.003 1.905 2.757 46 275 32,850 
Argentina 4.776 9.626 0.682 4.011 7.643 62.7 287 38,750 
Armenia 3.343 10.000 0.000 2.222 5.122 53.2 247 3,020 
Australia 6.349 22.350 3.515 14.040 17.384 61 238 20,160 
Austria 2.069 4.444 1.839 12.222 6.095 62.7 369 8,190 
Azerbaijan 4.076 6.796 0.000 4.854 5.732 45.4 354 8,410 
Bolivia 2.021 5.234 0.139 0.275 2.836 59.5 250 9,180 
Brazil 7.025 13.117 0.228 0.772 9.045 62.2 281 186,400 
Bulgaria 3.023 7.447 0.504 2.128 4.684 50 323 7,730 
Burundi 1.168 6.618 0.146 0.000 2.192 40 288 7,550 
Cameroon 1.567 12.239 0.000 0.000 4.334 52.5 229 16,320 
Canada 2.719 5.941 1.208 5.446 5.671 64.4 251 32,270 
Central African 
Republic         0.646 3.196 0.000 0.000 1.208 58.7 193 4,040 
Chile 6.4 14.685 1.000 8.392 10.886 53.6 287 16,300 
China 6.523 13.612 0.153 1.089 9.061 38.6 360 1,315,840 
Colombia 4.567 11.991 0.106 0.905 6.237 58.9 296 45,600 
Costa Rica 1.917 3.524 0.225 0.881 2.603 59.6 354 4,330 
Côte d'Ivoire 1.884 9.524 0.000 0.000 3.819 47.3 248 18,150 
Cuba 5.163 30.769 2.446 15.385 13.395 52.3 329 11,270 
Czech Republic 1.474 2.564 1.966 14.103 5.567 46.6 315 10,220 
Democratic Republic 
of Congo 2.661 6.744 0.000 0.000 3.762 44.1 288 57,550 
Dominican Republic 5.19 28.571 3.460 0.000 11.538 43.7 324 8,890 
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APPENDIX S. Continued. 

Country 

Endangered 
Birds      
(%) 

Endangered 
Mammals 
(%) 

Invasive 
Birds 
(%) 

Invasive 
Mammals 
(%) 

Resilience 
(%) ESI EVI 

Total 
Population 
(1000) 

Ecuador 4.169 12.366 0.181 0.806 5.969 52.4 304 13,230 
Egypt 2.132 17.143 0.853 3.810 6.272 44 298 74,030 
El Salvador 0.513 3.086 0.684 0.000 1.606 43.8 348 6,880 
Finland 0.887 1.613 0.887 9.677 2.924 75.1 265 5,250 
France 1.056 8.130 2.465 11.382 6.368 55.2 361 60,500 
Gabon 0.667 7.143 0.000 1.099 2.146 61.7 211 1,380 
Gambia 0.87 6.767 0.174 0.000 2.119 50 277 1,520 
Georgia 2.793 9.804 0.000 0.980 4.565 51.5 261 4,470 
Germany 1.174 5.941 2.153 14.851 6.209 57 357 82,690 
Ghana 1.083 6.615 0.000 0.000 2.510 52.8 279 22,110 
Greece 2.477 9.901 0.676 3.960 5.138 50.1 353 11,120 
Guinea-Bissau 0.405 8.943 0.000 0.000 2.107 48.6 271 1,590 
Honduras 0.947 3.774 0.271 0.000 1.788 47.4 273 7,200 
Hungary 2.261 2.500 1.005 5.000 3.975 52 363 10,100 
India 6.194 23.301 0.081 1.214 10.860 45.2 385 1,103,370 
Indonesia 7.241 27.463 0.375 2.985 14.349 48.8 316 222,780 
Iran 3.839 8.602 0.576 1.075 5.799 39.8 313 69,520 
Ireland 0.209 10.000 0.626 14.000 3.025 59.2 318 4,150 
Israel 2.403 13.889 3.327 0.926 7.242 50.9 380 6,720 
Italy 1.495 7.080 0.748 5.310 4.012 50.1 386 58,090 
Jamaica 3.988 16.327 4.601 6.122 10.400 44.7 381 2,650 
Japan 7.12 19.444 1.942 8.333 12.598 57.3 389 128,080 
Jordan 1.942 16.049 0.485 0.000 4.665 47.8 310 5,700 
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APPENDIX S. Continued. 

Country 

Endangered 
Birds      
(%) 

Endangered 
Mammals 
(%) 

Invasive 
Birds 
(%) 

Invasive 
Mammals 
(%) 

Resilience 
(%) ESI EVI 

Total 
Population 
(1000) 

Kazakhstan 4.158 10.323 0.000 2.581 6.212 48.6 215 14,830 
Kenya 2.4 7.181 0.444 0.532 4.064 45.3 262 34,260 
Kyrgyzstan 3.183 8.451 0.265 7.042 5.357 48.4 234 5,260 
Laos 3.286 21.395 0.286 0.000 7.760 52.4 243 5,920 
Lebanon 4.556 14.925 1.075 0.000 1.613 40.5 387 3,580 
Malaysia 5.534 20.833 0.515 1.190 10.872 54 312 25,350 
Mali 0.982 8.824 0.000 0.000 2.410 53.7 215 13,520 
Mauritania 1.476 13.274 0.000 0.000 3.511 42.6 233 3,070 
Mexico 5.341 20.268 0.552 1.147 10.938 46.2 306 107,030 
Mongolia 4.907 8.088 0.000 0.735 5.851 50 208 2,650 
Morocco 2.041 14.286 0.204 4.511 5.778 44.8 315 31,480 
Namibia 3.043 5.446 0.000 1.485 3.924 56.8 200 2,030 
Nepal 3.556 17.582 0.111 0.549 6.100 47.7 305 27,130 
Netherlands 0.433 5.128 1.515 11.538 4.074 53.7 388 16,300 
New Zealand 24.047 18.182 11.730 70.455 41.818 61 292 4,030 
Nicaragua 1.202 2.463 0.267 0.000 1.681 50.2 272 5,490 
Nigeria 1.268 9.825 0.000 0.000 3.249 45.4 336 131,530 
Norway 0.425 9.333 0.425 5.333 2.747 73.4 273 4,620 
Pakistan 3.659 12.042 0.000 2.618 5.920 39.9 373 157,940 
Panama 1.763 5.691 0.415 0.407 2.975 57.7 247 3,230 
Paraguay 3.808 4.848 0.282 1.212 4.462 59.7 260 6,160 
Peru 5.07 11.777 0.162 1.285 6.807 60.4 268 27,970 
Philippines 11.337 18.841 0.508 2.415 14.286 42.3 402 83,050 
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APPENDIX S. Continued. 

Country 

Endangered 
Birds      
(%) 

Endangered 
Mammals 
(%) 

Invasive 
Birds 
(%) 

Invasive 
Mammals 
(%) 

Resilience 
(%) ESI EVI 

Total 
Population 
(1000) 

Poland 1.33 6.667 1.109 6.667 4.251 45 354 38,530 
Portugal 1.782 12.222 1.782 2.222 5.210 54.2 335 10,490 
Romania 3.158 7.368 0.263 5.263 5.263 46.2 335 21,710 
Rwanda 1.389 10.326 0.000 0.000 3.208 44.8 298 9,040 
Saudi Arabia 5.429 11.905 1.027 2.381 2.875 37.8 274 24,570 
Senegal 1.196 8.466 0.000 0.000 2.797 51.1 277 11,660 
Sierra Leone 1.504 8.421 0.000 0.000 3.041 43.4 283 5,530 
Slovakia 1.939 3.529 0.554 0.000 2.691 52.8 303 5,400 
Slovenia 1.061 4.651 1.061 1.163 2.808 57.5 362 1,970 
South Africa 4.118 8.081 1.059 3.030 6.713 46.2 324 47,430 
South Korea 5.693 13.889 0.380 1.389 7.179 43 373 47,820 
Spain 2.98 13.913 2.607 6.957 8.282 48.8 352 43,060 
Sri Lanka 2.921 25.641 0.449 2.564 8.541 48.5 331 20,740 
Sudan 1.304 5.338 0.100 1.423 2.582 35.9 274 36,230 
Sweden 0.63 1.389 0.210 16.667 3.102 71.7 311 9,040 
Switzerland 0.495 2.381 1.238 0.000 1.844 63.7 348 7,250 
Syria 6.224 17.021 0.000 1.064 3.351 43.8 350 19,040 
Tajikistan 2.535 11.765 0.000 2.941 4.492 38.6 271 6,510 
Tanzania 3.636 9.471 0.273 0.557 5.415 50.3 257 38,330 
Thailand 4.427 18.650 0.101 0.643 8.046 49.8 308 64,230 
Togo 0.302 5.714 0.000 0.000 1.434 44.5 293 6,150 
Trinidad & Tobago 0.429 1.754 0.644 2.632 1.724 36.3 381 1,310 
Turkey 3.049 11.409 0.610 1.342 5.772 46.6 353 73,190 
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APPENDIX S. Continued. 

Country 

Endangered 
Birds      
(%) 

Endangered 
Mammals 
(%) 

Invasive 
Birds 
(%) 

Invasive 
Mammals 
(%) 

Resilience 
(%) ESI EVI 

Total 
Population 
(1000) 

Uganda 1.713 6.583 0.000 0.627 2.993 51.3 283 28,820 
Ukraine 2.804 9.821 1.168 8.036 6.852 44.7 317 46,480 
United Arab Emirates             6.029 15.217 3.218 0.000 1.839 44.6 293 4,500 
United Kingdom 0.334 6.757 1.836 47.297 7.875 50.2 373 59,670 
United States 9.209 9.091 4.372 6.136 14.059 53 300 298,210 
Venezuela 1.849 9.091 0.427 0.551 3.787 48.1 291 26,750 
Viet Nam 4.615 18.815 0.355 0.697 8.657 42.3 357 84,240 
Zambia 1.435 3.419 0.000 1.282 2.150 51.1 210 11,670 
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APPENDIX T. The data of one hundred countries used in Chapter 6 analyses. Life Expectancy (LE) and Pesticide  
Regulations (PR). 

Country 

GDP per 
capita 
($) 

Total Land 
Area (km2) 

Latitude 
(o) LE 

Water 
Stress 
(%) 

Agricultural 
Intensity 
(%) PR 

Adult 
Literacy 
(%) 

Tourism 
(1000 
people) 

Albania     4,955         28,300  41 78 0.0 6.2 2 98.7 748 
Algeria     6,376    2,302,500  28 74 24.5 55.9 15 69.9 1,443 
Argentina   13,652    2,736,300  34 77 24.1 13.7 20 97.2 3,895 
Armenia     5,011         28,300  40 73 68.6 3.5 22 99.4 319 
Australia   30,678    7,634,600  27 82 45.7 12.9 22 99 5,497 
Austria   30,736         83,200  47 80 0.0 23.3 22 99 19,952 
Azerbaijan     5,953         85,400  40 67 31.4 5.6 1 98.8 1,177 
Bolivia     2,579    1,069,100  17 67 2.1 0 4 86.7 413 
Brazil     7,826    8,511,000  10 72 2.3 2 20 88.6 5,358 
Bulgaria     8,754       111,300  43 73 36.5 18.4 22 98.2 7,282 
Burundi        630         25,200  3 52 0.0 5.1 22 59.3 148 
Cameroon     2,079       465,800  6 54 0.0 12.8 2 67.9 176 
Canada   30,278    9,458,900  60 81 1.7 25.6 22 99 18,770 
Central African Republic             1,111       622,900  7 45 0.5 0 13 48.6 12 
Chile   10,939       721,200  30 77 16.5 0.4 22 95.7 2,027 
China     6,621    9,198,100  35 74 19.6 10.7 13 90.9 120,292 
Colombia     6,886    1,141,200  4 73 2.8 0 19 92.8 933 
Costa Rica     9,646         51,000  10 78 0.0 4.1 16 94.9 1,679 
Côte d'Ivoire     1,471       320,300  8 56 1.8 1.1 17 48.7 180 
Cuba     4,100       111,200  21 78 28.7 34.2 14 99.8 2,319 
Czech Republic   19,700         78,600  49 77 2.6 28.6 22 99 6,336 
Democratic Republic of 
Congo        700    2,313,400  0 54 0.0 0.1 3 67.2 61 
Dominican Republic     7,618         48,100  19 74 20.4 13.8 21 87 3,691 
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APPENDIX T. Continued. 

Country 
GDP per 
capita ($) 

Total Land 
Area (km2) 

Latitude 
(o) LE 

Water 
Stress 
(%) 

Agricultural 
Intensity 
(%) PR 

Adult 
Literacy 
(%) 

Tourism 
(1000 
people) 

Ecuador 3,982 256,300 2 75 19.2 1 19 91 861 
Egypt 4,031 968,100 27 72 25.5 45.7 19 71.4 8,608 
El Salvador 4,776 20,300 14 72 0.0 31.7 17 80.6 1,154 
Finland 30,420 317,000 64 79 0.4 15.3 22 99 2,080 
France 28,877 547,100 46 81 8.4 29 21 99 76,001 
Gabon 5,835 265,100 1 53 0.0 0.8 3 84 222 
Gambia 1,745 10,800 13 55 0.0 6 21 99 90 
Georgia 3,304 69,200 42 77 7.0 3 3 100 560 
Germany 27,438 356,000 51 79 15.9 17.2 22 99 21,500 
Ghana 2,299 231,700 8 60 0.0 10.6 17 57.9 429 
Greece 21,675 131,900 39 80 4.5 9.4 21 96 14,276 
Guinea-Bissau 745 34,100 12 48 0.0 0 1 99 5 
Honduras 3,170 112,100 15 69 2.3 1.3 1 80 673 
Hungary 16,928 92,000 47 73 24.5 40.7 21 99 3,446 
India 3,308 3,208,100 20 70 33.5 50.6 3 61 3,919 
Indonesia 3,570 1,897,800 5 71 0.2 10.9 19 90.4 5,002 
Iran 7,405 1,590,400 32 71 25.3 13.2 20 82.4 1,659 
Ireland 36,238 69,500 53 78 0.0 2.9 21 99 7,334 
Israel 23,020 21,900 31 81 75.3 29.4 1 97.1 1,903 
Italy 26,496 299,300 43 80 17.7 21.9 21 98.4 36,513 
Jamaica 3,907 11,100 18 74 0.0 10.2 20 79.9 1,479 
Japan 27,992 371,700 36 82 5.6 1.7 22 99 6,728 
Jordan 5,176 88,400 31 79 75.0 23.7 22 91.1 2,987 
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APPENDIX T. Continued. 

Country 
GDP per 
capita ($) 

Total Land 
Area (km2) 

Latitude 
(o) LE 

Water 
Stress 
(%) 

Agricultural 
Intensity 
(%) PR 

Adult 
Literacy 
(%) 

Tourism 
(1000 
people) 

Kazakhstan 7,652 2,619,400 48 68 20.1 8.7 10 99.5 4,365 
Kenya 1,137 579,600 1 58 13.9 1.3 4 73.6 1,146 
Kyrgyzstan 1,749 185,300 41 69 20.5 0 18 98.7 315 
Laos 2,013 230,200 18 57 0.0 0.3 19 68.7 1,095 
Lebanon 4,876 10,300 34 74 10.0 14.5 20 99 1,140 
Malaysia 10,091 330,800 2 73 0.7 1.8 20 88.7 16,431 
Mali 942 1,248,100 17 50 13.5 0 4 24 143 
Mauritania 2,161 1,036,900 20 60 15.8 0 3 51.2 30 
Mexico 9,967 1,943,100 23 76 31.5 9.7 18 91.6 21,915 
Mongolia 2,034 1,546,300 46 68 11.3 0.2 17 97.8 338 
Morocco 4,346 403,800 32 72 47.6 58.7 19 52.3 5,843 
Namibia 7,038 820,000 22 51 52.0 0 3 85 778 
Nepal 1,379 139,100 28 66 0.9 7.9 13 48.6 375 
Netherlands 31,306 35,000 52 79 24.1 9.4 21 99 10,012 
New Zealand 23,109 265,300 41 80 1.2 1.7 22 99 2,366 
Nicaragua 3,539 118,800 13 72 0.0 4.9 5 76.7 712 
Nigeria 1,008 904,200 10 47 4.7 27.2 3 69.1 2,778 
Norway 37,667 318,500 62 80 0.0 8.7 22 99 3,859 
Pakistan 2,206 785,300 30 65 33.4 34.3 2 49.9 798 
Panama 7,234 74,500 9 77 2.6 0 21 91.9 576 
Paraguay 4,368 395,900 23 76 23.5 3.1 21 93.5 341 
Peru 5,725 1,288,300 10 71 16.7 0.1 21 87.9 1,486 
Philippines 4,731 295,400 13 71 3.0 6.9 18 92.6 2,623 
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APPENDIX T. Continued. 

Country 
GDP per 
capita ($) 

Total Land 
Area (km2) 

Latitude 
(o) LE 

Water 
Stress 
(%) 

Agricultural 
Intensity 
(%) PR 

Adult 
Literacy 
(%) 

Tourism 
(1000 
people) 

Poland 13,349 311,200 52 76 5.6 37.5 21 99 4,310 
Portugal 18,966 91,400 39 78 10.0 19.5 21 93.8 5,676 
Romania 8,722 237,100 46 73 17.2 42.3 22 97.3 5,839 
Rwanda 1,105 24,300 2 51 0.0 13.4 4 64.9 113 
Saudi Arabia 14,769 1,942,700 25 76 51.6 24.6 20 82.9 8,037 
Senegal 1,599 196,200 14 59 13.4 2.4 4 39.3 387 
Sierra Leone 753 72,600 8 41 0.0 0 1 34.8 40 
Slovakia 15,409 48,900 48 75 0.0 30.4 22 99 1,515 
Slovenia 20,890 20,200 46 77 0.0 2.3 19 99.7 1,545 
South Africa 10,338 1,217,600 29 49 54.8 4.8 14 82.4 7,369 
South Korea 20,572 99,000 37 79 9.7 4.2 15 99 6,023 
Spain 24,681 505,300 40 80 37.1 31.6 21 99 55,914 
Sri Lanka 4,391 65,800 7 75 16.5 13 18 90.7 549 
Sudan 2,050 2,492,400 15 51 10.7 1.1 21 60.9 246 
Sweden 30,392 431,700 62 81 0.4 15.8 22 99 7,627 
Switzerland 32,775 39,000 47 81 0.0 4.3 22 99 7,229 
Syria 3,497 184,400 35 71 55.6 58.2 21 80.8 3,368 
Tajikistan 1,257 130,100 39 65 14.0 0.7 3 99.5 5 
Tanzania 650 891,000 6 52 10.8 0.1 4 69.4 613 
Thailand 8,065 513,600 15 73 8.8 11.7 20 92.6 11,567 
Togo 1,306 57,300 8 59 0.0 33.5 16 53.2 81 
Trinidad & Tobago 14,708 5,200 11 71 0.0 16 19 98.4 463 
Turkey 7,842 768,700 39 72 13.9 14.2 19 87.4 20,273 
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APPENDIX T. Continued. 

Country 

GDP per 
capita 
($) 

Total Land 
Area (km2) 

Latitude 
(o) LE 

Water 
Stress 
(%) 

Agricultural 
Intensity (%) PR 

Adult 
Literacy 
(%) 

Tourism 
(1000 
people) 

Uganda 1,313 207,100 1 53 1.4 31.9 1 66.8 468 
Ukraine 6,605 588,400 49 68 24.2 62.3 16 99.4 12,514 
United Arab Emirates             22,698 74,800 24 76 41.6 0 3 88.7 5,871 
United Kingdom 30,237 247,200 54 79 8.4 20.5 21 99 29,970 
United States 38,165 9,210,800 38 78 21.3 16.8 19 99 49,206 
Venezuela 6,485 911,800 8 74 9.7 0.9 3 93 706 
Viet Nam 2,925 328,800 16 72 3.0 11.8 20 90.3 3,468 
Zambia 949 745,300 15 39 0.1 0.1 9 68 669 
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APPENDIX U. The data of one hundred countries used in Chapter 6 analyses. Under Nourishment (UN), Total Biodiversity 
(TB) and Political Stability (PS). 

Country 
UN 
(%) 

Annual 
Rainfall 
(mm) 

Energy Efficiency 
(Terajoules/million 
GDP) 

Wilderness 
Protection 
(%) TB 

Exports/Imports 
(million $) PS 

Women 
in Govt. 
(%) 

Albania 6 1,136 6,751 8.1 3,569 2269/596 35 7 
Algeria 5 257 6,797 5.2 3,846 18200/32300 13 7 
Argentina 2.5 1,062 6,120 6.6 11,387 22445/34550 50 40 
Armenia 29 497 15,417 8.6 4,010 1351/723 42 8 
Australia 2.5 527 8,960 10.6 19,463 96507/80218 79 30 
Austria 2.5 1,230 5,833 28.2 3,698 117708/117360 94 27 
Azerbaijan 10 625 21,371 7.4 4,849 3504/3614 24 11 
Bolivia 23 1,507 8,241 21.8 19,611 1844/2146 18 15 
Brazil 8 1,940 6,402 29.7 60,322 65946/96475 37 9 
Bulgaria 9 730 15,195 10.1 4,196 14400/9912 61 22 
Burundi 67 1,042 1,650 6.1 3,324 176/47 9 32 
Cameroon 25 1,778 2,300 10.3 10,059 2400/2600 31 14 
Canada 2.5 641 14,227 8.7 4,164 273526/316735 85 25 
Central African 
Republic         45 1,309 1,362 18.2 4,614 120/130 7 11 
Chile 4 2,287 6,832 19.7 6,222 24871/32025 66 13 
China 12 1,119 7,079 15.8 35,082 1003665/1029408 32 21 
Colombia 14 2,708 3,805 26.2 54,967 16723/16431 8 10 
Costa Rica 4 2,926 4,462 31.1 13,864 8268/6297 78 37 
Côte d'Ivoire 14 1,912 4,027 21.3 4,887 3588/6243 3 9 
Cuba 2.5 1,103 14,968 18.7 7,448 5000/1700 49 43 
Czech Republic 2.5 818 9,418 15.8 2,448 69476/68624 77 16 
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APPENDIX U. Continued. 

Country 
UN 
(%) 

Annual 
Rainfall 
(mm) 

Energy Efficiency 
(Terajoules/million 
GDP) 

Wilderness 
Protection 
(%) TB 

Exports/Imports 
(million $) PS 

Women 
in Govt. 
(%) 

Democratic 
Republic of Congo 72 1,566 2,139 11.8 13,208 600/400 2 8 
Dominican 
Republic 27 821 4,699 28.8 6,250 5370/1334 49 17 
Ecuador 5 2,320 8,247 28.1 22,311 7861/7634 19 25 
Egypt 3 107 8,732 8.0 3,077 17975/10453 22 4 
El Salvador 11 1,305 3,643 1.4 3,731 5989/3382 44 17 
Finland 2.5 410 8,349 9.9 1,653 50799/61304 99 42 
France 2.5 818 6,685 15.5 5,549 465229/448498 65 20 
Gabon 5 1,504 4,561 16.7 7,724 1370/4200 52 16 
Gambia 27 598 1,550 2.0 1,816 230/30 38 9 
Georgia 13 1,321 11,490 3.9 4,841 1848/648 24 6 
Germany 2.5 945 6,382 56.3 3,425 716580/911821 81 31 
Ghana 12 1,112 2,762 17.1 5,000 5214/2327 53 11 
Greece 2.5 748 6,215 3.4 5,758 52552/15190 63 15 
Guinea-Bissau 37 1,223 4,960 19.3 1,730 69/69 30 14 
Honduras 22 1,234 5,355 21.0 7,119 3922/1534 31 23 
Hungary 2.5 559 6,909 5.7 2,751 59303/54830 68 11 
India 20 1,432 4,571 4.9 26,769 94070/71798 18 9 
Indonesia 6 2,749 6,485 15.8 36,760 52076/71261 15 12 
Iran 4 258 13,048 7.2 9,011 37739/40710 11 3 
Ireland 2.5 1,273 4,014 1.1 1,796 60621/104231 89 16 
Israel 2.5 427 5,780 34.9 3,251 41036/38520 13 14 
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APPENDIX U. Continued. 

Country 
UN 
(%) 

Annual 
Rainfall 
(mm) 

Energy Efficiency 
(Terajoules/million 
GDP) 

Wilderness 
Protection 
(%) TB 

Exports/Imports 
(million $) PS 

Women 
in Govt. 
(%) 

Italy 2.5 932 5,090 7.1 6,477 350865/348984 62 20 
Jamaica 10 1,628 15,398 20.8 3,914 4071/1586 43 14 
Japan 2.5 1,551 6,248 14.4 7,491 455254/565822 85 12 
Jordan 7 179 10,528 10.6 2,744 8179/3883 34 9 
Kazakhstan 8 277 21,143 2.9 6,746 12781/20096 58 12 
Kenya 31 998 4,642 12.3 8,667 4553/2684 16 10 
Kyrgyzstan 4 419 20,967 3.4 4,803 941/719 15 26 
Laos 21 1,933 4,833 16.3 9,460 506/361 43 25 
Lebanon 3 656 10,179 0.4 3,571 9397/1747 4 5 
Malaysia 3 2,822 9,851 20.2 17,539 105284/126512 52 15 
Mali 28 536 1,318 2.1 2,640 1131/932 39 10 
Mauritania 10 199 9,024 0.9 1,909 480/400 32 20 
Mexico 5 1,052 7,153 8.0 29,510 128723/101252 25 22 
Mongolia 28 156 20,733 14.1 3,382 801/616 68 4 
Morocco 6 340 4,117 1.4 4,486 17525/9667 27 6 
Namibia 23 339 4,102 15.1 4,347 2180/1830 79 27 
Nepal 17 1,648 1,781 17.6 8,226 1890/716 3 33 
Netherlands 2.5 893 8,000 23.4 1,857 319176/358015 76 38 
New Zealand 2.5 1,248 9,838 30.1 3,094 22163/19830 94 33 
Nicaragua 27 1,869 3,584 18.5 8,883 1879/605 36 19 
Nigeria 9 1,324 6,931 16.3 6,227 14164/31148 4 7 
Norway 2.5 1,241 10,689 6.3 2,321 47929/81544 93 36 
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APPENDIX U. Continued. 

Country 
UN 
(%) 

Annual 
Rainfall 
(mm) 

Energy Efficiency 
(Terajoules/million 
GDP) 

Wilderness 
Protection 
(%) TB 

Exports/Imports 
(million $) PS 

Women 
in Govt. 
(%) 

Pakistan 23 438 6,160 9.1 6,114 17950/13380 1 21 
Panama 25 2,619 9,763 28.5 11,759 3594/944 50 17 
Paraguay 15 1,205 15,943 6.1 8,953 3004/1985 28 14 
Peru 12 1,988 3,997 13.8 20,247 982/12617 20 29 
Philippines 19 2,199 3,603 17.4 11,079 42348/39700 10 20 
Poland 2.5 588 8,036 24.4 3,065 89131/74818 67 18 
Portugal 2.5 1,039 5,618 6.6 5,872 54888/35750 73 28 
Romania 2.5 620 9,464 10.7 3,993 32664/23485 51 10 
Rwanda 36 1,115 1,298 8.2 3,306 284/98 37 51 
Saudi Arabia 4 151 18,749 42.4 2,831 44500/95369 25 0 
Senegal 23 576 3,905 25.1 3,163 2860/1270 38 29 
Sierra Leone 50 2,546 3,451 4.1 3,127 607/180 33 13 
Slovakia 6 747 11,138 19.7 3,620 29457/27534 80 19 
Slovenia 3 989 7,898 6.6 3,787 17189/15823 84 10 
South Africa 4 640 10,129 6.2 25,681 48240/45720 51 34 
South Korea 2.5 1,142 9,432 4.5 3,544 224463/253845 62 14 
Spain 2.5 645 6,229 9.5 5,983 249187/178521 45 34 
Sri Lanka 22 1,700 2,724 20.5 4,440 7973/5757 6 6 
Sudan 27 741 2,156 4.6 4,698 2711/2609 2 17 
Sweden 2.5 561 8,238 10.9 2,390 99276/122478 95 47 
Switzerland 2.5 1,502 5,361 30.3 3,599 111740/118673 99 27 
Syria 4 366 14,076 0.7 3,592 5300/7000 25 12 
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APPENDIX U. Continued. 

Country 
UN 
(%) 

Annual 
Rainfall 
(mm) 

Energy Efficiency 
(Terajoules/million 
GDP) 

Wilderness 
Protection 
(%) TB 

Exports/Imports 
(million $) PS 

Women 
in Govt. 
(%) 

Tajikistan 61 440 37,289 15.1 5,491 1375/915 19 20 
Tanzania 44 1,116 3,493 41.6 12,237 2508/1330 40 30 
Thailand 21 1,634 6,654 20.3 13,648 94382/96064 17 13 
Togo 25 1,117 2,316 11.0 4,034 556/367 27 11 
Trinidad & Tobago 11 1,983 37,706 34.5 2,961 4858/6373 44 33 
Turkey 3 615 6,690 2.0 9,549 97540/63121 21 9 
Uganda 19 1,401 1,010 17.5 6,541 2014/886 14 31 
Ukraine 3 525 23,643 3.5 5,678 28996/32672 50 8 
United Arab 
Emirates             2.5 52 30,690 0.3 380 58000/88000 73 23 
United Kingdom 2.5 1,130 5,668 22.0 2,738 463244/346695 66 20 
United States 2.5 939 9,112 14.7 22,575 1525481/818520 56 17 
Venezuela 18 1,813 22,593 71.4 23,675 16700/33929 12 19 
Viet Nam 17 1,740 4,880 5.7 12,291 25227/20176 56 26 
Zambia 47 1,049 11,906 41.5 5,989 1691/1198 54 15 
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