University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Dissertations & Theses in Natural Resources

Natural Resources, School of

Summer 7-22-2011

Discontinuities: Predicting Invasions and Extinctions

Aaron Lotz *University of Nebraska-Lincoln*, alotz@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/natresdiss

Part of the Natural Resources and Conservation Commons, Other Ecology and Evolutionary Biology Commons, and the Terrestrial and Aquatic Ecology Commons

Lotz, Aaron, "Discontinuities: Predicting Invasions and Extinctions" (2011). Dissertations & Theses in Natural Resources. 31. http://digitalcommons.unl.edu/natresdiss/31

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

DISCONTINUITIES: PREDICTING INVASIONS AND EXTINCTIONS

by

Aaron Lotz

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Natural Resource Sciences
(Applied Ecology)

Under the Supervision of Professor Craig R. Allen

Lincoln, Nebraska

August, 2011

DISCONTINUITIES: PREDICTING INVASIONS AND EXTINCTIONS

Aaron Lotz, Ph.D.

University of Nebraska, 2011

Advisor: Craig R. Allen

In this dissertation, I explore multiple tenets of the textural discontinuity hypothesis, which states that hierarchical landscape structures with scale-specific pattern entrain attributes of animals inhabiting the landscape. Landscapes form hierarchies that are structured by vegetative, geomorphological and contagious disturbance processes. The spatial and temporal patterns inherent in landscapes reflect numerous processes, interacting on distinct scales, which shape the assembly of animal communities. Analysis of body mass patterns and functional group distributions has been suggested as methods to provide insight about these underlying hierarchical processes. Scientists have posited that species at the edges of body mass aggregations may be exposed to highly variable resources. This dissertation focuses on the distribution of biological diversity in space and time and socio-ecological factors that are contributing to the worldwide increase in invasive and endangered species.

I analyzed invasions and extinctions of birds and mammals across five Mediterranean-climate ecosystems and in 100 countries using an information-theoretic approach. All body mass distribution data analyzed were discontinuous. This work provided further support for Holling's textural discontinuity hypothesis. Alpha diversity of function increased in 9 out of the 10 Mediterranean-climate ecosystems analyzed when NIS were introduced into the community. After the introduction of NIS, I observed a decrease in cross-scale redundancy of functional groups in mammals and when both

taxonomic groups were combined. In Eocene Epoch mammal data, speciation events were not detected near body mass aggregation edges. Only 64% of the biomes in mammals had ecoregions with similar structure and only 50% of the biomes in birds had ecoregions with similar structure, which may be a result of coarse landscape classification schemes. GDP per capita was positively correlated with the proportion of NIS bird and mammal species within a country. Resilience of a country was correlated to life expectancy. As life expectancy increased, resilience of a country decreased. Results may help us make proper management decisions in monitoring particular non-indigenous species and focus conservation efforts on those native species.

DEDICATION

For Barry and Susan

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Dr. Craig R. Allen for his assistance in the preparation of this manuscript. I would like to thank Dr. Pablo A. Marquet, Dr. Johannes Knops, and Dr. Sandra B. Zellmer for their challenging comprehensive exam questions and their helpful comments on my work. I also wish to thank Dr. Andrew J. Tyre for his statistical expertise and his ability to fit me into his hectic schedule. In addition, special thanks to Dr. Tala Awada whose open door policy, concern for my progress, invaluable encouragement, advice, friendship and laughter helped me get through this doctoral program. Thanks also to Dr. David Kitchen, who persuaded me to stay in school and not go to Africa to kill poachers, for his lifetime of friendship, and staunch support throughout my academic career. Thank you to Dr. Jim Brandle for giving me the opportunity to teach children about science and for always wanting to know how I was doing. I would like to thank Millard Baker for reminding me to fight the power and Kristen Zellmer for being there to dish out reality and give me a good kick in the pants when I needed it. I would also like to thank, Brenda & Chris Pracheil, Dustin Martin, Ingrid Barcelo, Luis Ramirez, Dr. John Quinn, Cassie Manhart, Timothy Weber, Christopher Lowrey, Nate Gosch, Ryan Bjerke, Justin Williams, Donald Wardwell, Carla Knight, Christina Amarillas, Andres Baeza, Fernando D. Alfaro, and Daniela Rivera for their valuable input, supportive laughter and keeping me focused throughout my degree. Thank you to my brother, Jonathan Lotz, for providing comic relief and brotherly support throughout this endeavor. Finally, I wish to thank my parents Dr. Barry Lotz and Susan Lotz for being there to support me, both mentally and financially, as I went through the trials and tribulations of this journey.

GRANT INFORMATION

The James S. McDonnell Foundation-Studying Complex Systems and the Resilience Alliance.

TABLE OF CONTENTS

TITLE PAGEi
ABSTRACTii
DEDICATIONiv
ACKNOWLEDGEMENTSv
GRANT INFORMATIONvi
LIST OF TABLESxi
LIST OF FIGURESxxvii
CHAPTER 1: INTRODUCTION1
CHAPTER 2: BODY MASS DISCONTINUITIES IN
MEDITERRANEAN-CLIMATE ECOSYSTEMS
CHAPTER 3: ALPHA, BETA & GAMMA DIVERSITY IN
MEDITERRANEAN-CLIMATE ECOSYSTEMS43
CHAPTER 4: CHANGES IN BODY MASS DISTRIBUTIONS OVER
PALEOECOLOGIC TIME
CHAPTER 5: CHANGES IN BODY MASS DISCONTINUITIES WITH
CHANGES IN SCALE
CHAPTER 6: A SOCIO-ECOLOGICAL ANALYSIS OF GLOBAL
INVASIONS AND EXTINCTIONS
CHAPTER 7: CONCLUSION214
APPENDIX A: MEDITERRANEAN-CLIMATE ECOSYSTEM MAMMALS IN CALIFORNIA. LOG 10 BODY MASS IN GRAMS (G), BAYESIAN CART (BCART) GROUP, FUNCTIONAL GROUP, AND THE SPECIES STATUS

APPENDIX B: MEDITERRANEAN-CLIMATE ECOSYSTEM
MAMMALS IN CHILE. LOG 10 BODY MASS IN GRAMS (G),
BAYESIAN CART (BCART) GROUP, FUNCTIONAL GROUP, AND
THE SPECIES STATUS
THE ST LCILLY STATE CO
ADDENING MEDITEDD ANEAN OF IMATE ECONOTEM
APPENDIX C: MEDITERRANEAN-CLIMATE ECOSYSTEM
MAMMALS IN SPAIN. LOG 10 BODY MASS IN GRAMS (G),
BAYESIAN CART (BCART) GROUP, FUNCTIONAL GROUP, AND
THE SPECIES STATUS227
APPENDIX D: MEDITERRANEAN-CLIMATE ECOSYSTEM
MAMMALS IN SOUTH AFRICA. LOG 10 BODY MASS IN GRAMS (G),
BAYESIAN CART (BCART) GROUP, FUNCTIONAL GROUP, AND
THE SPECIES STATUS230
APPENDIX E: MEDITERRANEAN-CLIMATE ECOSYSTEM
MAMMALS IN SOUTHWESTERN AUSTRALIA. LOG 10 BODY MASS
IN GRAMS (G), BAYESIAN CART (BCART) GROUP, FUNCTIONAL
GROUP, AND THE SPECIES STATUS
OROOT, AND THE STECKES STATES234
ADDENDING MEDITEDDANICAN OF IMATE ECOCNOTEM
APPENDIX F: MEDITERRANEAN-CLIMATE ECOSYSTEM
BIRDS IN CALIFORNIA. LOG 10 BODY MASS IN GRAMS (G),
BAYESIAN CART (BCART) GROUP, FUNCTIONAL GROUP, AND
THE SPECIES STATUS237
APPENDIX G: MEDITERRANEAN-CLIMATE ECOSYSTEM
BIRDS IN CHILE. LOG 10 BODY MASS IN GRAMS (G), BAYESIAN
· · · · · · · · · · · · · · · · · · ·
CART (BCART) GROUP, FUNCTIONAL GROUP, AND THE SPECIES
STATUS243
APPENDIX H: MEDITERRANEAN-CLIMATE ECOSYSTEM
BIRDS IN SPAIN. LOG 10 BODY MASS IN GRAMS (G), BAYESIAN
CART (BCART) GROUP, FUNCTIONAL GROUP, AND THE SPECIES
STATUS
STATUS247
A DDENDING I A CEDITEED DANIEAN OF DAARE ECOCATOREN
APPENDIX I: MEDITERRANEAN-CLIMATE ECOSYSTEM
BIRDS IN SOUTH AFRICA. LOG 10 BODY MASS IN GRAMS (G),
BAYESIAN CART (BCART) GROUP, FUNCTIONAL GROUP, AND
THE SPECIES STATUS255
APPENDIX J: MEDITERRANEAN-CLIMATE ECOSYSTEM
BIRDS IN SOUTHWESTERN AUSTRALIA. LOG 10 BODY MASS IN
GRAMS (G), BAYESIAN CART (BCART) GROUP, FUNCTIONAL
GROUP, AND THE SPECIES STATUS260
APPENDIX K. BODY MASS OF MAMMALS RECONSTRUCTED IN

BRIDGER ZONE 1 FAUNAL ASSEMBLAGE. BAYESIAN CART
GROUPS USED TO IDENTIFY EACH BODY MASS
AGGREGATION267
APPENDIX L: BODY MASS OF MAMMALS RECONSTRUCTED IN
BRIDGER ZONE 2 FAUNAL ASSEMBLAGE. BAYESIAN CART
GROUPS USED TO IDENTIFY EACH BODY MASS
AGGREGATION268
ADDENDIVIA DODVIAGO OF MANAMALO DECONOTRICTED IN
APPENDIX M: BODY MASS OF MAMMALS RECONSTRUCTED IN
BRIDGER ZONE 3 FAUNAL ASSEMBLAGE. BAYESIAN CART
GROUPS USED TO IDENTIFY EACH BODY MASS
AGGREGATION269
APPENDIX N: BODY MASS OF MAMMALS RECONSTRUCTED IN
BRIDGER ZONE 4 FAUNAL ASSEMBLAGE. BAYESIAN CART
GROUPS USED TO IDENTIFY EACH BODY MASS
AGGREGATION270
APPENDIX O: BODY MASS OF MAMMALS RECONSTRUCTED IN
BRIDGER ZONE 5 FAUNAL ASSEMBLAGE. BAYESIAN CART
GROUPS USED TO IDENTIFY EACH BODY MASS
AGGREGATION271
ADDENDIN D. DODY MACO OF MANMALO DECONOTRICTED IN
APPENDIX P: BODY MASS OF MAMMALS RECONSTRUCTED IN
UINTA ZONE 1 FAUNAL ASSEMBLAGE. BAYESIAN CART GROUPS
USED TO IDENTIFY EACH BODY MASS AGGREGATION272
APPENDIX Q: BODY MASS OF MAMMALS RECONSTRUCTED IN
UINTA ZONE 2 FAUNAL ASSEMBLAGE. BAYESIAN CART GROUPS
USED TO IDENTIFY EACH BODY MASS AGGREGATION273
APPENDIX R: BODY MASS OF MAMMALS RECONSTRUCTED IN
UINTA ZONE 3 FAUNAL ASSEMBLAGE. BAYESIAN CART GROUPS
USED TO IDENTIFY EACH BODY MASS AGGREGATION274
APPENDIX S: THE DATA OF ONE HUNDRED COUNTRIES USED IN
CHAPTER 6 ANALYSES. ENVIRONMENTAL SUSTAINABILITY
INDEX (ESI) AND ENVIRONMENTAL VULNERABILITY INDEX
(EVI)275
(L V 1)
APPENDIX T: THE DATA OF ONE HUNDRED COUNTRIES USED IN
CHAPTER 6 ANALYSES. LIFE EXPECTANCY (LE) AND PESTICIDE
REGULATIONS (PR)280
APPENDIX II: THE DATA OF ONE HUNDRED COUNTRIES USED IN

CHAPTER 6 ANALYSES. UNDER NOURISHMENT (UN), TOTAL BIODIVERSITY (TB) AND POLITICAL STABILITY (PS).....285

LIST OF TABLES

Table 2.1. Overall number of native species in five Mediterranean-climate
ecosystems, the overall percentage of endangered and non-indigenous
species (NIS), the percentage of NIS species in each region after a
hypothetical removal of threatened species, the number of discontinuities
and the percentage of NIS within body mass aggregations25

Table 2.2. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem mammal body mass aggregations.

Probability levels less than or equal to 0.05 were considered significant matches between the lump and gap architecture of the compared ecosystems.

Table 2.4. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem bird body mass aggregations. Probability levels less than or equal to 0.05 were considered significant matches

		4	0.1		•
hetween the	lumn and o	an architecture	of the com	nared ecosy	stems28
octween the	rump and g	ap architecture	of the com	parcu ccosy,	3101113

Table 2.5. Phi coefficients for each pairwise comparison of Mediterranean-
climate ecosystem bird body mass aggregations. Values approaching 1
indicate a positive correlation and values approaching -1 indicate a negative
correlation. Values greater than ±30 indicate a strong relationship between
the lump and gap architecture of the compared ecosystems29

Table 2.6. Results of t-tests comparing mean (x) and standard deviation	
(SD) distance to edge of body mass aggregation of endangered and	
non-endangered bird and mammal species in five	
Mediterranean-climate ecosystems	30

Table 2.9. Results of t-tests comparing mean (x) and standard deviation
(SD) distance to edge of body mass aggregation of native and
non-indigenous (NIS) bird and mammal species with NIS species in gaps
set to zero in five Mediterranean-climate ecosystems33
Table 2.10. Results of Chi-Square analyses comparing the observed
distribution of non-indigenous birds and mammals in gaps between
body mass aggregations in five Mediterranean-climate ecosystems34
Table 2.11. Results of Chi-Square analyses comparing the observed
distribution of endangered birds and mammals in gaps between body
mass aggregations in five Mediterranean-climate ecosystems35
Table 3.1. Functional groups used to classify the vertebrate fauna of
California, Chile, South Africa, Spain and Southwestern Australia based
on foraging strata and diet
Table 3.2. Overall number of native species in five Mediterranean-climate
ecosystems, the overall percentage of endangered and non-indigenous
species (NIS) and the percentage of NIS species in each region after a
hypothetical removal of threatened species

Table 3.3. Chi-Square probability levels for each pairwise comparison of
Mediterranean-climate ecosystem mammal body mass aggregations.
Probability levels less than or equal to 0.05 were considered significant
matches between the lump and gap architecture of the compared
ecosystems

Table 3.5. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem bird body mass aggregations. Probability levels less than or equal to 0.05 were considered significant matches between the lump and gap architecture of the compared ecosystems........75

Table 3.6. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem bird body mass aggregations. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than ±30 indicate a strong relationship between the lump and gap architecture of the compared ecosystems.......76

 Table 3.11. Each body mass aggregation represents a unique scale within the California Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Table 3.12. Each body mass aggregation represents a unique scale within the Chile Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Table 3.13. Each body mass aggregation represents a unique scale within the Spain Mediterranean-climate ecosystem. The total number of mammal

species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Table 3.14. Each body mass aggregation represents a unique scale within the South Africa Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Table 3.15. Each body mass aggregation represents a unique scale within the southwestern Australia Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the

Table 3.16. Each body mass aggregation (BMA) represents a unique scale within the California Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species.

The number of functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of endangered species.

Table 3.19. Each body mass aggregation (BMA) represents a unique scale within the South Africa Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species.

The number of functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of endangered species.

Table 3.20. Each body mass aggregation (BMA) represents a unique scale within the southwestern Australia Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of

Table 4.1. Chi-Square probability levels for each pairwise comparison of Bridger and Uintan faunal assemblage zones using liberal data selection.

Probability levels less than or equal to 0.05 were considered significant matches between the lump and gap architecture of the compared faunal assemblage zones.

120

Table 4.2. Phi coefficients for each pairwise comparison of Bridger and
Uintan faunal assemblage zones using liberal data selection. Values
approaching 1 indicate a positive correlation and values approaching -1
indicate a negative correlation. Values greater than ± 30 indicate a strong
relationship between the lump and gap architecture of the compared
faunal assemblage zones

Table 4.5. Results of Chi-Square analyses and standard deviations (SD) of Bridger and Uintan faunal assemblage zones comparing the observed distribution of new species in gaps between body mass

aggregations124
Table 4.6. Results of t-tests comparing mean (x) and standard deviation
(SD) of Bridger and Uintan faunal assemblage zones comparing mean (x)
distance to edge of mammals that are new species and species that
remained from the previous geologic layer
Table 4.7. Results of t-tests comparing mean (x) and standard deviation
(SD) of Bridger and Uintan faunal assemblage zones comparing mean (x)
distance to edge of mammals that are new species and species that are
from the previous geologic layer
Table 5.1. The correlation between body mass aggregations the number of
Table 5.1. The correlation between body mass aggregations the number of mammal species in each ecoregion. The number of ecoregions within each
mammal species in each ecoregion. The number of ecoregions within each
mammal species in each ecoregion. The number of ecoregions within each
mammal species in each ecoregion. The number of ecoregions within each biome, the correlation coefficient and <i>p</i> -values
mammal species in each ecoregion. The number of ecoregions within each biome, the correlation coefficient and <i>p</i> -values
mammal species in each ecoregion. The number of ecoregions within each biome, the correlation coefficient and <i>p</i> -values
mammal species in each ecoregion. The number of ecoregions within each biome, the correlation coefficient and <i>p</i> -values

within each biome, the average distance of gaps between body mass

aggregations within each biome, the total number of body mass	
aggregations within each biome and the average number of body mass	
aggregations within each biome.	.148

Table 5.8. Mammal and bird body mass distribution summary statistics for the entire western hemisphere. The average distance of gaps between body mass aggregations, including standard deviations (SD), the total number of body mass aggregations and the total number of species......153

Table 5.9. The observed variance is the sum of observations that were within each mammal and bird body mass aggregation across each of the ecoregions within a biome, including standard deviations (SD), at the ecoregion, biome and continental scales.

Table 5.11. The sum of observations that were within each bird body
mass aggregation across each of the ecoregions within a biome. The
observed variance of all the sums of observations across ecoregions, in
each biome. An exact rank of 950 or higher ($\alpha = 0.05$) was the level of
significance. A binomial distribution was calculated in order to determine
whether all the observed variances for ecoregions within each biome were
higher than the simulated variances by chance alone
Table 5.12. Mean (x) and standard deviation (SD) of Phi coefficients and
difference in ranks for each comparison between biomes
Table 6.1. Model selection results for endangered birds. Bold values
indicate variables in the best model. Evidence Ratio (ER)
Table 6.2. Parameter estimates for variables selected in the best models
in the endangered birds analysis
Table 6.3. Model selection results for endangered mammals
Table 6.4. Parameter estimates for variables selected in the best model(s)
in the endangered mammals analysis

Table 6.5. Summary of model selection results for invasive birds.
Evidence Ratio (ER)
Table 6.6. Parameter estimates for variables selected in the best model in
the invasive birds analysis
Table 6.7. Summary of model selection results for invasive mammals.
Evidence Ratio (ER)
Table 6.8. Parameter estimates for variables selected in the best model
in the invasive mammals analysis
Table 6.9. Summary of model selection results for resilience
(endangered + invasive birds and mammals). Evidence Ratio (ER)
Table 6.10. December actimates for variables calcuted in the heat was del
Table 6.10. Parameter estimates for variables selected in the best model
in the resilience analysis

LIST OF FIGURES

Figure 2.1. Potential patterns of where invasive and endangered species
could be distributed in the context of vertebrate body mass distributions.
Each pattern supports a different hypothesis
Figure 2.2. Juxtaposition of bird body mass aggregations across five
Mediterranean-climate ecosystems37
Figure 2.3. Juxtaposition of mammal body mass aggregations across five
Mediterranean-climate ecosystems
Figure 3.1. Juxtaposition of bird body mass aggregations across five
Mediterranean-climate ecosystems93
Figure 3.2. Juxtaposition of mammal body mass aggregations across five
Mediterranean-climate ecosystems94
Figure 3.3. Comparison of the number of species belonging to each
functional group across all body mass aggregations pre- and postinvasion
for all the birds of Mediterranean-climate ecosystems. Explanations for
the functional group abbreviations are provided in Table 3.195

Figure 3.4. Comparison of the number of species belonging to each
functional group across all body mass aggregations pre- and postinvasion
for all the mammals of Mediterranean-climate ecosystems. Explanations
for the functional group abbreviations are provided in Table 3.196
Figure 4.1. Map of Green River Basin (labeled as Bridger) and Uinta Basin.
Basins are outlined in stipple and mountain ranges are outlined with hatch
marks. Image adapted from Townsend (2004)127
Figure 5.1. Biomes of the Western Hemisphere. Image adapted from
Olson et al. (2001)
Figure 5.2. The number of discontinuities detected by Bayesian CART and
SAS cluster analysis at four different scales. The average number of
discontinuities was used at the ecoregion, biome and continental
scale
Figure 6.1. Endangered birds in relation to total biodiversity
Figure 6.2. Endangered birds in relation to total land area
Figure 6.3. Invasive birds in relation to GDP per capita

Figure 6.4. Invasive mammals in relation to GDP per capita	.201
Figure 6.5. The percentage of endangered and invasive birds and	
mammals combined in relation to life expectancy. A higher percentage	
equates to a lower resilience	.202

CHAPTER 1: INTRODUCTION

One of the major unresolved problems, at the forefront of worldwide environmental concerns, is the increase in invasive and endangered species. Changes in biodiversity due to human actions have been more profound in the last 50 years than in the previous entirety of recorded human history. An astonishing 52% of cycads, 32% of amphibians, 25% of conifers, 23% of mammals, and 12% of bird species are currently threatened with extinction (Millennium Ecosystem Assessment 2005). As native species decline, introduced non-indigenous species may become established and theses can affect ecosystem processes and can potentially lead to the further extinction of native species (Forys & Allen 2002). This potential loss of ecological processes inherently affects landscape structure and dynamics, including predator-prey interactions, dispersal, foraging behavior and functional group composition.

In this dissertation, I explore multiple tenets of the textural discontinuity hypothesis, which states that hierarchical landscape structures with scale-specific pattern entrain attributes of animals inhabiting the landscape (Holling 1992). Landscapes form hierarchies that are structured by vegetative, geomorphological and contagious disturbance processes (Holling 1992). The spatial and temporal patterns inherent in landscapes reflect numerous processes, interacting on distinct scales, which shape the assembly of animal communities (Turner 1990). In order to understand these patterns, one must understand the interactions between organisms and between organisms and their environment.

Analysis of body mass patterns and functional group distributions have been suggested as methods to provide insight about these underlying hierarchical processes, as

both are important in ecosystem-level biota structure (Forys & Allen 2002). Studies have reported a discontinuous body mass distribution reflecting the architecture of the landscape (Havlicek & Carpenter 2001, Allen & Holling 2008). These studies support Holling's (1992) textural discontinuity hypothesis, which states that hierarchical landscape structures with scale-specific pattern entrain attributes of animals inhabiting the landscape. Other studies have demonstrated the influence of community interactions on body mass distributions (Oksanen et al. 1979, Stubblefield et al. 1993, and Nummi et al. 2000). These studies support Hutchinson's (1959) community interaction hypothesis, which states that in the process of community formation species may be displaced, unfilled niches may be occupied, and niches may be partitioned. Community interactions may be most important at local scales, important only after community entrainment due to landscape patterns (under the premise of the textural discontinuity hypothesis) (Allen et al. 2006).

Mediterranean-climate ecosystems (in distinct regions of Chile, Africa, California, Australia, and Spain) provide replicated examples of ecological convergence and are similar in ecological structure and function, yet contain fauna that has been evolutionarily isolated (Peterson et al. 1998). Thus, Mediterranean-climate ecosystems enable the comparison of similarities in scale-specific vertebrate community structure. If systems with similar ecological structure provide similar opportunities for animals, then these geographically disparate systems should have similar body mass distributions despite geographic and evolutionary isolation. If the vertebrate body mass structures are similar among these systems, the entrainment hypothesis of Holling's textural discontinuity hypothesis is supported.

Mediterranean-climate regions are also densely populated by humans and have been altered by human habitation and landscape transformation. These areas have been invaded by numerous non-indigenous vertebrate species and declines and extinctions of native species have transformed faunal community composition. Analysis of body-mass aggregations has been suggested as a predictor of invasiveness, endangerment and nomadism (Allen et al. 1999, Allen & Saunders 2002). The mix of native and non-indigenous species in Mediterranean-climate ecosystems provides excellent data to investigate the effects of invasive species on functional group composition and changes in body mass distributions, as well as how these changes affect biodiversity and functional representation at various scales. Invasive species may alter: 1) alpha diversity, which refers to the diversity within a particular ecosystem, 2) beta diversity, which refers to the diversity between two ecosystems and 3) gamma diversity, which is the overall diversity across all ecosystems (Balée 2006, Fridley et al. 2007).

There is very little information on the effects of paleoecological time on changes in body mass distributions. Smith et al. (2004) suggest that, over evolutionary time as lineages speciate and diversify, species do not occupy a greater range of body sizes.

Holling et al. (2002) suggest that it takes extreme disturbances over paleoecological time and space to substantially change body mass distributions. Lambert and Holling (1998) analyzed body mass distributions of the Pleistocene North American mammal extinctions and suggested that they reflected changes in key mesoscale aspects of the landscape. The Siberia megafauna extinction at end of Pleistocene (Folke et al. 2004) and great mammal faunal crash in North America at the end of the Miocene (Lambert 2006) may have

triggered irreversible regime shifts and a closer examination of body mass distributions may prove insightful.

Organisms of different body sizes have different requirements for resources and operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot simultaneously interact with multiple scales, but has to specialize at a single scale or shift between two scales (Allen & Saunders 2002). Peterson et al. (1998) suggest functional diversity within body mass aggregations and redundancy of functional groups across scales increases resilience. Little is known with respect to ecological function and whether a species in the same guild or functional group is dispersed across scales. If body mass structure reflects landscape structure at these different scales, this will support the textural discontinuity hypothesis and create a fundamental link between landscape and community ecology.

There is a critical need for integrated concepts and research capable of uniting the natural and social sciences (Pickett et al. 1997). Studies have recognized the need to couple human systems with environment systems (Turner et al. 2003), the convergence of environmental and financial markets (Sandor et al. 2002), the importance of socio-cultural dynamics in natural resource management (Stratford & Davidson 2002) and the tremendous impact of humans on the environment in comparison to other species (Fowler & Hobbs 2003). Numerous studies have focused on only one aspect of the socio-ecological relationship such as carbon emissions (Kratena 2004), water (Postel 2003) or human population growth (Struglia & Winter 2002).

At present, only three projects have attempted to focus on and integrate multiple socio-ecological factors at a national scale, with an emphasis on their roles in an

ecologically sustainable society, into an index of values that can be ranked and compared. In 2003, the Global Footprint Network was established in an effort to establish and maintain a sustainable future. As part of that effort, the Ecological Footprint was created. This metric, comprised of 5 levels and 6 sub-categories, calculates how much natural resources we have, how much we use and who uses it in order to track human demands on the biosphere (Ewing et al. 2008). The U.S. National Aeronautics and Space Administration's (NASA) Socioeconomic Data and Applications Center (SEDAC) published three indexes, the 2005 Environmental Sustainability Index (ESI) (Esty et al. 2005), the 2006 Environmental Performance Index (EPI) (Esty et al. 2006) and the 2008 EPI (Esty et al. 2008). Each index was developed in order to explore the relationships, at a national scale, between multiple socio-ecological factors and their effect on a country's environmental performance and sustainability. These reports demonstrated that as humans, we are an integral part of the environment and have a tremendous impact on the environment around us. These indicators represent another layer of the ecosystem, previously unaccounted for in ecological research. The economic, demographic, environmental and societal metabolism facets of humanity are not isolated, but highly integrated and have profound impacts on the world's ecosystem and fauna. I suggest these socio-ecological landscape factors may be able to provide clues as to the invasiveness and endangerment of species around the world.

This dissertation focuses on the distribution of biological diversity in space and time and socio-ecological factors that are contributing to the worldwide increase in invasive and endangered species. I begin this document by comparing the body mass distributions among ecosystems with similar ecological structure and examining the

effects of invasions and extinctions (Chapter 2) and changes in alpha, beta and gamma diversity (Chapter 3). I then explore changes in body mass distributions over paleoecological time to examine speciation events (Chapter 4). I then examine the effects of spatial scale on body mass distributions to determine the extent to which the textural discontinuity hypothesis remains valid (Chapter 5). The final research chapter of this dissertation focuses on the socio-ecological factors that may be contributing to the rising number of invasive and endangered birds and mammals (Chapter 6). Finally, I conclude with the significance of this work (Chapter 7).

LITERATURE CITED

- Allen, C.R., E.A. Forys, and C.S. Holling. 1999. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2:114-121.
- Allen, C.R., and D.A. Saunders. 2002. Variability between scales: predictors of nomadism in birds of and Australian Mediterranean-climate ecosystem. Ecosystems 5:348-359.
- Allen, C.R., A.S. Garmestani, T.D. Havlicek, P.A. Marquet, G.D. Peterson, C. Restrepo, C.A. Stow, and B. Weeks. 2006. Keystone processes and ecological organization: evaluating alternative explanations for patterns in body size distributions. Ecology Letters 9:630-643.
- Allen, C.R. and C.S. Holling. 2008. *Discontinuities in ecosystems and other complex systems*. University of Colombia Press, New York, New York, USA.
- Balée, W. 2006. The research program of historical ecology. Annual Review of Anthropology 35:75-98.
- Esty, D.C., M.A. Levy, T. Srebotnjak, and A. de Sherbinin. 2005. 2005 Environmental Sustainability Index: Benchmarking National Environmental Stewardship. New Haven: Yale Center for Environmental Law & Policy.
- Esty, D.C., M.A. Levy, T. Srebotnjak, A. de Sherbinin, C.H. Kim, and B. Anderson. 2006. Pilot 2006 Environmental Performance Index. New Haven: Yale Center for Environmental Law & Policy.
- Esty, D.C., M.A. Levy, C.H. Kim, A. de Sherbinin, T. Srebotnjak, and V. Mara. 2008. 2008 Environmental Performance Index. New Haven: Yale Center for Environmental Law & Policy.
- Ewing B., S. Goldfinger, M. Wackernagel, M. Stechbart, S. M. Rizk, A. Reed and J. Kitzes. 2008. The Ecological Footprint Atlas 2008. Oakland: Global Footprint Network.
- Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, and C.S. Holling. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology and Evolutionary Systems 35:557-81.
- Forys, E.A., and C.R. Allen. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339-347.
- Fowler, C.W., and L. Hobbs. 2003. Is humanity sustainable? Proceedings of the Royal Society of London (Series B) 270:2579-2583.
- Fridley, J.D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T.J. Stohlgren, D. Tilman, and B. Von Holle. 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3-17.
- Havlicek, T. and S. R. Carpenter. 2001. Pelagic size distributions in lakes: are they discontinuous? Limnology and Oceanography 46:1021-1033.
- Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447-502.
- Holling, C.S., L.H. Gunderson, and G.D. Peterson. 2002. Sustainability and panarchies. *Panarchy: understanding transformations in human and natural systems* (ed. by L.H. Gunderson and C.S. Holling), pp. 63-102. Island Press, Washington, D.C.
- Hutchinson, G.E. 1959. Homage to Santa Rosalia, or why are there so many kinds of

- animals? American Naturalist 93:145-159.
- Kratena, K. 2004. Ecological value added in an integrated ecosystem-economy modelan indicator for sustainability. Ecological Economics 48:189-200.
- Lambert, W.D., and C.S. Holling. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body-mass distributions. Ecosystems 1: 157-175.
- Lambert, W.D. 2006. Functional convergence of ecosystems: evidence from body mass distributions of North American late Miocene faunas. Ecosystems 9:97-118.
- Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, D.C., USA.
- Nummi, P., K. Sjoberg, H. Poysa, and J. Elmberg. 2000. Individual foraging behaviour indicates resource limitation: an experiment with mallard ducklings. Canadian Journal of Zoology 78:1891-1895.
- Oksanen, L., S.D. Fretwell, and O. Jarvinen. 1979. Interspecific aggression and the limiting similarity of close competitors: the problem of size gaps in some community arrays. The American Naturalist 114:117-129.
- Peterson, G., C.R. Allen, and C.S. Holling. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6-18.
- Pickett, S.T.A., W.R. Burch, Jr., S.E. Dalton, T.W. Foresman, J.M. Grove, and R. Rowntree. 1997. A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosystems 1:185-199.
- Postel, S.L. 2003. Securing water for people, crops and ecosystems: new mindset and new priorities. Natural Resources Forum 27:89-98.
- Sandor, R.L., E.C. Bettelheim, I.R. Swingland. 2002. An overview of a free-market approach to climate change and conservation. Philosophical Transactions of the Royal Society of London, Series A 360:1607-1620.
- Smith, F.A., J.H. Brown, J.P. Haskell, S.K. Lyons, J. Alroy, E.L. Charnov, T. Dayan, B.J. Enquist, S.K.M. Ernest, E.A. Hadley, K.E. Jones, D.M. Kaufman, P.A. Marquet, B.A. Maurer, K.J. Niklas, W.P. Porter, B. Tiffney, and M.R. Willig. 2004.
 Similarity of mammalian body size across the taxonomic hierarchy and across space and time. The American Naturalist 163:672-691.
- Stratford, E, and J. Davidson. 2002. Capital assets and intercultural borderlands: sociocultural challenges for natural resource management. Journal of Environmental Management 66:429-440.
- Struglia, R., and P.L. Winter. 2002. The role of population projections in environmental management. Environmental Management 30:13-23.
- Stubblefield, J.W., J. Seger, J.W. Wenzel, and M.M. Heisler. 1993. Temporal, spatial, sex-ratio and body size heterogeneity of prey species taken by the beewolf *Philanthus sanbornii*, Hymenoptera: Sphecidae. Philosophical Transactions of the Royal Society of London (Series B) 339:397-423.
- Turner, M.G. 1990. Spatial and temporal analysis of landscape patterns. Landscape Ecology 4:21-30.
- Turner, B.L., R.E. Kasperson, P.A. Matson, J.J. McCarthy, R.W. Corell, L. Christensen, N. Eckley, J.X. Kasperson, A. Luers, M.L. Martello, C. Polsky, A. Pulsipher, and A. Schiller. 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences 100:8074-8079.

West, G.B., J.H. Brown and B.J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:5309.

CHAPTER 2: BODY MASS DISCONTINUITIES IN MEDITERRANEAN-CLIMATE ECOSYSTEMS

Over the last 35 years the population status of 1,686 vertebrate species has declined by 30% (Loh et al. 2008). Climate change, habitat loss, habitat degradation and the introduction of non-indigenous species (NIS) are just some of the factors that have contributed to an estimated three orders of magnitude increase in the rate of species extinction over the past few hundred years and significant changes in biodiversity worldwide (Millennium Ecosystem Assessment 2005). Invasive species have contributed to the decline of vertebrate species. The economic costs of invasive species exceed \$120 billion a year in environmental damages and are the primary cause for decline for approximately 42% of the United States' endangered species (Pimentel et al. 2005). Identifying the cause of invasions and the ability to reliably predict invasions are very poor (see Gallien et al. 2010). A better understanding would improve management and lessen the potential impacts on native species.

Landscapes form hierarchies that are structured by vegetative, geomorphologic and contagious disturbance processes (Holling 1992). The spatial and temporal patterns inherent in landscapes reflect numerous processes, interacting on distinct scales, which potentially shape the assembly of animal communities. Allen et al. 2006 reviewed five non-mutually exclusive hypotheses for observed body mass patterns, each operating at different scales; specifically energetic, phylogenetic, biogeographical, textural discontinuity and community interaction hypothesis. The authors suggest that their relevance varies with the scale at which each is applied. Community interactions produce

structure at local scales, the energetic and textural discontinuity at intermediate scales and the phylogenetic and biogeographical at broad scales. Many studies have reported a discontinuous body mass distribution reflecting the ecological structure of the landscape (Restrepo et al. 1997, Raffaelli et al. 2000, Havlicek & Carpenter 2001, see Allen & Holling 2008). These studies support the textural discontinuity hypothesis (TDH), which states that hierarchical landscape structures with scale-specific pattern entrain attributes of animals inhabiting the landscape (Holling 1992).

Organisms of different body sizes have different requirements for resources and operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot simultaneously interact with multiple scales, but has to specialize at a single scale or shift between two scales (Allen & Saunders 2002). Allen et al. (1999) suggest that the gaps between body mass aggregations represent scale breaks and that these points in the body mass distribution are highly susceptible to change in structure and ecological processes. Analysis of body-mass aggregations has been suggested as a predictor of invasiveness and endangerment (Allen et al. 1999). Allen & Saunders (2002) reported nomadic bird species in southcentral Australia were significantly associated with the edge of body mass aggregations. Allen et al. (1999) reported in four different south Florida taxa (birds, mammals and herpetofauna), that more invasive and declining species exist at the edge of body mass aggregations than could be expected by chance.

Here I examined whether invasive and endangered species were nonrandomly distributed in vertebrate body mass structures among five Mediterranean-climate ecosystems. Mediterranean-climate ecosystems are projected to incur the highest loss of biodiversity of all terrestrial ecosystems by the year 2100 (Sala et al. 2000) with South

Africa and southwestern Australia expected to undergo the most significant impact (Klausmeyer & Shaw 2009). These regions are interesting to ecologists and conservation biologists for a variety of reasons, including the ecological convergence mentioned above. They are biologically rich, with a relatively high level of endemism (Mittermeier et al. 2005). Mediterranean-climate regions support large human populations, resulting in extensive, rapid, anthropogenic transformation. In a study examining key threats and trends in Mediterranean-climate ecosystems, the California-Baja California region had the highest population density and highest percent urban area of any of the five Mediterranean regions examined, while southwestern Australia had the highest percentage of high intensity agriculture (Underwood et al. 2009). Compared to other continental areas, Mediterranean regions have been invaded by a large number of non-indigenous organisms, including vertebrates. Concomitant with invasions, declines and extinctions have transformed the faunas of Mediterranean ecoregions (Di Castri 1991).

Mediterranean-climate regions provide replicated examples of ecosystems that are similar in ecological structure and function, yet contain fauna that has been evolutionarily isolated (Cody and Mooney 1978, Peterson et al. 1998, Abbott and Le Maitre 2010). Thus, Mediterranean-climate ecosystems enable the comparison of scale specific vertebrate community structure and should exhibit similar body mass patterns. In order to test Holling's (1992) textural discontinuity hypothesis, I determined whether discontinuous body mass patterns existed in each of the five Mediterranean-climate ecosystems and examined whether the vertebrate body mass structures are similar among these systems. A lack of discontinuous body mass patterns and a lack of similarity among

these systems would provide strong evidence against the textural discontinuity hypothesis.

METHODS

Study Areas

Mediterranean-climate ecosystems occur in central coastal Chile, the Western
Cape Province of South Africa, San Diego County, California, the South West Botanical
Province in southwestern Australia, and Spain. Delineation of Mediterranean-climate
regions varies by author, especially whether one considers primarily climatic or
vegetative boundaries, therefore multiple sources were used to gain a consensus on the
extent of Mediterranean-climate habitat in each region (Akin 1991, Di Castri 1991,
Hobbs et al. 1995). In general, these ecosystems are characterized by winter rains with a
pronounced dry-season, and frequent fires (Hobbs et al. 1995). Vegetation is mainly
grassland and brush including Chaparral (California), Mattoral (Chile), Maquis (Spain),
Fynbos (South Africa) and Mallee or Kwongan (Australia). Although the entire
Mediterranean-climate ecosystem in California and Australia were not sampled, body
mass distribution analysis is robust to approximately 18% (mammals) and 15% (birds)
omission error (Sendzimir 1998). Therefore, my results are limited in scope to the areas
that I selected.

Native species

I examined two terrestrial vertebrate groups, birds and mammals. Species lists for Mediterranean-climate ecosystems were obtained from published sources. Californian mammals were determined from a specific study of their habitat preferences and

distribution (Quinn 1990). Unitt (2004) and Vuilleumier (1991) provided a thorough list of the birds of San Diego County. Vuilleumier (1991) provided a list of Chilean birds and Chilean mammals were provided by Miller (1981). Spanish mammals were determined from Cheylan (1991). Spanish birds were compiled from the comprehensive works of Cramp (1978 – 1994). Mammals residing in the Mediterranean-climate Fynbos of the southern cape of South Africa were determined from Smithers (1983). Winterbottom (1966) provided data on the avifauna of Mediterranean shrublands in South Africa. Mammal data for Australia were compiled from Strahan (1995). Australian birds were determined from Saunders and Ingram (1995).

Body-mass estimates

In most cases, body mass estimates for birds were compiled from Dunning (1993) and estimates for mammals from Silva and Downing (1995). Where possible, body mass estimates from the region of interest were used, otherwise estimates were taken from the nearest geographic location. Male and female body mass estimates were averaged when weights for both sexes were provided. The body sizes were recorded in grams and subsequently logarithmically transformed.

Species Criteria

A species was considered a non-indigenous species (NIS) to an ecosystem of interest if it was introduced, intentionally or inadvertently. Species introduced after the year 2006 and only species with established breeding populations were included in analyses. Endangered species were classified as those species listed as either extinct, endangered, a species of special concern, vulnerable or threatened. A list of NIS and endangered species was created utilizing data from the 2006 International Union for

Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species (IUCN 2006), but data quality varies by region and taxa.

Discontinuity Analysis

Body mass pattern or structure refers to the distribution of body mass aggregations and gaps along the body mass axis. Body mass distributions were analyzed for discontinuities using simulations of actual data compared to a null distribution (a continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 1997). A body-mass aggregation consisted of three or more species with body masses that did not exceed the expectation of the null distribution and was defined by the upper and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass aggregations were defined as significantly large areas between adjacent body masses that exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of discontinuities in the data was determined by calculating the probability that the observed discontinuities were chance events (compared observed values with output of 1,000 simulations run against the null set (Restrepo et al. 1997).

The number of species in my data sets vary from < 30 to > 150, therefore I maintained a constant statistical power of approximately 0.50 when setting alpha for detecting discontinuities (Lipsey 1990). Two other methods were also used to confirm the location of discontinuities. I used Bayesian Classification and Regression Trees (Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 1999) to further validate any patterns detected in body mass distributions. A multiple method approach in detecting significance in body mass patterns has been suggested as the best protocol (Allen et al. 2006, Stow et al. 2007). Visual examination of juxtaposition of pairs of

Mediterranean-climate ecosystem body mass distributions was also used to determine similarities in body mass aggregation patterns. Abundance data for each individual species was not integrated into my analyses. Changes in dominance of species (greater numbers of individuals) could change aggregation and gap locations, but body mass distribution patterns will be conserved despite changes in species composition or number (Havlicek & Carpenter 2001).

Chi-square and Phi correlation analyses were used to determine differences in body mass patterns between Mediterranean-climate ecosystems. The null hypothesis of the Chi-square analyses is that there are equal distributions among each of the four cells in a 2 x 2 table (one in the gap condition while the other is in the lump condition and vice versa, both in the lump condition and both in the gap condition), which would indicate that the two groups are unrelated. A Bonferroni correction was applied to account for multiple comparisons in the same analysis (Miller 1981). In order to provide additional information, a correlation of binary variables, using Phi correlation, was also utilized in order to elucidate more information and to determine the relationship between the Mediterranean-climate ecosystems. Species within each Mediterranean-climate ecosystems were assigned a binary variable (where 1 represented a body mass aggregation and 0 represented a gap), based on the log10 body mass axis, and divided into a 0.01 gram increment bin. The body mass axis range was limited by the shared data between the two groups. The Phi coefficient ranges from -1 to 1. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Fleiss et al. (2003) suggested that values greater than ± 0.30 indicate a strong relationship. NIS & Endangered Species Analysis

After completing these analyses, the location of NIS body masses within these distributions was determined. NIS and endangered species could be distributed in the body-mass patterns in various ways; randomly, within a limited range of body masses, at the edge of aggregations, invasives only within body mass aggregations or invasives only in the gaps (Figure 2.1). Both gaps and edges of body mass distributions represent changes in scale and areas of high variability (see Allen et al. 1999). I specifically tested whether NIS and endangered species occurred in gaps between body mass aggregations in the observed distribution more often than expected values if their distribution were random using a chi-square goodness of fit test.

T-tests were used to determine the distance to body mass aggregation edge of native endangered species compared to native non-endangered species and the distribution of NIS in terms of distance to the nearest edge in the observed distribution when compared to the native species distances from edges. Taxonomic groups were also analyzed separately for both comparisons. T-tests were also used to compare the distance to body mass aggregation edge of native and NIS, with NIS distance to body mass aggregation edge when gap spaces are set to zero. Gap space was set to zero in order to observe the results when you assume all NIS are actually on the edge.

RESULTS

Discontinuities

All ten Mediterranean-climate bird and mammal body-mass distributions were discontinuous. Unique aggregations of species were detected in each taxa, by all methods. I observed a range of 4-12 discontinuities in my datasets. There were a total of

57 endangered bird species and 52 endangered mammal species and a total of 54 invasive bird species (74.1% within body mass aggregations) and 41 invasive mammal species (48.8% within body mass aggregations) (Table 2.1). Bird communities had between 6 – 12 body mass aggregations and mammals had between 4 – 8 body mass aggregations in each community. Bird communities had a smaller average gap size ($x = 0.097 \pm 0.09$) than mammals ($x = 0.322 \pm 0.166$). Visual examination of juxtaposition of pairs of Mediterranean-climate ecosystem body mass distributions revealed similar overlapping patterns at some scales, but not at every scale, in either birds (Figure 2.2) or mammals (Figure 2.3).

Lump/Gap Structure

<u>Mammals</u>

Five of 10 pairwise comparisons between mammal body mass aggregations in Mediterranean-climate ecosystems were significant in the chi-square analysis and 5 of 10 pairwise comparisons were significant in the Phi correlation analysis (Tables 2.2 & 2.3). The pairwise comparisons between California and South Africa, Chile and southwestern Australia, Spain and South Africa, Spain and southwestern Australia, and South Africa and southwestern Australia indicated no similarity in body mass patterns. All other Mediterranean-climate ecosystem body mass patterns were similar to each other. The Phi coefficients between California and Chile, California and Spain, California and southwestern Australia, Chile and Spain, and Chile and South Africa indicated strong positive relationships. The Phi coefficients between Chile and southwestern Australia and between Spain and southwestern Australia indicated positive relationships, but the relationships were weak. The Phi coefficients between the remaining pairwise

comparisons of Mediterranean climate ecosystems indicated negative relationships, but the relationships were weak.

Birds

Two of 10 pairwise comparisons between bird body mass aggregations in Mediterranean-climate ecosystems were significant in the chi-square analysis and one of 10 pairwise comparisons were significant in the Phi correlation analysis (Tables 2.4 & 2.5). The pairwise comparisons between California and Chile and California and South Africa indicated similar body mass patterns. All other pairwise comparisons of Mediterranean-climate ecosystem body mass patterns were not similar to each other. The Phi coefficient between California and South Africa was the only comparison that indicated a strong positive relationship. The Phi coefficients between California and Chile, California and Spain, and Chile and southwestern Australia indicated positive relationships, but the relationships were weak. The Phi coefficients between the remaining pairwise comparisons of Mediterranean climate ecosystems indicated negative relationships, but the relationships were weak.

NIS and Endangered Species

The distance to edge of a body mass aggregation for native endangered species was significantly less than for non-endangered species in Australia mammals (z=1.345, P=0.09) and South Africa birds (z=1.56, P=0.06). The distance to edge of a body mass aggregation for native non-endangered species was significantly less than for endangered species in Spain mammals (z=2.66, P=0.004) and Australia birds (z=1.820, P=0.03) (Table 2.6). The distance to edge of a body mass aggregation for natives was significantly less than for NIS in California birds (z=1.3, P=0.10), Chile birds (z=1.13, P=0.10) and

Spain mammals (z=1.269, P=0.10). The distance to edge of a body mass aggregation for NIS was significantly less than for natives in Spain birds (z=-1.745, P=0.04) (Table 2.7). Pooling data across ecosystems, the distance to edge of a body mass aggregation for all native non-endangered was significantly less than for endangered species in birds (z=1.565, P=0.06) and the distance to edge of a body mass aggregation for all native was significantly less than for NIS, in mammals (z=1.869, P=0.03) (Table 2.8).

T-tests comparing distance to edge of a body mass aggregation for native and non-native species with NIS species in gaps set to zero were significant in California mammals (z=-1.41, P=0.08), Spain birds (z=-2.199, P=0.01) and mammals (z=-1.085, P=0.10), South Africa birds (z=-1.352, P=0.09), Australia mammals (z=-1.332, P=0.09) and Chile mammals (z=-1.915, P=0.03). Pooling data across ecosystems, t-tests comparing distance to edge of a body mass aggregation for all native and NIS, with NIS species in gaps set to zero, were significant in both taxonomic groups (birds, P = 0.06; mammals, P = 0.004) (Table 2.9).

NIS birds (X^2 =29.91, 4 df; P = 5.11^{e-06}) and mammals (X^2 =34.25, 4 df; P = 6.63^{e-07}) occurred in gaps between body mass aggregations in the observed distribution more often than expected (Table 2.10). Based on calculated gap space, NIS birds (X^2 =2.68, 4 df; P = 0.61) and mammals (X^2 =3.67, 4 df; P = 0.45) did not occur in gaps between body mass aggregations in the observed distribution more often than expected. Declining species of birds (X^2 =31.32, 4 df; P = 2.63^{e-06}) and mammals (X^2 =8.80, 4 df; P = 0.07) occurred at body mass aggregation edges in the observed distribution more often than expected (Table 2.11). Based on calculated gap space, declining species of birds

 $(X^2=6.88, 4 df; P=0.14)$ and mammals $(X^2=1.28, 4 df; P=0.86)$ did not occur at body mass aggregation edges in the observed distribution more often than expected.

DISCUSSION

Discontinuous body-mass distributions were found in all Mediterranean-climate ecosystems and taxa examined. Discontinuities in body mass distributions have also been shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, birds, and mammals (Allen et al. 1999, Allen 2006), Pleistocene and Miocene mammals (Lambert and Holling 1998, Lambert 2006), tropical forest birds (Restrepo et al. 1997), and boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed in Sendzimir et al. 2003). This analysis extends these conclusions to include animal communities across Mediterranean-climate ecosystems of the world.

Body mass distribution patterns observed using the statistical methods employed in this dissertation are real and are not an apparent effect of random noise. Sendzimir (1998) ran simulations to determine differences in observed body mass distributions compared to simulated body mass distribution patterns. Aggregation pattern recognition did decline below robust levels in the 10 to 15 percent (mammals) and 5 percent level (birds) of error due to random variation in body size in mammals. This decline in aggregation pattern recognition was evident across all body sizes in both mammals and birds.

Bird communities had more aggregations than mammal communities and mammal communities had larger gap sizes than birds. These differences may be due to how each taxa perceive and interact with landscape structure. It has been suggested that

birds live in a more three dimensional world and mammals live in a one dimensional world (Holling 1992). If this were the case, birds would be able to access a greater number of resources enabling the use of a more complex landscape structure and allow birds to occupy more niches. More niches could account for a greater number of aggregations, which would contradict the textural discontinuity hypothesis. TDH would posit that as a landscape becomes more structurally complex, the opportunity to fill new niches increases, not vice versa. Birds and mammals also have different locomotory modes, affording birds the ability to utilize both terrestrial and aerial resources in any given landscape (Sendzimir 1998).

Mediterranean-climate ecosystems are geographically isolated regions that have long been considered to be structurally similar and have similar climatic regimes. However, more in-depth research of ecological processes within these ecosystems suggests that these regions are examples of both convergence and divergence (reviewed in Rundel 2011). Only 35% of all pairwise comparisons between the structures of body mass distributions in five Mediterranean-climate ecosystems were determined to be similar. These results may be due to inherent differences in soil fertility, geology, differential rainfall, topographic heterogeneity, climatic heterogeneity, and different disturbance regimes (i.e., fire frequency) among these Mediterranean-climate ecosystems (Di Castri 1991, reviewed in Cowling et al. 1996).

Differences in human transformation of these Mediterranean-climate ecosystems might also explain the lack of similarity in all pairwise comparisons between ecosystems. The Mediterranean Basin (i.e., Spain in this analysis) has the oldest history of human occupation (i.e., agriculture and animal husbandry) dating back 10,000 years ago (Naveh

& Kutiel 1990). The other regions were inhabited by hunter-gatherers and pastoralists until colonization which subsequently brought European grains and livestock to these regions (Aschmann 1973). Differences in time since settlement, cultural differences between the colonizing countries, and other regional differences (i.e., availability of resources and relationships between colonizers and indigenous people) may have contributed to differences in current patterns of human transformation between Mediterranean-climate ecosystems, thus resulting in differences in landscape structure between ecosystems (Hobbs et al. 1995). Differences in present and projected human population sizes, growth rates, and densities between Mediterranean-climate ecosystems have major impacts on land use, resulting in different patterns of landscape transformation (Mooney et al. 2001). Thus, body mass distributions within these ecosystems will never be the same in all pairwise comparisons. My results may also be an artifact of the type of statistical analysis applied to the data. Chi-square and Phi correlation analyses may not have been appropriate; however, no other statistical analyses for this type of comparison have ever been documented.

More NIS and endangered species were found to occur at the edges of body mass aggregations than could be expected by chance alone in 30% of datasets, thus supporting similar analyses which examined the distribution of NIS and endangered species in relation to body mass aggregations (Allen et al. 1999). Skillen and Maurer (2008) reported an average of 52% of declining species were closer to body mass aggregation edges than the median distance to the nearest body mass aggregation edge and showed an average of 72% of NIS were further away from body mass aggregation edges than the median distance (i.e., located in gaps). In those regions where invasive and endangered

species were not found near the edges of body mass aggregations, plausible factors may be degree of human alteration or influence, species assemblages transitioning from a recent environmental change, or a delayed response to a prior change in the environment (Skillen and Maurer 2008). Body mass aggregation edges and gaps between body mass aggregations or scale breaks have been referred to as "zones of crisis and opportunity" (Allen et al. 1999) depending on whether the species is an endangered species or an invader.

The results of this study clearly have significant implications for the field of landscape ecology and conservation biology. Humans continually altering the landscape at an increasing rate, current patterns of global change (i.e., climate change and globalization), and an increased rate of invasions (Vitousek et al. 1996, Mooney and Cleland 2001, Lodge and Shrader-Frechette 2003), will continue to change the composition of animal communities both locally, regionally and globally. My results may help our ability to maintain ecosystem resilience by making the proper management decisions in monitoring particular non-indigenous species (those closest to body mass aggregation edges and in gaps) and focus conservation efforts on those native species nearest body mass aggregation edges (i.e., the endangered ones).

Table 2.1. Overall number of native species in five Mediterranean-climate ecosystems, the overall percentage of endangered and non-indigenous species (NIS), the percentage of NIS species in each region after a hypothetical removal of threatened species, the number of discontinuities and the percentage of NIS within body mass aggregations.

	Number of					% of NIS
	Native Bird			% NIS After	Number of	within
	and Mammal			Extinction of	Discontinuities (birds,	body mass
Region	Species	% Endangered	% NIS	Threatened Species	mammals)	aggregations
California	148	12.8	13.5	15.5	9,5	70
Chile	150	3.3	13.3	13.8	9,4	65
Spain	165	20	10.3	12.9	6,8	59
South Africa	157	8.3	11.5	12.5	7,7	61
Southwestern						
Australia	188	16.5	10.6	12.7	12,5	60

Table 2.2. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem mammal body mass aggregations. Probability levels less than or equal to 0.005 were considered significant matches between the lump and gap architecture of the compared ecosystems.

			South	Southwestern
	Chile	Spain	Africa	Australia
California	<.0001*	<.0001*	0.0326	<.0001*
Chile		<.0001*	<.0001*	0.4484
Spain			0.5239	0.4445
South Africa				0.3378

Table 2.3. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem mammal body mass aggregations. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than \pm .30 indicate a strong relationship between the lump and gap architecture of the compared ecosystems.

			South	Southwestern
	Chile	Spain	Africa	Australia
California	0.2895*	0.3932*	-0.1016	0.4488*
Chile		0.3790*	0.4681*	0.0486
Spain			-0.0301	0.0455
South Africa				-0.0519

Table 2.4. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem bird body mass aggregations. Probability levels less than or equal to 0.005 were considered significant matches between the lump and gap architecture of the compared ecosystems.

		South	Southwestern
Chile	Spain	Africa	Australia
0.0023*	0.1059	<.0001*	0.1184
	0.0566	0.9393	0.9634
		0.2529	0.2389
			0.0235
	0.0023*	0.0023* 0.1059	Chile Spain Africa 0.0023* 0.1059 <.0001* 0.0566 0.9393 0.2529

Table 2.5. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem bird body mass aggregations. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than \pm .30 indicate a strong relationship between the lump and gap architecture of the compared ecosystems.

			South	Southwestern
	Chile	Spain	Africa	Australia
California	0.1771	0.0940	0.5017*	-0.0860
Chile		0.1143	-0.0046	0.0027
Spain			-0.0692	-0.0682
South Africa				-0.1366

Table 2.6. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body mass aggregation of endangered and non-endangered bird and mammal species in five Mediterranean-climate ecosystems.

Region	Non-Endangered	Endangered		Birds N	Non-Endangered	Endangered	Mamm	als
	x(SD)	x(SD)	Z	P	x(SD)	x(SD)	Z	P
California	0.071(.069)	0.083(.113)	0.985	0.160	0.099(.106)	0.12(.085)	0.540	0.290
Chile	0.054(.044)	0.075(.030)	0.774	0.220	0.15(.151)	0.078(.135)	-1.050	0.150
Spain	0.144(.132)	0.143(.115)	0.290	0.390	0.045(.056)	0.080(.054)	2.660	0.004*
South Africa	0.061(.063)	0.040(.080)	1.560	0.060*	0.118(.121)	0.130(.119)	0.389	0.350
SWAustralia	0.046(.053)	0.134(.214)	1.820	0.030*	0.171(.135)	0.119(.100)	1.345	0.090*
S w Australia	0.046(.053)	0.134(.214)	1.820	0.030*	0.171(.135)	0.119(.100)	1.345	0.09

Table 2.7. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body mass aggregation of native and non-indigenous (NIS) bird and mammal species in five Mediterranean-climate ecosystems.

Region	Native	NIS	Bi	rds	Native	NIS	Mar	nmals
	x(SD)	x(SD)	Z	P	x(SD)	x(SD)	Z	P
California	0.073(.077)	0.087(.067)	1.300	0.100*	0.101(.103)	0.118(.074)	0.515	0.300
Chile	0.054(.043)	0.081(.062)	1.130	0.100*	0.143(.149)	0.115(.089)	0.244	0.400
Spain	0.144(.128)	0.072(.105)	1.745	0.040*	0.051(.057)	0.073(.051)	1.269	0.100*
South Africa	0.059(.064)	0.048(.034)	0.222	0.410	0.120(.120)	0.136(.093)	0.830	0.200
SWAustralia	0.051(.076)	0.053(.069)	0.180	0.430	0.140(.116)	0.206(.171)	0.993	0.160

Table 2.8. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body mass aggregation of all endangered and non-endangered bird and mammal species and native compared to non-indigenous (NIS) bird and mammal species, pooling five Mediterranean-climate ecosystems.

			Non-					
Taxonomic			Endangered					
Group	Non-Endangered	Endangered	Endangered	1	Native N	NIS	Native/NIS	
	x(SD)	x(SD)	Z	P	x(SD)	x(SD)	Z	P
Birds	0.072(.083)	0.113(.131)	1.565	0.0	0.076(.090)	0.069(.070)	0.398	0.350

Table 2.9. Results of t-tests comparing mean (x) and standard deviation (SD) distance to edge of body mass aggregation of native and non-indigenous (NIS) bird and mammal species with NIS species in gaps set to zero in five Mediterranean-climate ecosystems.

Region	Native	NIS	Bi	irds	Native	NIS	Man	nmals
	x(SD)	x(SD)	Z	P	x(SD)	x(SD)	Z	P
California	0.073(.077)	0.079(.073)	0.478	0.316	0.101(.103)	0.053(.091)	-1.41	0.080*
Chile	0.054(.043)	0.077(.067)	0.759	0.224	0.143(.149)	0.046(.066)	1.915	0.030*
Spain	0.144(.128)	0.065(.109)	2.199	0.010*	0.051(.057)	0.030(.062)	1.085	0.100*
South Africa	0.059(.064)	0.033(.043)	1.352	0.090*	0.120(.120)	0.108(.117)	0.333	0.370
SWAustralia	0.051(.076)	0.046(.072)	0.919	0.180	0.140(.116)	0.079(.107)	1.332	0.090*
Combined	0.076(.090)	0.060(.075)	1.523	0.060*	0.11(.115)	0.065(.091)	2.695	0.004*

Table 2.10. Results of Chi-Square analyses comparing the observed distribution of non-indigenous birds and mammals in gaps between body mass aggregations in five Mediterranean-climate ecosystems.

	Birds		Mammals	
Region	Expected	Observed	Expected	Observed
California	1.218	2	1.03	4
Chile	0.656	1	2	6
Spain	0.583	3	1.34	4
South Africa	0.87	4	0.955	3
SW Australia	1.076	4	1.07	4
X^2	29.91(5.11E-06)*		34.25(6.63E-07)*	

Table 2.11. Results of Chi-Square analyses comparing the observed distribution of endangered birds and mammals in gaps between body mass aggregations in five Mediterranean-climate ecosystems.

	Birds		Mammals	
Region	Expected	Observed	Expected	Observed
California	1.73	7	0.69	1
Chile	0.18	0	0.50	2
Spain	1.55	1	1.53	2
South Africa	0.29	2	1.31	3
SW Australia	0.89	0	3.47	6
X^2	31.32 (2.63E-06)*		8.80(0.07)*	

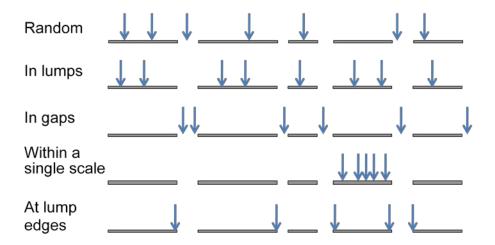


Figure 2.1. Potential patterns of where invasive and endangered species could be distributed in the context of vertebrate body mass distributions. Each pattern supports a different hypothesis.

Figure 2.2. Juxtaposition of bird body mass aggregations across five Mediterraneanclimate ecosystems.

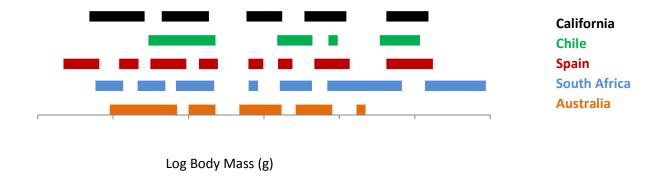


Figure 2.3. Juxtaposition of mammal body mass aggregations across five Mediterraneanclimate ecosystems.

LITERATURE CITED

- Akin, W.E. 1991. *Global patterns: climate, vegetation and soils.* University of Oklahoma Press, Norman, OK, USA.
- Allen, C.R., E.A. Forys, and C.S. Holling. 1999. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2:114-121.
- Allen, C.R., and D.A. Saunders. 2002. Variability between scales: predictors of nomadism in birds of an Australian Mediterranean-climate ecosystem. Ecosystems 5:348-359.
- Allen, C.R. 2006. Predictors of introduction success in the South Florida avifauna. Biological Invasions 8:491-500.
- Allen, C.R., A.S. Garmestani, T.D. Havlicek, P.A. Marquet, G.D. Peterson, C. Restrepo, C.A. Stow, and B. Weeks. 2006. Keystone processes and ecological organization: evaluating alternative explanations for patterns in body size distributions. Ecology Letters 9:630-643.
- Allen, C.R. and C.S. Holling. 2008. *Discontinuities in ecosystems and other complex systems*. University of Colombia Press, New York, NY, USA.
- Aschmann, H. 1973. Man's impact on several regions with Mediterranean climates. *Mediterranean-type ecosystems. Origin and structure. Ecological studies 7* (ed. by F. di Castri & H.A. Mooney), pp. 363-371. Springer, New York, NY, USA.
- Cheylan, G. 1991. Patterns of Pleistocene turnover, current distribution and speciation among Mediterranean mammals. *Biogeography of Mediterranean invasions* (ed. by R.H. Groves and F. di Castri), pp. 227–262. Cambridge University Press, Cambridge, United Kingdom.
- Chipman, H.A., E.I. George, and R.E. McCulloch. 1998. Bayesian CART model search. Journal of the American Statistical Association 93:935-948.
- Cowling, R.M., P.W. Rundel, B.B. Lamont, M.K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology & Evolution 11:362-366.
- Cramp, S. 1978 1994. *The birds of the western Palearctic, Vols 1-9.* Oxford University Press, Oxford, United Kingdom.
- Di Castri, F. 1991. An ecological overview of the five regions of the world with a Mediterranean climate. *Biogeography of Mediterranean invasions* (ed. by R.H. Groves and F. di Castri), pp. 227–262. Cambridge University Press, Cambridge, United Kingdom.
- Dunning, J.B. Jr. 1993. *CRC handbook of avian body masses*. CRC Press, Ann Arbor, MI, USA.
- Fleiss, J.L., B. Levin, and M.C. Paik. 2003. Comparative studies: cross-sectional, naturalistic, or multinomial sampling. *Statistical methods for rates and proportions* (ed. by J.L. Fleiss, B. Levin, and M.C. Paik), pp. 95-143. John Wiley & Sons, Inc. Hoboken, New Jersey, USA.
- Forys, E.A., and C.R. Allen. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339-347.
- Gallien, L., T. Munkemuller, C.H. Albert, I. Boulangeat, and W. Thuiller. 2010.

 Predicting potential distributions of invasive species: where to go from here?

 Diversity and Distributions 2010:1-12.

- Havlicek, T. and S. R. Carpenter. 2001. Pelagic size distributions in lakes: are they discontinuous? Limnology and Oceanography 46:1021-1033.
- Hobbs, R., D. Richardson, and G. Davis. 1995. Mediterranean-type ecosystems: opportunities and constraints for studying the function of biodiversity. *Mediterranean-type ecosystems: the function of biodiversity* (ed. by G. Davis and D. Richardson), pp. 1-42. Springer-Verlag, Berlin, Germany.
- Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447-502.
- IUCN. 2006. 2006 IUCN Red List of Threatened Species. http://www.iucnredlist.org. Accessed 4 May 2006.
- Klausmeyer, K.R., and M.R. Shaw. 2009. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLOS One 4:e6392.
- Lambert, W.D., and C.S. Holling. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body-mass distributions. Ecosystems 1:157-175.
- Lambert, W.D. 2006. Functional convergence of ecosystems: evidence from body mass distributions of North American late Miocene faunas. Ecosystems 9:97-118.
- Lipsey, M.W. 1990. *Design sensitivity statistical power for experimental research*. Sage Publications, Inc. Newbury Park, CA, USA.
- Lodge, D.M., and K. Shrader-Frechette. 2003. Nonindigenous species: ecological explanation, environmental ethics, and public policy. Conservation Biology 17:31-37.
- Loh, J., B. Collen, L. McRae, T.T. Carranza, F.A. Pamplin, R. Amin and J.E.M. Baillie. 2008. Living Planet Index. *Living Planet Report 2008* (ed. by C. Hails) pp 6-20. WWF International, Gland, Switzerland. http://assets.panda.org/downloads/living_planet_report_2008.pdf.
- Millennium Ecosystem Assessment. 2005. *Ecosystems and human well-being: biodiversity synthesis*. World Resources Institute, Washington, D.C., USA.
- Miller, P.C. 1981. Resource use by chaparral and matorral: a comparison of vegetation function in two Mediterranean-type ecosystems. Springer-Verlag, New York, NY, USA.
- Miller, R.G., Jr. 1981. *Simultaneous statistical inference*. MacGraw Hill, New York, NY. Mittermeier, R.A., P.R. Gil, M. Hoffman, J. Pilgrim, T. Brooks, C.G. Mittermeier, J.
- Lamoreux, G.A.B. da Fonseca, and P.A. Seligmann. 2005. Hotspots Revisited: earth's biologically richest and most endangered terrestrial ecoregions. Conservation International, 392pp.
- Mooney, H.A., and E.E. Cleland. 2001. The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences 98:5446-5451.
- Mooney, H.A., M.T.K. Arroyo, W.J. Bond, J. Canadell, R.J. Hobbs, S. Lavorel, and R.P. Neilson. 2001. Mediterranean-climate ecosystems. *Global biodiversity in a changing environment. Scenarios for the 21st century* (ed. by F.S. Chapin III, O.E. Sala, and E. Huber-Sannwald), pp. 157-199. Springer, New York, NY, USA.
- Naveh, Z., and P. Kutiel. 1990. Changes in the Mediterranean vegetation of Israel in

- response to human habitation and land use. *The earth in transition. Patterns and processes of biotic impoverishment* (ed. by G.M. Woodwell), pp. 259-299. Cambridge University Press, Cambridge, United Kingdom.
- Peterson, G., C.R. Allen, and C.S. Holling. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6-18.
- Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52:273-288.
- Quinn, R.D. 1990. Habitat preferences and distribution of mammals in California chaparral. Research Paper PSW-202. Pacific Southwest Research Station, U.S.D.A. Forest Service, Berkeley, CA, USA.
- Raffaelli, D., S. Hall, C. Emes, and B. Manly. 2000. Constraints on body size distributions: an experimental approach using a small-scale system. Oecologia 122:389-398.
- Restrepo, C., L.M. Renjifo, and P. Marples. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. *Tropical forest remnants: ecology, management and conservation of fragmented communities* (ed. by W.F. Laurance, R.O. Bierregaard, and C. Moritz), pp. 171-189. University of Chicago Press, Chicago, IL, USA.
- Rundel, P.W. 2011. Convergence and divergence in Mediterranean-climate ecosystems. *The ecology of place: contributions of place-based research to ecological understanding* (ed. by I. Billick and M.V. Price), pp. 93-108. University of Chicago Press, Chicago, IL, USA.
- Sala, O.E., F.S. Chapin, J.J. Armesto, E. Berlow and J. Bloomfield. 2000. Biodiversity global biodiversity scenarios for the year 2100. Science 287:1770-1774.
- SAS Institute Inc. 1999. SAS user's guide: statistics, version 5 edition. SAS Institute, Cary, N.C., USA.
- Saunders D.A. and JA Ingram. 1995. *Birds of southwestern Australia: an atlas of changes in the distribution and abundance of the wheatbelt avifauna*. Chipping Norton, New South Wales, Australia.
- Sendzimir, J.P. 1998. Patterns of animal size and landscape complexity: correspondence within and across scales. Dissertation, University of Florida.
- Sendzimir, J., C.R. Allen, L. Gunderson and C. Stow. 2003. Implications of body mass patterns: linking ecological structure and process to wildlife conservation and management. *Landscape ecology and resource management: linking theory with practice* (ed. by J. Bissonette, J. and I. Storch), pp. 125-152. Island Press, Washington, D.C., USA.
- Silva M. and J.A. Downing. 1995. *CRC handbook of mammalian body masses*. CRC Press, Boca Raton, FL, USA.
- Skillen, J.J and B.A. Maurer. 2008. The ecological significance of discontinuities in body mass distributions. *Discontinuities in ecosystems and other complex systems* (ed. by C.R. Allen and C.S. Holling), pp. 193-218. University of Chicago Press, Chicago, IL, USA.
- Smithers, R.H.N. 1983. *The mammals of the southern African subregion*. University of Pretoria, Pretoria, South Africa.
- Strahan, R. 1995. The mammals of Australia. Smithsonian Institution Press, Washington,

- D.C., USA.
- Stow, C.A., C.R. Allen, and A.S. Garmestani. 2007. Comparison of methods for detecting discontinuities in complex systems. Ecology and Society 12:26.
- Underwood, E.C., J.H. Viers, K.R. Klausmeyer, R.L. Cox, and M.R. Shaw. 2009. Threats and biodiversity in the Mediterranean biome. Diversity and Distributions 15:188-197.
- Unitt, P. 2004. *San Diego County Bird Atlas*. San Diego Natural History Museum, San Diego, CA, USA.
- Vitousek, P.M., C.M. D'Antonio, L.L. Loope, and R. Westbrooks. 1996. Biological invasions as global environmental change. American Scientist 84:468-478.
- Vuilleumier, F. 1991. Invasions in the mediterranean avifaunas of California and Chile. *Biogeography of Mediterranean Invasions* (ed. by R.H. Groves and F. di Castri), pp. 327-358. Cambridge University Press, Cambridge, MA, USA.
- West, G.B., J.H. Brown and B.J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:5309.
- Winterbottom, JM. 1966. Ecological distribution of birds in the indigenous vegetation of the southwest cape. Ostrich 37:76-91.

CHAPTER 3: CHANGES IN ALPHA, BETA & GAMMA DIVERSITY OF FUNCTION IN MEDITERRANEAN-CLIMATE ECOSYSTEMS

Climate change, habitat loss, habitat degradation and the introduction of non-indigenous species (NIS) are just some of the factors that have contributed to an estimated three orders of magnitude increase in the rate of species extinction over the past few hundred years and significant changes in biodiversity worldwide (Millennium Ecosystem Assessment 2005). Biodiversity is the composition, structure and function of an ecosystem (Noss 1990). Therefore, biological diversity must be treated more seriously as a global resource to be indexed, used and preserved (Wilson 1988).

Landscapes form hierarchies (which contain breaks in object proximities, and textures at particular scales and sizes of objects) that are structured by vegetative, geomorphologic and contagious disturbance processes (Holling 1992). The spatial and temporal patterns inherent in landscapes reflect numerous processes, interacting on distinct scales, which potentially shape the assembly of animal communities. Many studies have reported a discontinuous body mass distribution reflecting the ecological structure of the landscape (see Allen & Holling 2008). These studies support the textural discontinuity hypothesis (TDH), which states that hierarchical landscape structures with scale-specific pattern entrain attributes of animals inhabiting the landscape (Holling 1992).

Organisms of different body sizes have different requirements for resources and operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot simultaneously interact with multiple scales, but has to specialize at a single scale or shift

between two scales (Allen & Saunders 2002). Allen et al. (1999) suggest that the gaps between body mass aggregations represent scale breaks and that these points in the body mass distribution are highly susceptible to change in structure and ecological processes. Analysis of body-mass aggregations may provide insight into functional group change within and across scales (i.e., cross-scale resilience) following invasions and extinctions (Forys & Allen 2002). In order to test Holling's (1992) textural discontinuity hypothesis, I determined whether discontinuous body mass patterns existed in each of the five Mediterranean-climate ecosystems. A lack of discontinuous body mass patterns would provide strong evidence against the textural discontinuity hypothesis.

Following landscape change and native species decline, NIS may become established and can affect ecosystem processes at varying scales and may lead to the further extinction of native species (Williamson 1996, Vitousek et al. 1997). Thus, NIS may alter; 1) alpha diversity, which refers to the diversity within a particular ecosystem and is expressed by the number of species in that ecosystem, 2) beta diversity, which refers to the diversity between two ecosystems and is expressed by the total number of species unique to each of the ecosystems being compared and 3) gamma diversity, which is the overall diversity in all ecosystems within a particular region (Whittaker 1972, Balée 2006, Fridley et al. 2007).

In a recent review of the Convention on Biological Diversity's 2020 goals, authors suggest that an assessment of functional diversity is missing. In order to realize the benefits of ecosystem services, which are derived from ecosystem functions, the species that perform those functions must be conserved (Perrings et al. 2010). However, species are not equal in their effects on ecosystem functioning (Mouchet et al. 2010).

Function typically refers to ecological functions, such as pollination, seed dispersal, predation or grazing. Functional diversity is based on what organisms do, not on their evolutionary history (reviewed in Petchey & Gaston 2006). Functional diversity is an important determinant of ecosystem processes and is defined as the number of functional groups represented by the species in a community (reviewed in Petchey & Gaston 2002).

The potential loss of native species richness may disrupt ecological processes that inherently shape landscape structure, such as predator-prey dynamics, seed dispersal, hydrology, nutrient cycling and fire regime. Most studies have examined the effects of invasive species on species richness, not functional group diversity (reviewed in Vitousek et al. 1996). Few studies analyze functional diversity in relation to invasions (Forys & Allen 2002, Hooper and Dukes 2010). Peterson et al. (1998) suggest ecological resilience is generated more by functional diversity than by species richness and that redundancy of functional groups across scales increases cross-scale resilience.

Mediterranean-climate ecosystems are among the most diverse and threatened in the world (Malcolm et al. 2006). Mediterranean-climate ecosystems are projected to incur the highest loss of biodiversity of all terrestrial ecosystems by the year 2100 (Sala et al. 2000) with South Africa and southwestern Australia expected to undergo the most significant impact (Klausmeyer & Shaw 2009). These regions are also densely populated by humans and have been altered by human habitation and landscape transformation. Mediterranean-climate regions support large human populations, resulting in extensive, rapid, anthropogenic transformation. In a study examining key threats and trends in Mediterranean-climate ecosystems, the California-Baja California region had the highest population density and highest percent urban area of any of the five Mediterranean

regions examined, while southwestern Australia had the highest percentage of high intensity agriculture (Underwood et al. 2009). Mediterranean-climate ecosystems provide a unique data set because they are highly invaded communities whose non-indigenous fauna has been well-documented. They have been invaded by numerous non-indigenous vertebrate species and declines and extinctions of native species have transformed the faunal community composition in these regions (Malcolm et al. 2006). Here, I investigate the effects of invasive species and the loss of endangered species on functional group composition. Specifically, how these changes affect biodiversity and functional group representation within and across body mass aggregations at various scales.

METHODS

Study Areas

I focused on central coastal Chile, the Western Cape Province of South Africa,
San Diego County, California, the South West Botanical Province in western Australia,
and Spain. Delineation of Mediterranean-climate regions varies by author, especially
whether one considers primarily climatic or vegetative boundaries, therefore multiple
sources were used to gain a consensus on the extent of Mediterranean-climate habitat in
each region (Akin 1991, Di Castri 1991, Hobbs et al. 1995). In general, these ecosystems
are characterized by winter rains with a pronounced dry-season and frequent fires (Hobbs
et al. 1995). Vegetation is mainly grassland and brush including Chaparral (California),
Mattoral (Chile), Maquis (Spain), Fynbos (South Africa) and Mallee or Kwongan
(Australia). Although the entire Mediterranean-climate ecosystem in California and
Australia were not sampled, body mass distribution analysis is robust to approximately

18% (mammals) and 15% (birds) omission error (Sendzimir 1998). Therefore, my results are limited in scope to the areas that I selected.

Native species

I examined two terrestrial vertebrate groups, birds and mammals. Species lists for Mediterranean-climate ecosystems were obtained from published sources. Californian mammals were determined from a specific study of their habitat preferences and distribution (Quinn 1990). Unitt (2004) provided a thorough list of the birds of San Diego County. Vuilleumier (1991) provided a list of Chilean birds and Chilean mammals were provided by Miller (1981). Spanish mammals were determined from Cheylan (1991). Spanish birds were compiled from the comprehensive works of Cramp (1978 – 1994). Mammals residing in the Mediterranean-climate Fynbos of the southern cape of South Africa were determined from Smithers (1983). Winterbottom (1966) provided data on the avifauna of Mediterranean shrublands in South Africa. Mammal data for Australia were compiled from Strahan (1995). Australian birds were determined from Saunders and Ingram (1995).

Body-mass estimates

In most cases, body mass estimates for birds were compiled from Dunning (1993) and estimates for mammals from Silva and Downing (1995). Where possible, body mass estimates from the region of interest were used, otherwise estimates were taken from the nearest geographic location. Male and female body mass estimates were averaged when weights for both sexes were provided. The body sizes were recorded in grams and subsequently logarithmically transformed.

Species Criteria

A species was considered NIS to an ecosystem of interest if it was introduced, intentionally or inadvertently. Species introduced after the year 2006 and only species with established breeding populations were included in analyses. Endangered species were classified as those species listed as either extinct, endangered, a species of special concern, vulnerable or threatened. A list of invasive and endangered species was created utilizing data from the 2006 International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species (IUCN 2006), but data quality varies by region and taxa.

Discontinuity Analysis

Body mass pattern or structure refers to the distribution of body mass aggregations and gaps along the body mass axis. Body mass distributions were analyzed for discontinuities using simulations of actual data compared to a null distribution (a continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 1997). A body-mass aggregation consisted of three or more species with body masses that did not exceed the expectation of the null distribution and was defined by the upper and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass aggregations were defined as significantly large areas between adjacent body masses that exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of discontinuities in the data was determined by calculating the probability that the observed discontinuities were chance events (compared observed values with output of 1,000 simulations run against the null set (Restrepo et al. 1997).

The number of species in my data sets vary from < 30 to > 150, therefore I maintained a constant statistical power of approximately 0.50 when setting alpha for

detecting discontinuities (Lipsey 1990). Two other methods were also used to confirm the location of discontinuities. I used Bayesian Classification and Regression Trees (Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 1999) to further validate any patterns detected in body mass distributions. A multiple method approach in detecting significance in body mass patterns has been suggested as the best protocol (Allen et al. 2006, Stow et al. 2007). Abundance data for each individual species was not integrated into my analyses. Changes in dominance of species (greater numbers of individuals) could change aggregation and gap locations, but body mass distribution patterns will be conserved despite changes in species composition or number (Havlicek & Carpenter 2001).

Chi-square and Phi correlation analyses were used to determine differences in body mass patterns between Mediterranean-climate ecosystems. The null hypothesis of the Chi-square analyses is that there are equal distributions among each of the four cells in a 2 x 2 table (one in the gap condition while the other is in the lump condition and vice versa, both in the lump condition and both in the gap condition), which would indicate that the two groups are unrelated. A Bonferroni correction was applied to account for multiple comparisons in the same analysis (Miller 1981). In order to provide additional information, a correlation of binary variables, using Phi correlation, was also utilized in order to elucidate more information and to determine the relationship between the Mediterranean-climate ecosystems. Species within each Mediterranean-climate ecosystems were assigned a binary variable (where 1 represented a body mass aggregation and 0 represented a gap), based on the log10 body mass axis, and divided into a 0.01 gram increment bin. The body mass axis range was limited by the shared data

between the two groups. The Phi coefficient ranges from -1 to 1. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Fleiss et al. (2003) suggested that values greater than ± 0.30 indicate a strong relationship. Functional Diversity Analysis

Species richness has low explanatory power (i.e., does not identify the unique ecological role of each species) and should not be used as a measure of functional diversity (Petchey et al. 2004). However, there is a positive correlation between species richness and functional diversity (Tilman et al. 1996). I constructed functional group classifications using both diet and foraging strata, based on published species accounts (Table 3.1). Functional diversity, or functional group richness, was calculated as the number of diet/foraging strata present in each body mass aggregation. Functional diversity change across scales (i.e., alpha, beta and gamma diversity of function) was determined using the Shannon Index H' (Shannon and Weaver 1949). In order to isolate the effects of NIS on an ecosystem and predict their future impact, a "preinvasion" species list included all native species, all species listed as endangered and native species that are extinct. A "postinvasion" species list included native species and NIS with established breeding populations. This list assumed that all endangered species will go extinct in the near future; therefore currently endangered species were omitted.

Shannon Index values were used to compare alpha, beta and gamma diversity of function in each taxa; 1) original community composition contrasted with the addition of NIS, 2) original community composition contrasted with a postinvasion community, and 3) original community composition with NIS contrasted with a postinvasion community. T-tests were used to compare functional group richness preinvasion versus postinvasion,

by taxa and when combined. In order to determine any changes in the redundancy in functional groups across scales, I used t-tests to compare the number of body mass aggregations where at least one member of a functional group was present preinvasion to the number of aggregations where it occurred postinvasion (Forys and Allen 2002). Taxonomic groups were analyzed separately.

RESULTS

Discontinuities

All ten Mediterranean-climate bird and mammal body-mass distributions were discontinuous. Unique aggregations of species were detected in each taxa, by all methods. I observed a range of 4-12 discontinuities in my datasets. There were a total of 57 endangered bird species and 52 endangered mammal species and a total of 54 invasive bird species and 41 invasive mammal species (Table 3.2). Visual examination of juxtaposition of pairs of Mediterranean-climate ecosystem body mass distributions revealed similar overlapping patterns at some scales, but not at every scale, in either birds (Figure 3.1) or mammals (Figure 3.2).

Lump/Gap Structure

Mammals

Five of 10 pairwise comparisons between mammal body mass aggregations in Mediterranean-climate ecosystems were significant in the chi-square analysis and 5 of 10 pairwise comparisons were significant in the Phi correlation analysis (Tables 3.3 & 3.4). The pairwise comparisons between California and South Africa, Chile and southwestern Australia, Spain and South Africa, Spain and southwestern Australia, and South Africa

and southwestern Australia indicated no similarity in body mass patterns. All other Mediterranean-climate ecosystem body mass patterns were similar to each other. The Phi coefficients between California and Chile, California and Spain, California and southwestern Australia, Chile and Spain, and Chile and South Africa indicated strong positive relationships. The Phi coefficients between Chile and southwestern Australia and between Spain and southwestern Australia indicated positive relationships, but the relationships were weak. The Phi coefficients between the remaining pairwise comparisons of Mediterranean climate ecosystems indicated negative relationships, but the relationships were weak.

Birds

Two of 10 pairwise comparisons between bird body mass aggregations in Mediterranean-climate ecosystems were significant in the chi-square analysis and one of 10 pairwise comparisons were significant in the Phi correlation analysis (Tables 3.5 & 3.6). The pairwise comparisons between California and Chile and California and South Africa indicated similar body mass patterns. All other pairwise comparisons of Mediterranean-climate ecosystem body mass patterns were not similar to each other. The Phi coefficient between California and South Africa was the only comparison that indicated a strong positive relationship. The Phi coefficients between California and Chile, California and Spain, and Chile and southwestern Australia indicated positive relationships, but the relationships were weak. The Phi coefficients between the remaining pairwise comparisons of Mediterranean climate ecosystems indicated negative relationships, but the relationships were weak.

Functional Diversity

California - Historically, there were 144 native bird and mammal species in the Mediterranean-climate ecosystem of California. Currently, approximately 13% of these species are endangered and 14% are NIS. If all currently listed species go extinct and all of the currently established NIS persist, 16% of the fauna will be non-native. Alpha diversity of function in birds and mammals increased with the inclusion of NIS and increased further after endangered species were removed (Table 3.7). Postinvasion, the bird community gained three new functional groups (terrestrial herbivore, aquatic omnivore, and foliage omnivore) and lost one (aquatic herbivore). The mammal community gained one new functional group (aquatic herbivore).

Chile - Historically, there were 150 bird and mammal species in the Mediterranean-climate ecosystem of Chile. Currently, approximately 3% of these species are endangered and 13% are NIS. If all currently listed species go extinct and all of the currently established NIS persist, 14% of the fauna will be non-native. Alpha diversity of function in birds increased with the inclusion of NIS and decreased below the diversity level of the original community after endangered species were removed. Alpha diversity of function in mammals increased with the inclusion of NIS and increased further after endangered species were removed (Table 3.7). Postinvasion, the bird community did not gain or lose any functional groups. The mammal community gained one new functional group (terrestrial omnivore).

Spain - Historically, there were 170 bird and mammal species in the Mediterranean-climate ecosystem of Spain. Currently, approximately 19% of these species are endangered and 10% are NIS. If all currently listed species go extinct and all of the currently established NIS persist, 7% of the fauna will be non-native. Alpha

diversity of function in birds increased with the inclusion of NIS and increased further after endangered species were removed. Alpha diversity of function in mammals decreased with the inclusion of NIS and decreased further after endangered species were removed (Table 3.7). Postinvasion, the bird community gained three new functional groups (aquatic granivore, foliage herbivore and aquatic omnivore). The mammal community lost two functional groups (aquatic carnivore and aquatic herbivore).

South Africa - Historically, there were 156 bird and mammal species in the Mediterranean-climate ecosystem of South Africa. Currently, approximately 8% of these species are endangered and 12% are NIS. If all currently listed species go extinct and all of the currently established NIS persist, 13% of the fauna will be non-native. Alpha functional diversity in birds and mammals increased with the inclusion of NIS and increased further after endangered species were removed (Table 3.7). Postinvasion, the bird community gained two new functional groups (aquatic omnivore and terrestrial omnivore). The mammal community gained two new functional groups (arboreal granivore and terrestrial omnivore).

Southwestern Australia - Historically, there were 184 bird and mammal species in the Mediterranean-climate ecosystem of Southwestern Australia. Currently, approximately 17% of these species are endangered and 11% are NIS. If all currently listed species go extinct and all of the currently established NIS persist, 13% of the fauna will be non-native. Alpha diversity of function in birds increased with the inclusion of NIS and increased further after endangered species were removed. Alpha diversity of function in mammals increased with the inclusion of NIS and increased further after endangered species were removed. Postinvasion, the bird community gained

two new functional groups (aquatic insectivore and aquatic piscivore). The mammal community gained one new functional group (terrestrial omnivore).

Alpha diversity of function increased in 9 out of the 10 Mediterranean-climate ecosystems analyzed when NIS were introduced into the community. Alpha diversity of function increased in eight ecosystems and decreased in two with the removal of endangered species from the community after introducing NIS (Table 3.7). Beta diversity of function in birds decreased in 80% of the Mediterranean-climate pair-wise comparisons analyzed when NIS were introduced and remained the same or decreased in 60% of the Mediterranean-climate pair-wise comparisons with the removal of endangered species from the communities (Table 3.8). Beta diversity of function in mammals increased in 70% of the Mediterranean-climate pair-wise comparisons analyzed when NIS were introduced and remained the same or increased in 80% of comparisons when endangered species were subsequently removed from the communities (Table 3.9). Gamma diversity of function in birds and mammals increased with the inclusion of NIS and after endangered species were removed (Table 3.10).

Functional Redundancy

<u>Mammals</u>

California - Historically, the mammal community within the California Mediterranean-climate ecosystem consisted of 34 species from 8 functional groups (Appendix A). The within-aggregation functional diversity ranged from two to five functional groups. The aggregations of smaller-bodied mammals had more species and higher diversity of functional groups than larger-bodied mammals. Of the 8 functional groups, two functional groups occurred in three or more aggregations, one functional

group had one representative and occurred in only one aggregation, and the remaining five functional groups occurred in two aggregations. In 23% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, only one aggregation lost one functional group, therefore the loss of functional diversity within aggregations was minimal. Membership in each functional group within each aggregation had no overall net loss of species. In 28% of the cases only one species remained to represent a functional group within an aggregation. The mammal community within the California Mediterranean-climate ecosystem gained one new functional group in four aggregations and lost one functional group in one aggregation. Overall redundancy of function across aggregations (i.e., cross-scale redundancy) was increased in two functional groups (Table 3.11).

Chile - Historically, the mammal community within the Chile Mediterranean-climate ecosystem consisted of 29 species from 10 functional groups (Appendix B). The within-aggregation functional diversity ranged from two to six functional groups. The aggregations of smaller-bodied mammals had more species and higher diversity of functional groups than larger-bodied mammals. Of the 10 functional groups, two functional groups occurred in three or more aggregations, and five functional groups had one representative and occurred in only one aggregation. In 25% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, only one aggregation lost one functional group, therefore the loss of functional diversity within aggregations was minimal. Membership in each functional group within

each aggregation had an overall net gain of six species. In 27% of the cases only one species remained to represent a functional group within an aggregation. The mammal community within the Chile Mediterranean-climate ecosystem gained three new functional groups in one aggregation and two new functional groups in another aggregation and lost one functional group in one aggregation. Cross-scale redundancy increased in three functional groups and decreased in one functional group (Table 3.12).

Spain - Historically, the mammal community within the Spain Mediterranean-climate ecosystem consisted of 46 species from 10 functional groups (Appendix C). The within-aggregation functional diversity ranged from two to five functional groups. The aggregations of smaller-bodied mammals had more species and higher diversity of functional groups than larger-bodied mammals. Of the 10 functional groups, three functional groups occurred in four or more aggregations, and three functional groups had one representative and occurred in only one aggregation. In 14% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, one aggregation lost one functional group and two functional groups were lost in another aggregation. Membership in each functional group within each aggregation had an overall net loss of one species. In 10% of the cases only one species remained to represent a functional group within an aggregation. The mammal community within the Spain Mediterranean-climate ecosystem gained one functional group in one aggregation, lost one functional group in one aggregation, and lost two functional groups in another aggregation. Cross-scale redundancy increased in one functional group and decreased in three functional groups (Table 3.13).

South Africa - Historically, the mammal community within the South Africa Mediterranean-climate ecosystem consisted of 66 species from 7 functional groups (Appendix D). The within-aggregation functional diversity ranged from two to five functional groups. The aggregations of smaller-bodied mammals had a similar number of species and diversity of functional groups compared to larger-bodied mammals. Of the 7 functional groups, three functional groups occurred in four or more aggregations, and two functional groups had one representative and occurred in only one aggregation. In 10% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, one aggregation lost two functional groups. Membership in each functional group within each aggregation had no overall net loss of species. In 11% of the cases only one species remained to represent a functional group within an aggregation. The mammal community within the South Africa Mediterranean-climate ecosystem gained one functional group in three aggregations and lost one functional group in two aggregations. Cross-scale redundancy increased in one functional group and decreased in two functional groups (Table 3.14).

Southwestern Australia – Historically, the mammal community within the southwestern Australia Mediterranean-climate ecosystem consisted of 44 species from 7 functional groups (Appendix E). The within-aggregation functional diversity ranged from two to five functional groups. The aggregations of smaller-bodied mammals had more species and higher diversity of functional groups than larger-bodied mammals. Of the 7 functional groups, two functional groups occurred in four or more aggregations, and one

functional group had one representative and occurred in only one aggregation. In 29% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, one aggregation lost three functional groups, one aggregation lost two functional groups and one aggregation lost one functional group. Membership in each functional group within each aggregation had an overall net loss of seven species. In 23% of the cases only one species remained to represent a functional group within an aggregation. The mammal community within the southwestern Australia Mediterranean-climate ecosystem gained one functional group in three aggregations, lost three functional groups in one aggregation, lost two functional groups in another aggregation, and lost one functional group in an aggregation. Cross-scale redundancy increased in one functional group and decreased in four functional groups (Table 3.15).

<u>Birds</u>

California - Historically, the bird community within the California

Mediterranean-climate ecosystem consisted of 114 species from 16 functional groups

(Appendix F). The within-aggregation functional diversity ranged from two to eight functional groups. The aggregations of smaller-bodied birds had the same number of species, but a lower diversity of functional groups compared to larger-bodied birds. Of the 16 functional groups, three functional groups occurred in five or more aggregations, and three functional groups had one representative and occurred in only one aggregation. In 8% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, two aggregations lost one functional group. Membership in each functional group

within each aggregation had an overall net loss of one species. In 13% of the cases only one species remained to represent a functional group within an aggregation. The bird community within the California Mediterranean-climate ecosystem gained one functional group in three aggregations, gained three functional groups in two aggregations, and lost one functional group in two aggregations. Cross-scale redundancy increased in three functional groups and decreased in one functional group (Table 3.16).

Chile - Historically, the bird community within the Chile Mediterranean-climate ecosystem consisted of 121 species from 19 functional groups (Appendix G). The within-aggregation functional diversity ranged from three to eight functional groups. The aggregations of smaller-bodied birds had more species, but a lower diversity of functional groups compared to larger-bodied birds. Of the 19 functional groups, four functional groups occurred in five or more aggregations, and three functional groups had one representative and occurred in only one aggregation. In 18% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, two aggregations lost one functional group. Membership in each functional group within each aggregation had an overall net gain of six species. In 17% of the cases only one species remained to represent a functional group within an aggregation. The bird community within the Chile Mediterranean-climate ecosystem gained one functional group in two aggregations and lost one functional group in two aggregations. Cross-scale redundancy increased in two functional groups and decreased in two functional groups (Table 3.17).

Spain - Historically, the bird community within the Spain Mediterranean-climate ecosystem consisted of 119 species from 14 functional groups (Appendix H). The within-aggregation functional diversity ranged from three to eight functional groups. The aggregations of smaller-bodied birds had more species and a higher diversity of functional groups compared to larger-bodied birds. Of the 14 functional groups, five functional groups occurred in four or more aggregations, and three functional groups had one representative and occurred in only one aggregation. In 19% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, four aggregations lost one functional group. Membership in each functional group within each aggregation had an overall net loss of six species. In 21% of the cases only one species remained to represent a functional group within an aggregation. The bird community within the Spain Mediterranean-climate ecosystem gained one functional group in one aggregation, gained two functional groups in two aggregations, and lost one functional group in four aggregations. Cross-scale redundancy increased in two functional groups and decreased in four functional groups (Table 3.18).

South Africa - Historically, the bird community within the South Africa

Mediterranean-climate ecosystem consisted of 91 species from 12 functional groups

(Appendix I). The within-aggregation functional diversity ranged from two to seven functional groups. The aggregations of smaller-bodied birds had more species and a higher diversity of functional groups compared to larger-bodied birds. Of the 12 functional groups, three functional groups occurred in four or more aggregations, and two

functional groups had one representative and occurred in only one aggregation. In 14% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, one aggregation lost one functional group. Membership in each functional group within each aggregation had an overall net gain of nine species. In 14% of the cases only one species remained to represent a functional group within an aggregation. The bird community within the South Africa Mediterranean-climate ecosystem gained one functional group in three aggregations and lost one functional group in one aggregation. Cross-scale redundancy increased in one functional group and decreased in one functional group (Table 3.19).

Southwestern Australia - Historically, the bird community within the southwestern Australia Mediterranean-climate ecosystem consisted of 144 species from 16 functional groups (Appendix J). The within-aggregation functional diversity ranged from two to nine functional groups. The aggregations of smaller-bodied birds had more species and a similar diversity of functional groups compared to larger-bodied birds. Of the 16 functional groups, six functional groups occurred in five or more aggregations, and two functional groups had one representative and occurred in only one aggregation. In 15% of the cases only one species represented a functional group within an aggregation.

After all currently listed species go extinct and all of the currently established NIS persist, three aggregations lost one functional group. Membership in each functional group within each aggregation had no overall loss of species. In 14% of the cases only one species remained to represent a functional group within an aggregation. The bird community within the southwestern Australia Mediterranean-climate ecosystem gained

one functional group in three aggregations and lost one functional group in four aggregations. Cross-scale redundancy increased in one functional group and decreased in three functional groups (Table 3.20).

Across body mass aggregations, there were changes in the number of species belonging to each functional group (Figures 3.3 & 3.4). Postinvasion, on average, birds gained two new functional groups and mammals gained one in each Mediterranean-climate ecosystem. Birds in the functional group terrestrial granivores and those that were herbivorous comprised the majority of additional memberships, while insectivores (terrestrial, aquatic, foliage, bark, and aerial) comprised the majority of declines in functional group membership. Carnivorous and herbivorous mammals comprised the majority of additional functional group memberships, while herbivores and granivores comprised the majority of declines in functional group membership. In birds, NIS increased membership in terrestrial carnivores, terrestrial granivores, foliage herbivores, terrestrial herbivores, and terrestrial omnivores. In mammals, NIS increased membership in terrestrial carnivores, terrestrial omnivores.

Most functional group membership declines were in insectivorous birds and mammals. Within each individual body mass aggregation, there were changes in species composition and functional groups present, however, small sample size and extremely low statistical power did not make it possible to detect differences in functional group richness preinvasion and post invasion within each ecosystem. There were no differences in functional group richness preinvasion and post invasion for each terrestrial vertebrate group or for both taxonomic groups combined (Table 3.21). There was a decrease in

cross-scale redundancy of functional groups in mammals and when both taxonomic groups were combined (Table 3.21).

DISCUSSION

Discontinuous body-mass distributions were found in all Mediterranean-climate ecosystems and taxa examined. Discontinuities in body mass distributions have also been shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, birds, and mammals (Allen et al. 1999, Allen 2006), Pleistocene and Miocene mammals (Lambert and Holling 1998, Lambert 2006), tropical forest birds (Restrepo et al. 1997), and boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed in Sendzimir et al. 2003). This analysis extends these conclusions to include animal communities across Mediterranean-climate ecosystems of the world.

Body mass distribution patterns observed using the statistical methods employed in this dissertation are real and are not an apparent effect of random noise. Sendzimir (1998) ran simulations to determine differences in observed body mass distributions compared to simulated body mass distribution patterns. Aggregation pattern recognition did decline below robust levels in the 10 to 15 percent (mammals) and 5 percent level (birds) of error due to random variation in body size in mammals. This decline in aggregation pattern recognition was evident across all body sizes in both mammals and birds.

Mediterranean-climate ecosystems are geographically isolated regions that have long been considered to be structurally similar and have similar climatic regimes.

However, more in-depth research of ecological processes within these ecosystems

suggests that these regions are examples of both convergence and divergence (reviewed in Rundel 2011). Only 35% of all pairwise comparisons between the structures of body mass distributions in five Mediterranean-climate ecosystems were determined to be similar. These results may be due to inherent differences in soil fertility, differential rainfall, topographic heterogeneity, climatic heterogeneity, and different disturbance regimes (i.e., fire frequency) among these Mediterranean-climate ecosystems (reviewed in Cowling et al. 1996).

Differences in human transformation of these Mediterranean-climate ecosystems might also explain the lack of similarity in all pairwise comparisons between ecosystems. The Mediterranean Basin (i.e., Spain in this analysis) has the oldest history of human occupation (i.e., agriculture and animal husbandry) dating back 10,000 years ago (Naveh & Kutiel 1990). The other regions were inhabited by hunter-gatherers and pastoralists until colonization which subsequently brought European grains and livestock to these regions (Aschmann 1973). Differences in time since settlement, cultural differences between the colonizing countries, and other regional differences (i.e., availability of resources and relationships between colonizers and indigenous people) may have contributed to differences in current patterns of human transformation between Mediterranean-climate ecosystems, thus resulting in differences in landscape structure between ecosystems (Hobbs et al. 1995). Differences in present and projected human population sizes, growth rates, and densities between Mediterranean-climate ecosystems have major impacts on land use, resulting in different patterns of landscape transformation (Mooney et al. 2001). Thus, body mass distributions within these ecosystems will never be the same in all pairwise comparisons. My results may also be an artifact of the type of statistical analysis applied to the data. Chi-square and Phi correlation analyses may not have been appropriate; however, no other statistical analyses for this type of comparison have ever been documented.

The introduction of invasive species led to an increase in alpha diversity of function in 90% of the Mediterranean-climate ecosystems analyzed and an increase in alpha diversity of function in 80% of the Mediterranean-climate ecosystems analyzed after the removal of endangered species. These results provide further support for the trends reported in numerous studies regarding an increase in alpha diversity after the establishment of non-indigenous species (Olden and Rooney 2006, reviewed in Sax and Gaines 2003). An increase in alpha diversity of functional supports the notion that, at a local scale, invasive species richness and native species richness are positively correlated and invasive species do not reduce native species richness (Houlahan and Findlay 2004, Sax 2002, Sax et al. 2002, and Ellis et al. 2000). While Fridley et al. (2007) agree that species rich ecosystems are hotspots for invasive species, they contend that a decrease in local species richness can increase the success of invasion.

Beta diversity of function in birds decreased in 80% (when non-indigenous species were introduced) and remained the same or decreased in 60% (when endangered species were subsequently removed) of the Mediterranean-climate pair-wise comparisons. The opposite was seen in mammals, where beta diversity of function increased in 70% (when non-indigenous species were introduced) and remained the same or increased in 80% (when endangered species were subsequently removed) of the Mediterranean-climate pair-wise comparisons. A decrease in beta diversity of function supports studies reporting a regional scale decline in species richness following the

introduction of invasive species (Newmark 1995, Vitousek et al. 1996). A decrease in beta diversity represents the change from a regionally distinct community to a more homogenous community and this process has been termed biotic homogenization (McKinney and Lockwood 1999). Biotic homogenization has been suggested as an influential process which could negatively impact ecosystem function and resilience (reviewed in Olden et al. 2004).

An increase in beta diversity of function supports studies which state no apparent loss in species richness at a regional scale from invasive species and no subsequent biotic homogenization (Davis 2003, Rosenzweig 2001). These mixed results at a regional scale have been described elsewhere (reviewed in Sax and Gaines 2003). Contrary to Sax and Gaines (2003) review of species richness, gamma diversity of function (i.e., global scale) increased in both taxonomic groups and supports the theory that as scale increases, species richness increases (Rosenzweig 1999). This supports studies that have concluded invasive species may not threaten overall richness (Rosenzweig 2001).

Parker et al. (1999) and Vitousek et al. (1996) describe many kinds of environmental effects associated with non-indigenous species: including genetic (loss of genetic diversity and evolutionary pressure due to hybridization), ecosystem (alteration of nutrient cycling and productivity), and population or community (species richness may increase, but abundance of native species declines). Although there were no significant differences between pre- and post- invasion Shannon Index values, results of this study demonstrated a trend of non-indigenous species positively affecting alpha diversity of function in both birds and mammals, negatively affecting beta diversity of function in birds, and positively affecting beta diversity of function in mammals.

Despite differences in pre- and post- invasion species communities, the number of functional groups in a given body mass aggregation (functional richness w/n scales) remained similar pre- and postinvasion. However, changes in the distribution of species within functional groups across different body mass aggregations in mammals and when both taxonomic groups were combined, further validate an apparent decrease in functional redundancy and cross-scale resilience. Land-use intensification in Mediterranean-climate ecosystems has most likely resulted in loss of functional redundancy, which ultimately increases the chances of successful invasions (Laliberte et al. 2010, Hooper and Dukes 2010). The loss of cross-scale resilience and simplification of these communities due to human influences is well documented and may also have unforeseen consequences (Regier and Baskerville 1986, Peterson et al. 1998, Forys and Allen 2002). In recent years, one such consequence is the hotly debated subject of global homogenization, or the loss of specialist species (Clavel et al. 2010).

With regard to cross-scale redundancy in birds remaining the same, it may be that the overall net effect of the establishment of NIS birds in these ecosystems has offset losses of species due to other anthropogenic impacts (e.g., habitat fragmentation, degradation or destruction) (Forys and Allen 2002). Birds had higher species diversity than mammals, which some authors suggest would decrease the probability of a whole functional group becoming extinct (Fonseca & Ganade 2001). This may also be a result of no niche replacement, but conservation of broad functional patterns via functional complementarity (Rosenfeld 2002). Sundstrom et al. (2011) postulated that the loss of one or more species within a functional group may decrease competition between other

species within that group, thus inherently increasing the remaining species' ability to survive.

The results of this study clearly have significant implications for the field of landscape ecology and conservation biology. Humans continually altering the landscape at an increasing rate, current patterns of global change (i.e., climate change and globalization), and an increased rate of invasions (Vitousek et al. 1996, Mooney and Cleland 2001, Lodge and Shrader-Frechette 2003), will continue to change the composition of animal communities both locally, regionally and globally. Although there is no overwhelming evidence that invasive species cause a disproportionate share of incipient and actual extinctions on mainlands (reviewed in Gurevitch and Padilla 2004), this study suggests invasive species negatively impact key components of ecosystems (i.e., diversity of functional groups, functional redundancy and cross-scale resilience).

Davis and Thompson (2001) state traits between native and non-indigenous species are effectively indistinguishable; therefore, future analyses should include abundance data for all species in order to ascertain the level of functional extinctions (Carlton et al. 1999). Future analyses of functional diversity must also account for the potential variation in functional roles of species in heterogeneous environments (see Wellnitz and Poff 2001) and the potentially disproportionate effect of both a particular functional group and/or one of its members (Hoey and Bellwood 2009). Sustaining ecosystem resilience will require the conservation of both species diversity and diversity of function across multiple scales within an ecosystem.

Table 3.1. Functional groups used to classify the vertebrate fauna of California, Chile, South Africa, Spain and Southwestern Australia based on foraging strata and diet.

Diet	Foraging Strata	Abbreviation
Carnivore	Aerial	CaAe
Carnivore	Aquatic	CaAq
Carnivore	Arboreal	CaAr
Carnivore	Terrestrial	СаТе
Granivore	Aquatic	GrAq
Granivore	Arboreal	GrAr
Granivore	Foliage	GrFo
Granivore	Terrestrial	GrTe
Herbivore	Aerial	HeAe
Herbivore	Aquatic	HeAq
Herbivore	Arboreal	HeAr
Herbivore	Foliage	НеГо
Herbivore	Fossorial	HeFs
Herbivore	Terrestrial	НеТе
Insectivore	Aerial	InAe
Insectivore	Aquatic	InAq
Insectivore	Arboreal	InAr
Insectivore	Bark	InBa
Insectivore	Foliage	InFo
Insectivore	Fossorial	InFs

Table 3.1. Continued

Diet	Foraging Strata	Abbreviation
Insectivore	Terrestrial	InTe
Omnivore	Aquatic	OmAq
Omnivore	Bark	OmBa
Omnivore	Foliage	OmFo
Omnivore	Terrestrial	OmTe
Nectivore	Aerial	NeAe
Nectivore	Foliage	NeFo
Piscivore	Aerial	PiAe
Piscivore	Aquatic	PiAq
Piscivore	Terrestrial	PiTe

Table 3.2. Overall number of native species in five Mediterranean-climate ecosystems, the overall percentage of endangered and non-indigenous species (NIS) and the percentage of NIS species in each region after a hypothetical removal of threatened species.

Number of Native Bird			% NIS After Extinction of			
and Mammal Species	% Endangered	% NIS	Threatened Species			
148	12.8	13.5	15.5			
150	3.3	13.3	13.8			
165	20	10.3	12.9			
157	8.3	11.5	12.5			
188	16.5	10.6	12.7			
_	148 150 165 157	and Mammal Species % Endangered 148 12.8 150 3.3 165 20 157 8.3	and Mammal Species % Endangered % NIS 148 12.8 13.5 150 3.3 13.3 165 20 10.3 157 8.3 11.5			

Table 3.3. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem mammal body mass aggregations. Probability levels less than or equal to 0.005 were considered significant matches between the lump and gap architecture of the compared ecosystems.

			South	Southwestern
	Chile	Spain	Africa	Australia
California	<.0001*	<.0001*	0.0326	<.0001*
Chile		<.0001*	<.0001*	0.4484
Spain			0.5239	0.4445
South Africa				0.3378

Table 3.4. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem mammal body mass aggregations using. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than ± 30 indicate a strong relationship between the lump and gap architecture of the compared ecosystems.

			South	Southwestern
	Chile	Spain	Africa	Australia
California	0.2895*	0.3932*	-0.1016	0.4488*
Chile		0.3790*	0.4681*	0.0486
Spain			-0.0301	0.0455
South Africa				-0.0519

Table 3.5. Chi-Square probability levels for each pairwise comparison of Mediterranean-climate ecosystem bird body mass aggregations using. Probability levels less than or equal to 0.005 were considered significant matches between the lump and gap architecture of the compared ecosystems.

			South	Southwestern
	Chile	Spain	Africa	Australia
California	0.0023*	0.1059	<.0001*	0.1184
Chile		0.0566	0.9393	0.9634
Spain			0.2529	0.2389
South Africa				0.0235

Table 3.6. Phi coefficients for each pairwise comparison of Mediterranean-climate ecosystem bird body mass aggregations. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than ± 30 indicate a strong relationship between the lump and gap architecture of the compared ecosystems.

			South	Southwestern
	Chile	Spain	Africa	Australia
California	0.1771	0.0940	0.5017*	-0.0860
Chile		0.1143	-0.0046	0.0027
Spain			-0.0692	-0.0682
South Africa				-0.1366

Table 3.7. Alpha diversity of function for the vertebrate fauna of California, Chile, South Africa, Spain, and Southwestern Australia. (Shannon Diversity Index (H1), divergence from equiprobability (D1), equitability (Evenness), Non-indigenous species (NIS), and Endangered species (E). A high H1 value indicates a high degree of diversity.

						_
		Birds			Mammals	
California	H1	D1	Evenness	H1	D1	Evenness
Functional Groups w/o NIS	3.096	0.712	81.305	2.449	0.358	87.241
Functional Groups w/NIS	3.280	0.808	80.241	2.743	0.427	86.545
Functional Groups w/o E w/NIS	3.283	0.717	82.064	2.790	0.380	88.016
Chile						
Functional Groups w/o NIS	3.623	0.625	85.279	2.803	0.519	84.390
Functional Groups w/NIS	3.638	0.610	85.635	2.910	0.550	84.098
Functional Groups w/o E w/NIS	3.607	0.641	84.911	3.017	0.443	87.197
South Africa						
Functional Groups w/o NIS	2.724	0.735	78.749	1.845	0.740	71.366
Functional Groups w/NIS	2.822	0.878	76.266	2.064	0.936	68.794
Functional Groups w/o E	2.836	0.864	76.639			
w/NIS				2.187	0.813	72.915
Spain						
Functional Groups w/o NIS	2.853	0.732	79.577	2.672	0.650	80.432
Functional Groups w/NIS	3.030	0.877	77.547	2.616	0.706	78.744
Functional Groups w/o E	3.116	0.791	79.750			
w/NIS				2.420	0.580	80.680
Southwestern Australia						
Functional Groups w/o NIS	3.223	0.581	84.743	2.187	0.621	77.890
Functional Groups w/NIS	3.322	0.678	83.051	2.386	0.614	79.530
Functional Groups w/o E w/NIS	3.323	0.677	83.071	2.608	0.392	86.930

Table 3.8. Beta diversity of function for the bird fauna of each Mediterranean-climate ecosystem. (Shannon Diversity Index (H1), divergence from equiprobability (D1), equitability (Evenness), Non-indigenous species (NIS), and Endangered species (E). A high H1 value indicates a high degree of diversity.

	San Diego v Chile		Ch	Chile v South Africa			South Africa v Southwestern Australia		
	H1	D1	Evenness	H1	D1	Evenness	H1	D1	Evenness
Functional Groups w/o NIS	2.997	0.173	94.533	3.017	0.304	90.835	2.236	0.086	96.296
Functional Groups w/NIS	2.774	0.226	92.483	2.924	0.398	88.001	2.663	0.144	94.877
Functional Groups w/o E w/NIS	2.774	0.226	92.483	2.943	0.379	88.596	2.663	0.144	94.877
	San Dieg	o v South	Africa		Chile v S	Spain	Spain v Southwestern Austra		
Functional Groups w/o NIS	2.936	0.234	92.629	3.051	0.119	96.241	1.485	0.515	74.234
Functional Groups w/NIS	2.703	0.297	90.094	2.407	0.178	93.103	1.122	1.200	48.312
Functional Groups w/o E w/NIS	2.520	0.284	89.879	2.407	0.178	93.103	1.122	1.200	48.312
	San D	Diego v Spa	ain	Chi	le v Soutl	hwestern			
				Australia					
Functional Groups w/o NIS	2.379	0.206	92.024	2.674	0.648	80.486			
Functional Groups w/NIS	2.264	0.321	87.576	2.514	0.656	79.297			
Functional Groups w/o E w/NIS	2.466	0.341	87.950	2.453	0.717	77.378			
	_	o v Southw	estern	Sou	ıth Africa	v Spain			
		Australia							
Functional Groups w/o NIS	1.923	0.662	74.400	2.604	0.204	92.746			
Functional Groups w/NIS	1.912	0.895	68.111	2.749	0.251	91.631			
Functional Groups w/o E w/NIS	2.142	0.858	71.410	2.781	0.219	92.688			

Table 3.9. Beta diversity of function for the mammal fauna of California, Chile, South Africa, Spain, and Southwestern Australia. (Shannon Diversity Index (H1), divergence from equiprobability (D1), equitability (Evenness), Non-indigenous species (NIS), and Endangered species (E). A high H1 value indicates a high degree of diversity.

	S	an Diego	v Chile	Chil	e v Sout	h Africa	South A	Africa v So Austral	outhwestern ia
	H1	D1	Evenness	H1	D1	Evenness	H1	D1	Evenness
Functional Groups w/o NIS	2.252	0.070	96.972	2.369	0.216	91.627	2.656	0.152	94.596
Functional Groups w/NIS	1.585	0.085	94.639	2.611	0.197	92.990	2.822	0.178	94.073
Functional Groups w/o E w/NIS	1.585	0.085	94.639	2.611	0.197	92.990	2.918	0.082	97.277
	San 1	Diego v So	outh Africa	(Chile v S	Spain	Spa	in v South	ıwestern
								Austral	ia
Functional Groups w/o NIS	1.784	0.538	76.846	0.811	0.189	81.128	2.113	0.209	91.014
Functional Groups w/NIS	1.890	0.695	73.099	1.449	0.136	91.410	2.396	0.189	92.700
Functional Groups w/o E w/NIS	1.949	0.636	75.403	2.230	0.092	96.023	1.189	0.189	90.564
	S	an Diego	v Spain	Chile	e v Sout	hwestern			
			_		Austra	lia			
Functional Groups w/o NIS	2.198	0.125	94.627	2.128	0.194	91.652			
Functional Groups w/NIS	1.730	0.270	86.479	2.171	0.151	93.498			
Functional Groups w/o E w/NIS	2.055	0.267	88.486	2.156	0.166	92.838			
	San I	Diego v So	outhwestern	Sout	h Africa	ı v Spain			
		Austra	lia						
Functional Groups w/o NIS	1.842	0.158	92.119	1.906	0.094	95.282			
Functional Groups w/NIS	1.793	0.208	89.624	2.411	0.173	93.294			
Functional Groups w/o E w/NIS	2.000	0.000	100.000	2.413	0.172	93.351			

Table 3.10. Gamma diversity of function for the vertebrate fauna of California, Chile, South Africa, Spain, and Southwestern Australia. (Shannon Diversity Index (H1), divergence from equiprobability (D1), equitability (Evenness), Non-indigenous species (NIS), and Endangered species (E).

A high H1 value indicates a high degree of diversity.

	H1	D1	Evenness
Birds			
Gamma Diversity without NIS	3.409	1.176	74.343
Gamma Diversity with NIS	3.477	1.108	75.838
Functional Groups without E and with NIS	3.509	1.076	76.530
Mammals			
Gamma Diversity without NIS	2.630	1.177	69.086
Gamma Diversity with NIS	2.758	1.050	72.433
Functional Groups without E with NIS	2.849	0.959	74.825

Table 3.11. Each body mass aggregation represents a unique scale within the California Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Body Mass Aggregation	CaTe	GrTe	HeAr	HeAq	HeFs	НеТе	InTe	OmTe	Membership Gained	Membership Lost	Functional Groups Lost
1		4	1			(1)	2		1	0	-
2	1	7(6)	2		1	1		(2)	1	1	-
3	2(1)					3	1	(2)	1	1	-
4	4			(1)				1	1	-	-
5	2(1)					1		1(0)	0	2	1

Table 3.12. Each body mass aggregation represents a unique scale within the Chile Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale.

Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Body Mass Aggregation	CaAq	CaAr	СаТе	GrTe	HeAq	HeAr	HeFs	НеТе	InAq	InTe	OmTe	Membership Gained	Membership Lost	Functional Groups Lost
1	(1)		(1)	4	(1)	2	1	6		2		3	0	-
2		1	3(4)		1(2)			1(3)	1	1		3	0	-
3	1		1					1(0)				0	1	1
4			1		(1)			2			(1)	2	1	-

Table 3.13. Each body mass aggregation represents a unique scale within the Spain Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Body Mass Aggregation	CaAq	СаТе	GrTe	HeAq	HeAr	HeFs	НеТе	InAq	InFs	InTe	Membership Gained	Membership Lost	Functional Groups Lost
1			2							4	-	-	-
2			1(2)			1	4	1		2	1	0	-
3							3(1)	1	3		0	1	-
4		1		1(0)	2(1)		(2)				1	2	1
5		2								2(3)	1	0	-
6		1(3)					3				1	0	-
7	1(0)	1(0)					3			1	0	2	2
8		1					4				-	_	

Table 3.14. Each body mass aggregation represents a unique scale within the South Africa Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Body Mass Aggregation	CaAq	СаТе	GrAr	HeFs	НеТе	InFs	InTe	OmTe	Membership Gained	Membership Lost	Functional Groups Lost
1					2(3)		5		1	0	-
2					6	1	3		-	-	-
3		1			8(7)	2	2	(2)	1	1	-
4			(1)	1			3		1	0	-
5		5(6)			4				1	0	-
6	1	6(5)			8(7)		2	(1)	1	2	-
7		1(0)			5(0)				0	2	2

Table 3.15. Each body mass aggregation represents a unique scale within the southwestern Australia Mediterranean-climate ecosystem. The total number of mammal species within each functional group and the number of functional groups lost at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. Membership is defined as the number of functional groups that gained or lost species after the introduction of invasive species and the extinction of endangered species.

Body Mass Aggregation	CaTe	GrTe	HeAr	НеТе	InAq	InAr	InTe	OmTe	Membership Gained	Membership Lost	Functional Groups Lost
1		3(2)	1	5(3)		2(1)	7(5)		0	4	-
2		1(0)		2(0)		1(0)	1	(2)	1	3	3
3	1(0)		1(0)	6(1)	1		2		0	3	2
4	(2)		1	5(0)			1		1	1	1
5	1			2(3)				(1)	2	0	-

Table 3.16. Each body mass aggregation (BMA) represents a unique scale within the California Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. The number of functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of endangered species.

	Ca	Ca	Gr	Gr	Не	He	Не	Не	In	In	In	In	In	Om	Om	Om	Om			
BMA	Ae	Aq	Fo	Te	Ae	Aq	Fo	Te	Ae	Aq	Ba	Fo	Te	Aq	Ba	Fo	Te	G	L	FL
1					4							4						-	-	-
2			3(2)	(2)					5(4)			10(8)	7					1	3	-
3				1					4		1		4(3)					0	1	-
4				3(2)		1		3		1	4	3					0	1	-	
5				(1)					6		1	1	4					1	0	-
6												1(0)	3(2)					0	2	1
7	2(1)	2	(1)	5			(2)		2(1)	1			4(5)		1	(1)	2	4	2	-
8	12(8)	1		(1)		1(0)	1	(1)					2(3)	(1)			2	4	2	1
9	2(1)																(1)	1	1	-

Table 3.17. Each body mass aggregation (BMA) represents a unique scale within the Chile Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. The number of functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of endangered species.

	Ca	Ca	Gr	Gr	Gr	Не	He	Не	He	In	In	In	In	In	Ne	Om	Pi	Pi	Pi			
BMA	Ae	Aq	Aq	Fo	Te	Ae	Aq	Fo	Te	Ae	Aq	Ba	Fo	Te	Ae	Aq	Ae	Aq	Te	G	L	FL
1										1		1	6	2	1					-	-	-
2					5					3		1	3	2	1					-	-	-
3					4(1)	1		1		2	1(0)	1	1	8(9)						2	1	1
4	1									1				8				1		-	-	-
5	2				2(3)		1	1(2)	1		4			3			2			2	0	-
6	6			1	(1)		3	1		1	2			2(3)					1	2	0	-
7	1	1	3		1		2				2					2		1		-	-	-
8	6	1					1		(1)							1(0)		3	1	1	1	1
9	3						1(2)							1						1	0	

Table 3.18. Each body mass aggregation (BMA) represents a unique scale within the Spain Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. The number of functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of endangered species.

	Ca	Ca	Ca	Gr	Gr	Gr	Не	He	Не	In	In	In	In	In	Om	_	_	
BMA	Ae	Aq	Te	Aq	Fo	Te	Aq	Fo	Te	Ae	Aq	Ba	Fo	Те	Aq	G	L	FL
1	1(0)				(1)	10(12))			9(8)		1	14(13)	20(15))	2	4	1
2					1	1(0)				4	1		1	2		0	1	1
3						1				4(3)	1	1	1	3		0	1	-
4	8(6)	1		(1)		5	1	(1)	1	2(0)	2(1)		2	3		2	3	1
5	6(4)	2	1						(1)						(1)	2	1	-
6	7(3)		1											1(0)		0	2	1

Table 3.19. Each body mass aggregation (BMA) represents a unique scale within the South Africa Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. The number of functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of endangered species.

BMA	CaAe	GrFo	GrTe	HeFo	НеТе	InAe	InBa	InFo	InTe	NeAe	NeFo	OmAq	OmTe	G	L	FL
1		1	2			1(2)		6	4	1	2			1	0	-
2		1	6(7)			5	1	1	4		1			1	0	-
3			1(2)	1		2(3)			5					2	0	-
4			2	4		3		(1)	11(12	(.)	1			2	0	-
5	1		2(3)						4					1	0	-
6	4(3)		2		3				6			(1)	(1)	3	0	-
7	1								2(0)					0	1	1

Table 3.20. Each body mass aggregation (BMA) represents a unique scale within the southwestern Australia Mediterranean-climate ecosystem. The total number of bird species within each functional group and the number of functional groups lost (FL) at each scale. Numbers in parentheses represent the total number of mammal species within each functional group after the introduction of invasive species and the extinction of endangered species. The number of functional groups that gained (G) or lost (L) species after the introduction of invasive species and the extinction of endangered species.

	Ca	Ca	Ca	Gr	Gr	He	He	Не	In	In	In	In	In	Ne	Om	Pi			
BMA	Ae	Aq	Te	Fo	Te	Aq	Fo	Te	Ae	Aq	Ba	Fo	Te	Fo	Te	Aq	G	L	FL
1				1								2					-	-	-
2				1	1(3)			1	3		1	10(9)	8(7)	3			1	2	-
3									4				1	2			-	-	-
4					3(2)		2		4		1(0)	5	5	7			0	2	1
5					3		1		4		1		8(7)				0	1	-
6				1(0)	2							1	1	2			0	1	1
7					3(4)			1	1			1	3				1	0	-
8				1	1(2)								1	2			1	0	-
9	3				3(4)				2				2		1		1	0	-
10				1	1(2)		1						2(0)			(1)	2	1	-
11	8	2	2	1(2)	1		1	2	1				1(0)			(1)	2	1	1
12	1					1(2)		2(1)		(1)			2(1)				2	2	-

Table 3.21. Results of Wilcoxon signed rank tests comparing functional group richness preinvasion and post invasion for each terrestrial vertebrate group and for both taxa combined.

Taxonomic Group	Z	P	
Birds	1.539	0.156	
Mammals	0.108	0.940	
Combined	1.156	0.251	

Table 3.22. Results of Wilcoxon signed ranked tests comparing the average number of body mass aggregations and standard deviation (SD) in California, Chile, South Africa, Spain, and Southwestern Australia that had at least one member of a functional group pre- and postinvasion.

	Average	Average		
	Number (SD) of	Number (SD) of		
	body mass	body mass		
Taxonomic	aggregations	aggregations		
Group	preinvasion	postinvasion	z	P
Birds	3.129 (0.26)	3.11 (0.244)	-0.408	0.697
Mammals	2.375 (0.240)	1.75 (0.228)	-3.501	< 0.001
Combined	2.880 (0.190)	2.778 (0.183)	-1.930	0.055

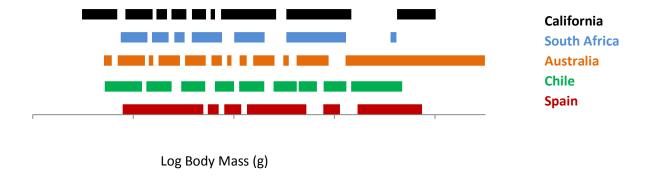


Figure 3.1. Juxtaposition of bird body mass aggregations across five Mediterraneanclimate ecosystems.

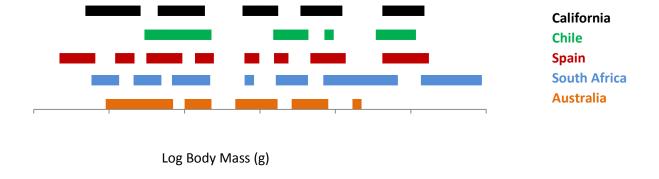


Figure 3.2. Juxtaposition of mammal body mass aggregations across five Mediterraneanclimate ecosystems.

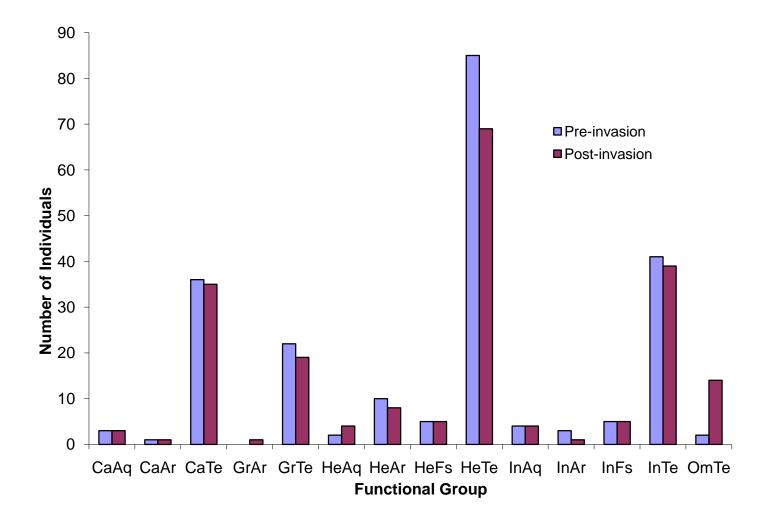


Figure 3.3. Comparison of the number of species belonging to each functional group across all body mass aggregations preand postinvasion for all the birds of Mediterranean-climate ecosystems. Explanations for the functional group abbreviations are provided in Table 3.1.

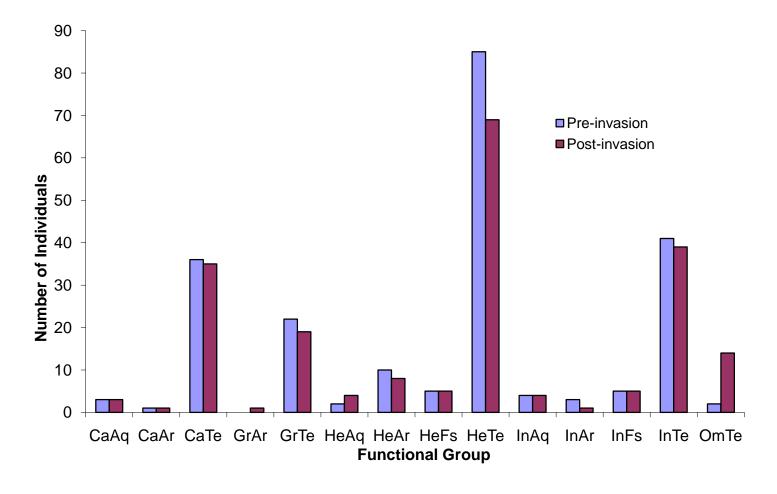


Figure 3.4. Comparison of the number of species belonging to each functional group across all body mass aggregations preand postinvasion for all the mammals of Mediterranean-climate ecosystems. Explanations for the functional group abbreviations are provided in Table 3.1.

LITERATURE CITED

- Abbott, I., and D. Le Maitre. 2010. Monitoring the impact of climate change on biodiversity: the challenge of megadiverse Mediterranean-climate ecosystems. Austral Ecology 35:406-422.
- Akin, W.E. 1991. *Global patterns: climate, vegetation and soils.* University of Oklahoma Press, Norman, Oklahoma, USA.
- Allen, C.R., E.A. Forys, and C.S. Holling. 1999. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2:114-121.
- Allen, C.R., and D.A. Saunders. 2002. Variability between scales: predictors of nomadism in birds of an Australian Mediterranean-climate ecosystem. Ecosystems 5:348-359.
- Allen, C.R. 2006. Predictors of introduction success in the South Florida avifauna. Biological Invasions 8:491-500.
- Allen, C.R., A.S. Garmestani, T.D. Havlicek, P.A. Marquet, G.D. Peterson, C. Restrepo, C.A. Stow, and B. Weeks. 2006. Keystone processes and ecological organization: evaluating alternative explanations for patterns in body size distributions. Ecology Letters 9:630-643.
- Allen, C.R. and C.S. Holling. 2008. *Discontinuities in ecosystems and other complex systems*. University of Colombia Press, New York, NY, USA.
- Aschmann, H. 1973. Man's impact on several regions with Mediterranean climates. *Mediterranean-type ecosystems. Origin and structure. Ecological studies* 7 (ed. by F. di Castri & H.A. Mooney), pp. 363-371. Springer, New York, NY, USA.
- Balée, W. 2006. The research program of historical ecology. Annual Review of Anthropology 35:75-98.
- Carlton, J.T., J.B. Geller, M.L. Reaka-Kudla, and E.A. Norse. 1999. Historical extinctions in the sea. Annual Review of Ecology, Evolution, and Systematics 30:515-538.
- Cheylan, G. 1991. Patterns of Pleistocene turnover, current distribution and speciation among Mediterranean mammals. *Biogeography of Mediterranean invasions* (ed. by R.H. Groves and F. di Castri), pp. 227–262. Cambridge University Press, Cambridge, United Kingdom.
- Chipman, H.A., E.I. George, and R.E. McCulloch. 1998. Bayesian CART model search. Journal of the American Statistical Association 93:935-948.
- Clavel, J., R. Julliard, and V. Devictor. 2010. Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9:222-228.
- Cody, M.L., and H.A. Mooney. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annual Review of Ecology and Systematics 9:265-321.
- Cowling, R.M., P.W. Rundel, B.B. Lamont, M.K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology & Evolution 11:362-366.
- Cramp, S. 1978 1994. *The birds of the western Palearctic, Vols 1-9.* Oxford University Press, Oxford, England.
- Davis, M.A., and K. Thompson. 2001. Invasion terminology: should ecologists define t

- their terms differently than others? No, not if we want to be any help! Bulletin of the Ecological Society of America 82:206.
- Davis, M.A. 2003. Does competition from new species threaten long-term residents with extinction? Bioscience 53:481-489.
- Di Castri, F. 1991. An ecological overview of the five regions of the world with a Mediterranean climate. *Biogeography of Mediterranean invasions* (ed. by R.H. Groves and F. di Castri), pp. 3-16. Cambridge University Press, Cambridge, United Kingdom.
- Dunning, J.B. Jr. 1993. *CRC handbook of avian body masses*. CRC Press, Ann Arbor, MI, USA.
- Ellis, L.M., M.C. Molles, Jr., C.S. Crawford, and F. Heinzelmann. 2000. Surface-active arthropod communities in native and exotic riparian vegetation in the middle Rio Grande Valley, New Mexico. Southwestern Naturalist 45:456-471.
- Fleiss, J.L., B. Levin, and M.C. Paik. 2003. Comparative studies: cross-sectional, naturalistic, or multinomial sampling. *Statistical methods for rates and proportions* (ed. by J.L. Fleiss, B. Levin, and M.C. Paik), pp. 95-143. John Wiley & Sons, Inc. Hoboken, New Jersey, USA.
- Fonseca, C.R., and G. Ganade. 2001. Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology 89:118-125.
- Forys, E.A., and C.R. Allen. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339-347.
- Fridley, J.D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T.J. Stohlgren, D. Tilman, and B. Von Holle. 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3-17.
- Gurevitch, J., and D.K. Padilla. 2004. Are invasive species a major cause of extinctions? Trends in Ecology and Evolution 19:470-474.
- Havlicek, T. and S. R. Carpenter. 2001. Pelagic size distributions in lakes: are they discontinuous? Limnology and Oceanography 46:1021-1033.
- Hobbs, R., D. Richardson, and G. Davis. 1995. Mediterranean-type ecosystems: opportunities and constraints for studying the function of biodiversity. *Mediterranean-type ecosystems: the function of biodiversity* (ed. by G. Davis and D. Richardson), pp. 1-42. Springer-Verlag, Berlin, Germany.
- Hoey, A.S., and D.R. Bellwood. 2009. Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316-1328.
- Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447-502.
- Hooper, D.U., and J.S. Dukes. 2010. Functional composition controls invasion success in a California serpentine grassland. Ecology 98:764-777.
- Houlahan, J.E., and C.S. Findlay. 2004. Effect of invasive plant species on temperate wetland plant diversity. Conservation Biology 18:1132-1138.
- IUCN. 2006. 2006 IUCN Red List of Threatened Species. < http://www.iucnredlist.org>. Accessed 4 May 2006.
- Klausmeyer, K.R., and M.R. Shaw. 2009. Climate change, habitat loss, protected areas

- and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLOS One 4:e6392.
- Laliberte, E., J.A. Wells, F. DeClerck, D.J. Metcalfe, C.P. Catterall, C. Queiroz, I. Aubin, S.P. Bonser, Y. Ding, J.M. Fraterrigo, S. McNamara, J.W. Morgan, D.S. Merlos, P.A. Vesk, and M.M. Mayfield. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13:76-86.
- Lambert, W.D., and C.S. Holling. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body-mass distributions. Ecosystems 1:157-175.
- Lambert, W.D. 2006. Functional convergence of ecosystems: evidence from body mass distributions of North American late Miocene faunas. Ecosystems 9:97-118.
- Lipsey, M.W. 1990. *Design sensitivity statistical power for experimental research*. Sage Publications, Inc. Newbury Park, CA, USA.
- Lodge, D.M., and K. Shrader-Frechette. 2003. Nonindigenous species: ecological explanation, environmental ethics, and public policy. Conservation Biology 17:31-37.
- Loreau, M. 2004. Does functional redundancy exist? Oikos 104:606-611.
- Malcolm, J.R., C. Liu, R.P. Neilson, L. Hansen, and L. Hannah. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20:538-548.
- McKinney, M.L., and J.L. Lockwood. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14:450-453.
- Millennium Ecosystem Assessment. 2005. *Ecosystems and human well-being: biodiversity synthesis*. World Resources Institute, Washington, D.C., USA.
- Miller, P.C. 1981. Resource use by chaparral and matorral: a comparison of vegetation function in two Mediterranean-type ecosystems. Springer-Verlag, New York, NY, USA.
- Miller, R.G., Jr. 1981. *Simultaneous statistical inference*. MacGraw Hill, New York, NY. Mooney, H.A., and E.E. Cleland. 2001. The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences 98:5446-5451.
- Mooney, H.A., M.T.K. Arroyo, W.J. Bond, J. Canadell, R.J. Hobbs, S. Lavorel, and R.P. Neilson. 2001. Mediterranean-climate ecosystems. *Global biodiversity in a changing environment. Scenarios for the 21st century* (ed. by F.S. Chapin III, O.E. Sala, and E. Huber-Sannwald), pp. 157-199. Springer, New York, NY, USA.
- Mouchet, M.A., S. Villeger, N.W.H. Mason, and D. Mouillot. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867-876.
- Naveh, Z., and P. Kutiel. 1990. Changes in the Mediterranean vegetation of Israel in response to human habitation and land use. *The earth in transition. Patterns and processes of biotic impoverishment* (ed. by G.M. Woodwell), pp. 259-299. Cambridge University Press, Cambridge, United Kingdom.
- Newmark, W.D. 1995. Extinction of mammal populations in western North American national parks. Conservation Biology 9:512-526.

- Noss, R.F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4:355-364.
- Olden, J.D., N.L. Poff, M.R. Douglas, M.E. Douglas, and K.D. Fausch. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19:18-24.
- Olden, J.D., and T.P. Rooney. 2006. On defining and quantifying biotic homogenization. Global Ecology and Biogeography 15:113-120.
- Parker, I.M., D. Simberloff, W.M. Lonsdale, K. Goodell, M. Wonham, P.M. Kareiva, M.H. Williamson, B. Von Holle, P.B. Moyle, J.E. Byers and L. Goldwasser. 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1:3-19.
- Perrings, C., S. Naeem, F. Ahrestani, D.E. Bunker, P. Burkill, G. Canziani, T. Elmqvist, R. Ferrati, J. Fuhrman, F. Jaksic, Z. Kawabata, A. Kinzig, G.M. Mace, F. Milano, H. Mooney, A.H. Prieur-Richard, J. Tschirhart, and W. Weisser. 2010. Ecosystem services for 2020. Science 330:323-324.
- Petchey, O.L., and K.J. Gaston. 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5:402-411.
- Petchey, O.L., A. Hector, and K.J. Gaston. 2004. How do different measures of functional diversity perform? Ecology 85:847-857.
- Petchey, O.L., and K.J. Gaston. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9:741-758.
- Peterson, G., C.R. Allen, and C.S. Holling. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6-18.
- Quinn, R.D. 1990. Habitat preferences and distribution of mammals in California chaparral. Research Paper PSW-202. Pacific Southwest Research Station, U.S.D.A. Forest Service, Berkeley, CA, USA.
- Regier, H.A. and F.L. Baskerville. 1986. Sustainable redevelopment of regional ecosystem degraded by exploitative development. *Sustainable development of the biosphere* (ed. by W.C. Munn and R.E. Munn), pp. 75-101. Cambridge University Press, Cambridge, United Kingdom.
- Restrepo, C., L.M. Renjifo, and P. Marples. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. *Tropical forest remnants: ecology, management and conservation of fragmented communities* (ed. by W.F. Laurance, R.O. Bierregaard, and C. Moritz), pp. 171-189. University of Chicago Press, Chicago, IL, USA.
- Rosenfeld, J.S. 2002. Functional redundancy in ecology and conservation. Oikos 98:156-162.
- Rosenzweig, M.L. 1999. Species diversity. *Advanced theoretical ecology: principles and applications* (ed. by J. McGlade), pp. 249-281. Blackwell Scientific, Oxford, United Kingdom.
- Rosenzweig, M.L. 2001. The four questions: what does the introduction of exotic species do to diversity? Evolutionary Ecology Research 3:361-367.
- Rundel, P.W. 2011. Convergence and divergence in Mediterranean-climate ecosystems. *The ecology of place: contributions of place-based research to ecological understanding* (ed. by I. Billick and M.V. Price), pp. 93-108. University of Chicago Press, Chicago, IL, USA.

- Sala, O.E., F.S. Chapin, J.J. Armesto, E. Berlow and J. Bloomfield. 2000. Biodiversity global biodiversity scenarios for the year 2100. Science 287:1770-1774.
- SAS Institute Inc. 1999. SAS user's guide: statistics, version 5 edition. SAS Institute, Cary, N.C., USA.
- Saunders D.A. and JA Ingram. 1995. *Birds of southwestern Australia: an atlas of changes in the distribution and abundance of the wheatbelt avifauna*. Chipping Norton, New South Wales, Australia.
- Sax, D.F. 2002. Equal diversity in disparate species assemblages: a comparison of native and exotic woodlands in California. Global Ecology and Biogeography 11:49-58.
- Sax, D.F., S.D. Gaines, and J.H. Brown. 2002. Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. American Naturalist 160:766-783.
- Sax, D.F., and S.D. Gaines. 2003. Species diversity: from global decreases to local increases. Trends in Ecology and Evolution 18:561-566.
- Sendzimir, J., C.R. Allen, L. Gunderson and C. Stow. 2003. Implications of body mass patterns: linking ecological structure and process to wildlife conservation and management. *Landscape ecology and resource management: linking theory with practice* (ed. by J. Bissonette, J. and I. Storch), pp. 125-152. Island Press, Washington, D.C., USA.
- Shannon, C.E. and W. Weaver. 1949. *The mathematical theory of communication*. University of Illinois Press, Urbana, Illinois, USA.
- Silva M. and J.A. Downing. 1995. *CRC handbook of mammalian body masses*. CRC Press, Boca Raton, FL, USA.
- Skillen, J.J and B.A. Maurer. 2008. The ecological significance of discontinuities in body mass distributions. *Discontinuities in ecosystems and other complex systems* (ed. by C.R. Allen and C.S. Holling), pp. 193-218. University of Chicago Press, Chicago, IL, USA.
- Smithers, R.H.N. 1983. *The mammals of the southern African subregion*. University of Pretoria, Pretoria, South Africa.
- Stow, C.A., C.R. Allen, and A.S. Garmestani. 2007. Comparison of methods for detecting discontinuities in complex systems. Ecology and Society 12:26.
- Strahan, R. 1995. *The mammals of Australia*. Smithsonian Institution Press, Washington, D.C., USA.
- Sundstrom, S.M, C.R. Allen, and C. Barichievy. 2011. Species, functional groups, and thresholds in ecological resilience. Biological Conservation (*in press*).
- Tilman, D., D. Wedin, and J. Knops. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718-720).
- Unitt, P. 2004. San Diego County Bird Atlas. San Diego Natural History Museum, San Diego, CA, USA.
- Vitousek, P.M., C.M. D'Antonio, L.L. Loope, and R. Westbrooks. 1996. Biological invasions as global environmental change. American Scientist 84:468-478.
- Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of Earth's ecosystems. Science 277:494-499.
- Vuilleumier, F. 1991. Invasions in the mediterranean avifaunas of California and Chile. *Biogeography of Mediterranean Invasions* (ed. by R.H. Groves and F. di Castri), pp. 327-358. Cambridge University Press, Cambridge, MA, USA.

- Wellnitz, T., and N.L. Poff. 2001. Functional redundancy in heterogeneous environments: implications for conservation. Ecology Letters 4:177-179.
- West, G.B., J.H. Brown and B.J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:5309.
- Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21:213-251.
- Williamson, M. 1996. Biological invasions. Chapman & Hall, London, UK.
- Wilson, E.O. 1988. The current state of biological diversity. *Biodiversity* (ed. by E.O. Wilson and F.M. Peter). National Academy of Sciences. 538p.
- Winterbottom, JM. 1966. Ecological distribution of birds in the indigenous vegetation of the southwest cape. Ostrich 37:76-91.

CHAPTER 4: CHANGES IN BODY MASS DISCONTINUITIES OVER PALEOECOLOGIC TIME

Recent population trends for 1,686 vertebrate species indicate a ~30% decline over the last 35 years (Loh et al. 2008). Human activities, both directly and indirectly, have contributed to the increasing rates of extinction of both described and undescribed species (Hilton-Taylor et al. 2008). In order to gain a better understanding of the dramatic ecological changes currently taking place, the complex relationship between animals and their environment must be understood from different perspectives. Biological systems are generally influenced by external, internal and historical processes (Marquet et al. 2008) and paleoecological data provides a temporal perspective on rates, patterns and causes of ecological change (Willard & Cronin 2007). Discerning patterns and processes of speciation events in the fossil record has been a topic of recent debate (reviewed in Benton & Pearson 2001), yet no study to date has utilized body mass distributions to elucidate speciation events.

The combination of physiological, ecological and historical factors make body mass one of the most integrative attributes of a species (Schmidt-Nielsen 1984, Allen et al. 2006, Marquet et al. 2008). The ecological significance of patterns found in body mass distributions has been well documented and reflect the spatiotemporal distribution of resources within ecosystems. Many studies have reported a discontinuous body mass distribution reflecting the ecological structure of the landscape (Restrepo et al. 1997, Bakker & Kelt 2000, Raffaelli et al. 2000, Havlicek & Carpenter 2001, Cumming & Havlicek 2002, Sendzimir et al. 2003). These studies support the textural discontinuity

hypothesis (TDH), which states that hierarchical landscape structures with scale-specific pattern entrain attributes of animals inhabiting the landscape (Holling 1992).

The TDH implies that differences in body mass distributions between two faunal assemblages would indicate differences in landscape (Lambert & Holling 1998). The edges of body-mass aggregations, or scale breaks, in this discontinuous distribution may be regions of the greatest reward or highest cost (Holling et al. 2008). Poorly understood biological phenomena such as invasions and extinctions (Allen et al. 1999, Allen 2006), migrations and nomadism (Allen & Saunders 2002), population dynamics (Skillen & Maurer 2008) and possibly speciation may evolve at these scale breaks (Holling et al. 2008). However, evolution may lead to extinction of species without external forcing (Bak & Sneppen 1993).

Body size distributions have been analyzed at various scales; 1) local, biome and continental (Brown & Nicoletto 1991, Marquet & Cofre 1999), 2) hemispheric (Blackburn & Gaston 1994), and 3) Paleobiological scale (Jablonski 1997). However, there is very little information on the effects of paleoecological time on changes in body mass distributions. In Cenozoic mammals, climate has been suggested as a driver of body mass evolution and the analysis of body mass distributions is a good measure of habitat and climate (Gunnel et al. 1995). Legendre (1989) observed differences in body mass distributions between wet and dry habitats in the late Eocene and Oligocene of Occidental Europe. However, Alroy et al. (2000) did not find any link between climate and patterns in body mass distributions. Instead, they suggest that intrinsic, biotic factors seem to have played a more important role in broad patterns of North American mammalian evolution than external factors such as climate change.

Late Miocene global mammalian turnover has been attributed to changes in flora (i.e. a change in habitat) (Cerling et al. 1998). Holling et al. (2002, 2008) suggest it takes extreme disturbances over paleoecological time and space to change body mass distributions in a major way. Lambert and Holling (1998) reported that body mass distributions of Pleistocene mammals, after massive extinctions of large herbivores in North and South America approximately 11,000 years ago, remained the same in species under 41kg, but changed significantly in species over 41kg (species over 1,000kg were completely eliminated). Based on their results, they suggest that differences observed in body mass distributions were partly due to changes in key mesoscale (10m to 10km) aspects of the landscape. Smith et al. (2004) suggest that over evolutionary time, as lineages speciate and diversify, species do not occupy a greater range of body sizes. The Siberia megafauna extinction at the end of the Pleistocene may have triggered an irreversible regime shift from steppe grassland to tundra (Zimov et al. 1995, Lambert & Holling 1998, Folke et al. 2004).

Chronofaunas are discrete communities of species that are tracked through millions of years, resulting in the ability to identify the origination of new species and the extinction of others (Olson 1952, Olson 1966, MacFadden 2000). It has been suggested that the Eocene Epoch (55 to 34 million years ago (Ma)) was a period in the North American mammal faunal record that underwent rapid ecomorphological transitions (Janis & Wilhelm 1993, Hunter & Jernvall 1995, Jernvall et al. 1996). A likelihood ratio was calculated by Alroy et al. (2000) to determine how the dominance of different orders changed (from the late Paleocene through the Pleistocene) in relation to what would be expected at random given the observed origination and extinction rates. They reported

that four of the five highest likelihood ratios were observed in the Bridger and Uinta NALMA, due primarily to the radiation of artiodactyls and perissodactyls with a concurrent terminal decline of primates and "condylarths", suggesting this span of time was one of major ecological transition and the most important period in the entire Tertiary. Mean body mass of mammals increased slowly throughout the Cenozoic and might have been due to high speciation or low extinction rates of larger species (Alroy et al. 2000).

The Bridger and Uinta NALMA may provide an ideal timeframe to examine speciation events and paleoecologic habitat reconstruction would be necessary to explore the TDH. Paleoecologic habitat reconstruction is generally done at either a global or regional scale and then extrapolated to a local scale. However, habitats for a sequential series of mammalian fossil assemblages have been reconstructed at a local scale for the Bridgerian North American Land Mammal Age (NALMA) and Uintan NALMA (Townsend 2004). A closer examination of body mass distributions from each assemblage may provide insightful information about their respective habitats and speciation events. Here I examined whether the vertebrate body mass structures are similar among the faunal zones. I also investigated whether speciation events were nonrandomly distributed in vertebrate body mass structures within each faunal zone.

METHODS

Study Area & Data Collection

The Cenozoic Era spans approximately 65 Ma to present day and consists of the Paleogene, Neogene and Quarternary Periods (MacFadden 2000). The Paleogene Period

consisted of the Paleocene, Eocene and Oligocene Epochs. The Eocene Epoch spanned 55 to 34 Ma and was characterized by a continual decrease in mean annual temperature (Bains et al. 2000) and a slow drying trend (Wing 1998). The Eocene Epoch was delineated into early (Wasatchian), middle (Bridgerian, Uintan, Duchesnean), and late (Chadronian) NALMA (Prothero 1998). I focused on the middle Bridgerian to the late Uintan mammalian fossil specimens, which spanned approximately 50 to 41 Ma.

The Bridgerian NALMA occurred at the beginning of the middle Eocene interval and spanned approximately five million years from 50.7 to 46 Ma (Woodburne and Swisher 1995). The Bridgerian formation was located in the Green River Basin of southwest Sweetwater County, Wyoming (Figure 4.1). In this analysis, the Bridgerian NALMA was organized into five sequential faunal assemblage zones (FAZ); Bridger FAZ 1) 35 mammalian genera, 3 unique to this FAZ, collected from 68 to 79m level, composed of taxa from nine localities and was predominantly made up of rodents, Bridger FAZ 2) 28 mammalian genera, 3 unique to this FAZ, collected from 122 to 161m level, composed of taxa from more than eighteen localities and was predominantly made up of rodents, Bridger FAZ 3) 28 mammalian genera, 4 unique to this FAZ, collected from the 163m level and 200 to 207m level, composed of taxa from twelve localities and was predominantly made up of rodents, primates and insectivores, Bridger FAZ 4) 18 mammalian genera collected from 210 to 257m level, composed of taxa from six localities (Townsend 2004). Bridger FAZ 4 represents the last faunal assemblage considered to be truly Bridgerian (McCarroll et al. 1996). Bridger FAZ 5 included 22 mammalian genera collected from 307 to 390m level, was composed of taxa from twelve

localities and is less diverse at the ordinal level than earlier FAZs (Townsend 2004). This zone is considered to be earliest Uintan in age (Evanoff et al. 1994).

The Uintan NALMA occurred at the middle of the middle Eocene and spanned approximately 6.5 million years from 40 to 46.5 Ma (Townsend 2004) and contains approximately 31% of modern mammalian families (Black & Dawson 1966). The Uintan formation was located in the Uinta Basin of east-central Uintah County, Utah and includes 483km²(Figure 4.1). In this analysis, the Uintan NALMA was organized into three sequential faunal assemblages; Uintan FAZ 1) 19 mammalian genera, 3 unique to this FAZ, collected from 0 to 87m level, composed of taxa from seventeen localities and was predominantly made up of rodents, primates and proteutherians, Uintan FAZ 2) 25 mammalian genera, 9 unique to this FAZ, collected from 96 to 128m level, composed of taxa from nineteen localities and was predominantly made up of rodents, Uintan FAZ 3) 20 mammalian genera, 4 unique to this FAZ, collected from 134 to 366m level, composed of taxa from 29 localities and was predominantly made up of rodents and artiodactyls (Townsend 2004).

All assemblages were time-averaged, due to the use of numerous localities in the construction of each assemblage. This resulted in the absence of a defined boundary or stratigraphic extent of each zone. The taphonomic contexts of both formations are similar, therefore it is assumed that any bias within or between assemblages will be statistically insignificant (Townsend 2004). Morphometric data on more than 2000 fossil specimens were taken on Bridgerian and Uintan mammalian fossils held at the American Museum of Natural History, the National Museum of Natural History (Smithsonian

Institution), Yale Peabody Museum, Carnegie Museum of Natural History, the University of Colorado Museum and Washington University (Townsend 2004).

Habitat Reconstructions & FAZ Composition

Townsend (2004) used univariate, bivariate and discriminant function analyses to reconstruct the habitats for each FAZ. There were many primates and an equal number of terrestrial taxa in Bridger FAZ 1, which would suggest that although there were trees present, it was not completely canopied. Thus, Bridger FAZ 1 was most likely open woodland habitat (Townsend 2004). Bridger FAZ 2 had a very similar species makeup to Bridger FAZ 2, therefore it was most likely open woodland habitat too (Townsend 2004).

The fauna in Bridger FAZ 3 contained the second highest percentage of arboreal mammals found in the entire sequence of FAZs, suggesting a large amount of canopy cover. Thus, Bridger FAZ 3 was most likely heavily wooded and densely forested (Townsend 2004). Bridger FAZ 4 most likely represented closed woodland or forested habitat, but this zone is the most ambiguous (due to missing taxa as a result of collecting bias or taphonomic considerations) (Townsend 2004). The fauna in Bridger FAZ 5 most likely represented closed woodland habitat (due to the high percentage of insectivores) or possibly forested (due to the high percentage of obligate arborealists and frugivores) (Townsend 2004).

Uinta FAZ 1 had fewer folivores and ground-dwelling taxa, but more insectivores (although very few compared to the Bridgerian FAZs) than the other Uinta FAZs, thus the fauna in this zone most likely represented woodland habitat. Uinta FAZ 2 consists of more terrestrial and folivorous taxa than in any prior FAZs, thus representing open habitat with very few trees (Townsend 2004). Uinta FAZ 3 was composed of more

folivores than frugivores, more terrestrial taxa than arboreal taxa, few small-bodied mammals and no insectivores. Uinta FAZ 3 had fauna that likely represented open habitat with the least amount of trees found in any FAZ (Townsend 2004).

Body Mass Estimates

Townsend (2004) used various phylogenetically consistent equations and the area of the crown of the lower first molar to determine body mass estimates of fossil mammals. The means of molar areas were used to calculate the final body mass values. Where possible, body mass estimates were obtained from published sources. The body sizes were recorded in grams and subsequently logarithmically transformed.

Discontinuity Analysis

Body mass pattern or structure refers to the distribution of body mass aggregations and gaps along the body mass axis. Body mass distributions were analyzed for discontinuities using simulations of actual data compared to a null distribution (a continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 1997). A body-mass aggregation consisted of three or more species with body masses that did not exceed the expectation of the null distribution and was defined by the upper and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass aggregations were defined as significantly large areas between adjacent body masses that exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of discontinuities in the data was determined by calculating the probability that the observed discontinuities were chance events (compared observed values with output of 1,000 simulations run against the null set (Restrepo et al. 1997). Two other methods were also used to confirm the location of discontinuities. I used Bayesian Classification and

Regression Trees (Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 1999) to further validate any patterns detected in body mass distributions. A multiple method approach in detecting significance in body mass patterns has been suggested as the best protocol (Allen et al. 2006, Stow et al. 2007).

Chi-square and Phi correlation analyses were used to determine differences in body mass patterns between geologic layers. The null hypothesis of the Chi-square analyses is that there are equal distributions among each of the four cells in a 2 x 2 table (one in the gap condition while the other is in the lump condition and vice versa, both in the lump condition and both in the gap condition), which would indicate that the two groups are unrelated. Gap space between body mass aggregations was calculated in two ways; total number of gaps (a more liberal approach) and the actual, calculated gap space (a more conservative approach). That is, a liberal approach would be limited by the smallest and largest species in each comparison and a conservative approach would be limited by the range of shared data between the two groups. A Bonferroni correction was applied to account for multiple comparisons in the same analysis (Miller 1981).

In order to provide additional information, a correlation of binary variables, using Phi correlation, was also utilized in order to elucidate more information and to determine the relationship between the different reconstructed paleo faunas. Species within each faunal zone were assigned a binary variable (where 1 represented a body mass aggregation and 0 represented a gap), based on the log10 body mass axis, and divided into a 0.01 gram increment bin. The Phi coefficient ranges from -1 to 1. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a

negative correlation. Fleiss et al. (2003) suggested that values greater than ± 0.30 indicate a strong relationship.

Speciation Analysis

After completing the discontinuity analyses, new species placement (based on adjacent chronological faunas) within these distributions was determined. New species could be distributed in the body-mass patterns in various ways; randomly, within a limited range of body masses, at the edge of aggregations, only within body mass aggregations or only in the gaps (Figure 2.1). Both gaps and edges of body mass distributions represent changes in scale and areas of high variability (see Allen et al. 1999). Chi-square and t-test analyses were used to determine the significance of the locations of new species within each FAZ.

Chi-square goodness of fit testing was used to determine if new species occurred in gaps between body mass aggregations in the observed distribution more often than expected values if their distribution were random. As in the discontinuity analysis, gap space between body mass aggregations was calculated in two ways; total number of gaps (a more liberal approach) and the actual, calculated gap space (a more conservative approach). Wilcoxon two-sample tests were then used to determine the distance to body mass aggregation edge of new species compared to those species already present. T-tests were also used to determine the distance to body mass aggregation edge of new species compared to those species present in the prior geologic layer.

RESULTS

Lump/Gap Structure

Liberal Approach

Sixteen of 28 pairwise comparisons were significant (4 unique to this approach) in the liberal chi-square analysis and 8 of 28 pairwise comparisons were significant (3 unique to this approach) in the Phi correlation analysis (Tables 4.1 & 4.2). Bridger FAZ 1, 2, 3 and 4 were all similar to each other and Phi coefficients between Bridger FAZ 1 and 3, Bridger FAZ 1 and 4, Bridger FAZ 2 and 3 and Bridger FAZ 3 and 4 indicated strong positive relationships. Bridger FAZ 1 and 5 were similar to each other and the Phi coefficient indicated a strong positive relationship. Bridger FAZ 2 and 5 were similar to each other, and the Phi coefficient indicated a strong negative relationship. Bridger FAZ 3 and 4 were not similar in body mass pattern to Bridger FAZ 5.

Bridger FAZ 2, 3 and 5 were not similar in body mass pattern to Uinta FAZ 1.

Bridger FAZ 1 and 4 were similar to Uinta FAZ 1, however low Phi coefficient values for each comparison indicated no strong relationships were evident. Bridger FAZ 5 was similar to Uinta FAZ 2, however a low Phi coefficient indicated no strong relationship.

Bridger FAZ 1 and 5 were similar to Uinta FAZ 3 and Phi coefficients for each comparison indicated strong negative relationships. Bridger FAZ 4 was similar to Uinta FAZ 3, however a low Phi coefficient indicated no strong relationship. Bridger FAZ 3 and Uinta FAZ 1 were not similar in body mass pattern to Uinta FAZ 3. Uinta FAZ 1 was similar to Uinta FAZ 2, however a low Phi coefficient for the comparison indicated no strong relationship. Uinta FAZ 1 was not similar in body mass pattern to Uinta FAZ 3. Uinta FAZ 3. Uinta FAZ 2 was similar to Uinta FAZ 3, however a low Phi coefficient indicated no strong relationship. Uinta FAZ 1 was not similar in body mass pattern to Uinta FAZ 3. Uinta FAZ 2 was similar to Uinta FAZ 3, however a low Phi coefficient indicated no strong relationship.

Conservative Approach

Fourteen of 28 pairwise comparisons were significant (2 unique to this approach) in the conservative chi-square analysis and 7 of 28 pairwise comparisons were significant (2 unique to this approach) in the Phi correlation analysis (Tables 4.3 & 4.4). Bridger FAZ 1, 2, 3 and 4 were all similar to each other and Phi coefficients for each comparison indicated strong positive relationships, except in the Bridger FAZ 2 versus Bridger FAZ 4 comparison. Bridger FAZ 1 was similar to Bridger FAZ 5, with a strong positive Phi coefficient. Bridger FAZ 2 was similar to Bridger FAZ 5, but the Phi coefficient indicated no strong relationship. Bridger FAZ 3 and 4 were not related to Bridger FAZ 5.

Bridger FAZ 1 was similar to Uinta FAZ 1 and had a Phi coefficient that indicated a strong positive relationship. Bridger FAZ 4 was also similar to Uinta FAZ 1, however a low Phi coefficient indicated no strong relationship. Bridger FAZ 2, 3 and 5 were not similar in body mass pattern to Uinta FAZ 1. Bridger FAZ 1, 4 and 5 were not similar in body mass pattern to Uinta FAZ 2. Bridger FAZ 2 and 3 were similar to Uinta FAZ 2, however Phi coefficients for each comparison indicated no strong relationships. Bridger FAZ 1 and 5 were not similar in body mass pattern to Uinta FAZ 3. Uinta FAZ 1 was not similar to Uinta FAZ 3. Uinta FAZ 2 and 3 were similar, however Phi coefficients for each comparison indicated no strong relationships.

Speciation

New species of mammals (X^2 =9.06, 6 df; P = 0.17) did not occur at body mass aggregation edges in the observed distribution more often than expected. Based on calculated gap space, new species mammals (X^2 =1.85, 6 df; P = 0.93) did not occur at body mass aggregation edges in the observed distribution more often than expected (Table 4.5). The distance to edge of new species was not less than those species already

present (Table 4.6). However, when new species were placed into the prior geologic layer, the distance to edge of new species was significantly less than those species already present in Bridger Zones 1 and 4 (Table 4.7).

DISCUSSION

Discontinuous body-mass distributions were found in all Bridger and Uinta FAZs examined. Discontinuities in body mass distributions that have been constructed from the fossil record have also been shown in Miocene mammals (Lambert 2006) and Pleistocene mammals (Lambert & Holling 1998). Discontinuities in body mass distributions have also been shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, birds, and mammals (Allen 2006, Allen et al. 1999), tropical forest birds (Restrepo et al. 1997), boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed in Sendzimir et al. 2003). This analysis extends these conclusions to include the Bridger and Uinta FAZs in southwestern Wyoming and northeastern Utah.

New species of mammals did not occur at body mass aggregation edges in the observed distribution more often than expected in either analysis conducted. The distance to edge of new species was not less than those species already present and was only significant in two FAZs when new species were placed into the prior geologic layer. There are numerous plausible explanations as to why speciation events in these FAZs were not near discontinuities. Sample sizes in 7 of the 10 FAZs were fewer than 30 species. A small sample size in statistical analyses can inflate the probability of committing Type I and Type II errors (Morrison 1988). In a chi-square goodness-of-fit test, the approximation of the sampling distribution of the test statistic improves as the

sample size increases (Ott & Longnecker 2001). This may also be due to the FAZ being in a state of transition or species could be exhibiting a delayed response to a past change in the environment (Alroy et al. 2000, Skillen & Maurer 2008). It has been suggested that North American mammal fossil record diversity has been inflated by 32 to 44% due to taxonomic biases which could affect speciation and extinction rates on both absolute and relative terms (Alroy 2002). There is also some debate as to the validity of "land-mammal ages" due to the diachrony inherent in the North American mammal fossil record as a result of undersampling (Alroy 1998). Another factor that may explain why speciation events were not located near discontinuities is taxonomic discrepancies. Alroy (2003) suggests that taxonomic discrepancies in the North America mammal fossil record are correlated with body mass, whereby small bodied species' names are highly unreliable.

My results do not entirely correspond to the habitat reconstructions of Townsend (2004) and there was little agreement between the results of my liberal and conservative approaches to body mass distribution analysis. Bridger FAZ 1 and 2 were reconstructed as open woodland habitats and Bridger FAZ 3 and 4 were reconstructed as dense forest habitats, however, Chi-square analyses indicate that the body mass distributions of all four FAZs were similar and the corresponding Phi correlations were strong positive relationships. This suggests that these habitats were more alike than previously thought. My results parallel the taxonomic makeup of these FAZs. Bridger FAZ 1, 2, and 3 all exhibited similar patterns of ordinal diversity: primates, rodents, insectivores and perissodactyls were dominant. The Bridger FAZ 4 was somewhat different, with primates

and perissodactyls being the most dominant, but my results suggest not dominant enough to significantly change the faunal assemblage makeup.

Bridger FAZ 3 and 4 body mass distributions were not similar to the Bridger FAZ 5 body mass distribution and this evidence potentially supports the general view that Bridger FAZ 5 may be earliest Uintan in age (Evanoff et al. 1994). However, in the conservative approach, the Bridger FAZ 5 body mass distribution was not similar to Uinta FAZ 1 body mass distribution. Bridger FAZ 5 had a somewhat similar pattern of ordinal diversity as Bridger FAZ 3 and 4, but had fewer perissodactyls than any other Bridgerian FAZ. Thus, our results suggest that Bridger FAZ 5 may not be earliest Uintan in age and may represent a transition zone (Townsend 2004) between the Bridgerian and Uintan ages.

Bridger FAZ 1 (open woodland) and Bridger FAZ 5 (forest) had different habitat reconstructions, however, Chi-square analyses indicate that the body mass distributions were similar and the corresponding Phi correlation was a strong positive relationship. These two FAZs had similar patterns of ordinal diversity, both dominated by primates, rodents, insectivores and perissodactyls. The Bridger FAZ 5 had fewer perissodactyls than the Bridger FAZ 1, but my results suggest not deficient enough to significantly change the faunal assemblage makeup.

The Bridger FAZ 2 (open woodland) and 3 (dense forest) body mass distributions were not similar to the Uinta FAZ 1 (woodland) body mass distribution, which suggests that these two habitats were indeed different than the Uinta FAZ 1 habitat. Under the conservative approach, the Bridger FAZ 1 (open woodland) and Bridger FAZ 5 (forest) body mass distributions were not similar to the Uinta FAZ 3 (open) body mass

distribution, however under the liberal approach they were similar with a strong negative relationship.

Uinta FAZ 1 was reconstructed as woodland habitat and Uinta FAZ 2 and 3 were reconstructed as open habitats, however, conservative and liberal Chi-square analyses indicate that the body mass distributions of FAZ 1 and 2 and FAZ 2 and 3 were similar with no strong Phi correlations and Uinta FAZ 1 and 3 body mass distributions were not similar. Thus, my results concerning the similarity of body mass distributions between the Uinta FAZs are inconclusive, yet similar in both conservative and liberal approaches. My results may have been inconclusive due to the difficulty to distinguish qualitatively distinct mechanisms using time-slice paleontological data (Alroy 2000). Raup & Sepkoski (1984) suggest periodicity in extinctions of the geologic past, so the data I examined may not have been at a time with a sufficient number of extinctions.

Although some of my results describing the body mass distributions are in agreement with the habitat reconstructions of Townsend (2004), a majority of my results are not. These inconsistencies between the habitat reconstructions and the body mass distributions are most likely due to the fact that the species assemblages in each zone were time-averaged and that the fossil mammals came from multiple localities within a stratigraphic range, which likely resulted in a broad interpretation of habitat and a potentially imprecise reconstruction (Townsend 2004). Another possible explanation could be the methodology used by Townsend (2004) to reconstruct these faunal zones. Phylogeny reconstruction using morphological data has been a hotly debated subject in recent years (see Scotland et al. 2003 & Jenner 2004).

Biological systems are complex and their evolution can be influenced by internal (e.g; competition, predation), external (e.g; climate, human perturbation) and historical processes which most likely work together over the long-term to shape any given ecological system at any given moment in time (MacFadden 2000). This study identified and analyzed patterns in body mass distributions within paleoecological faunal assemblage zones, but the use of body mass may have been too coarse to detect speciation events. Sepkoski (1998) suggest periodicity in speciation events of the geologic past, so the data I examined may not have been at a time with a sufficient number of speciation events.

Table 4.1. Chi-Square probability levels for each pairwise comparison of Bridger and Uintan faunal assemblage zones using liberal data selection. Probability levels less than or equal to 0.001 were considered significant matches between the lump and gap architecture of the compared faunal assemblage zones.

Geologic Layer	Bridger Zone 2	Bridger Zone 3	Bridger Zone 4	Bridger Zone 5	Uinta Zone 1	Uinta Zone 2	Uinta Zone 3
Bridger FAZ 1	<.0001*	<.0001*	<.0001*	<.0001*	0.0065	0.0026	<.0001*
Bridger FAZ 2		<.0001*	0.0006*	<.0001*	0.5503	0.0473	0.0062
Bridger FAZ 3			<.0001*	0.2971	0.4595	0.0216	0.9860
Bridger FAZ 4				0.4131	0.0009*	0.7570	0.0001*
Bridger FAZ 5					0.0107	0.0007*	<.0001*
Uinta FAZ 1						0.0012*	0.6403
Uinta FAZ 2							<.0001*

Table 4.2. Phi coefficients for each pairwise comparison of Bridger and Uintan faunal assemblage zones using liberal data selection. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than ±30 indicate a strong relationship between the lump and gap architecture of the compared faunal assemblage zones.

Geologic Layer	Bridger Zone 2	Bridger Zone 3	Bridger Zone 4	Bridger Zone 5	Uinta Zone 1	Uinta Zone 2	Uinta Zone 3
Bridger FAZ 1	0.2111	0.4170*	0.5083*	0.3111*	0.1295	-0.1434	-0.2860*
Bridger FAZ 2		0.3229*	0.1710	-0.2939*	-0.0297	0.0987	-0.1362
Bridger FAZ 3			0.6040*	-0.0509	-0.0375	0.1165	0.0009
Bridger FAZ 4				-0.0399	0.1727	0.0160	-0.2026
Bridger FAZ 5					-0.1236	-0.1638	-0.2889*
Uinta FAZ 1						0.1716	0.0247
Uinta FAZ 2							0.2142

Table 4.3. Chi-Square probability levels for each pairwise comparison of Bridger and Uintan faunal assemblage zones using conservative data selection. Probability levels less than or equal to 0.001 were considered significant matches between the lump and gap architecture of the compared faunal assemblage zones.

	Bridger Zone	Bridger Zone	Bridger Zone	Bridger Zone	Uinta Zone	Uinta Zone	Uinta Zone
Geologic Layer	2	3	4	5	1	2	3
Bridger FAZ 1	<.0001*	<.0001*	<.0001*	<.0001*	<.0001*	0.2957	0.1664
Bridger FAZ 2		<.0001*	<.0001*	0.0002*	0.2318	<.0001*	0.0104
Bridger FAZ 3			<.0001*	0.5428	0.2613	<.0001*	0.0024
Bridger FAZ 4				0.1765	<.0001*	0.0948	0.0138
Bridger FAZ 5					0.4552	0.7501	0.1755
Uinta FAZ 1						0.0012*	0.0377
Uinta FAZ 2							0.0004*

Table 4.4. Phi coefficients for each pairwise comparison of Bridger and Uintan faunal assemblage zones using conservative data selection. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Values greater than ± 30 indicate a strong relationship between the lump and gap architecture of the compared faunal assemblage zones.

	Bridger Zone	Bridger Zone	Bridger Zone	Bridger Zone	Uinta Zone	Uinta Zone	Uinta Zone
Geologic Layer	2	3	4	5	1	2	3
Bridger FAZ 1	0.3370*	0.6056*	0.7385*	0.3763*	0.3503*	0.0552	-0.0929
Bridger FAZ 2		0.3818*	0.2560	-0.1877	0.0631	0.2291	-0.1720
Bridger FAZ 3			0.6768*	0.0311	0.0598	0.2477	0.2033
Bridger FAZ 4				0.0709	0.2344	0.0893	0.1653
Bridger FAZ 5					0.0397	0.0170	0.0909
Uinta FAZ 1						0.1716	-0.1395
Uinta FAZ 2							0.2373

Table 4.5. Results of Chi-Square analyses and standard deviations (SD) of Bridger and Uintan faunal assemblage zones comparing the observed distribution of new species in gaps between body mass aggregations.

Faunal Assemblage Zone	Expected based on Gaps	Expected based on Vector Space	Observed
Bridger FAZ 2	1.45	1.91	2
Bridger FAZ 3	2.48	5.06	4
Bridger FAZ 4	0.53	1.02	1
Bridger FAZ 5	3.65	5.27	6
Uinta FAZ 1	4.80	6.79	8
Uinta FAZ 2	2.69	3.38	4
Uinta FAZ 3	2.29	3.08	5
X^2	9.06(0.17)	1.85(0.93)	

Table 4.6. Results of t-tests comparing mean (x) and standard deviation (SD) of Bridger and Uintan faunal assemblage zones comparing mean (x) distance to edge of mammals that are new species and species that remained from the previous geologic layer.

Geologic Layer	Remained	New Species		
	x(SD)	x(SD)	Z	P
Bridger FAZ 2	0.070(0.099)	0.082(0.082)	0.525	0.300
Bridger FAZ 3	0.075(0.090)	0.070(0.070)	0.000	0.500
Bridger FAZ 4	0.057(0.081)	0.109(0.154)	0.294	0.384
Bridger FAZ 5	0.065(0.092)	0.133(0.147)	-0.896	0.185
Uinta FAZ 1	0.060(0.102)	0.070(0.080)	-0.182	0.428
Uinta FAZ 2	0.061(0.077)	0.082(0.083)	0.500	0.309
Uinta FAZ 3	0.041(0.047)	0.040(0.062)	-0.536	0.296

Table 4.7. Results of t-tests comparing mean (x) and standard deviation (SD) of Bridger and Uintan faunal assemblage zones comparing mean (x) distance to edge of mammals that are new species and species that are from the previous geologic layer.

Geologic Layer	Prior Geologic Layer	New Species		
	x(SD)	x(SD)	Z	P
Bridger FAZ 2 to Bridger FAZ 1	0.110(0.112)	0.04(0.065)	-1.695	0.045*
Bridger FAZ 3 to Bridger FAZ 2	0.070(0.094)	0.090(0.081)	0.986	0.162
Bridger FAZ 4 to Bridger FAZ 3	0.070(0.080)	0.130(0.134)	0.848	0.198
Bridger FAZ 5 to Bridger FAZ 4	0.060(0.087)	0.050(0.108)	-1.538	0.062*
Uinta FAZ 1 to Bridger FAZ 5	0.110(0.132)	0.070(0.122)	-0.928	0.177
Uinta FAZ 2 to Uinta FAZ 1	0.060(0.081)	0.080(0.080)	0.487	0.313
Uinta FAZ 3 to Uinta FAZ 2	0.070(0.079)	0.040(0.064)	-0.791	0.214

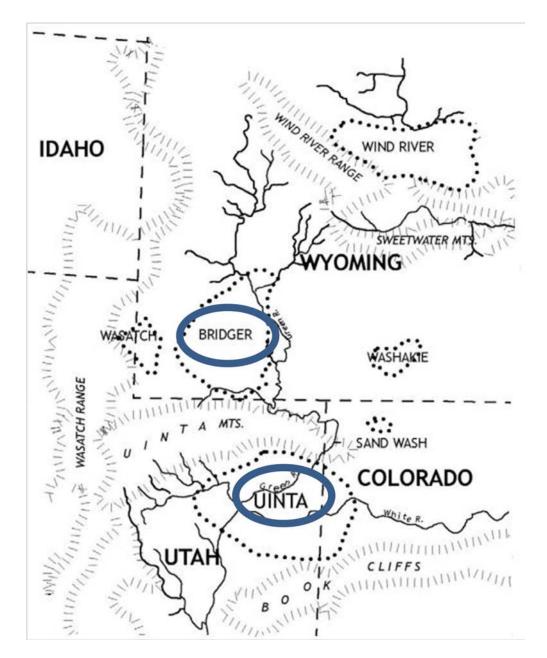


Figure 4.1. Map of Green River Basin (labeled as Bridger) and Uinta Basin. Basins are outlined in stipple and mountain ranges are outlined with hatch marks. Image adapted from Townsend (2004).

LITERATURE CITED

- Allen, C.R., E.A. Forys, and C.S. Holling. 1999. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2:114-121.
- Allen, C.R., and D.A. Saunders. 2002. Variability between scales: predictors of nomadism in birds of an Australian Mediterranean-climate ecosystem. Ecosystems 5:348-359.
- Allen, C.R. 2006. Predictors of introduction success in the South Florida avifauna. Biological Invasions 8:491-500.
- Allen, C.R., A.S. Garmestani, T.D. Havlicek, P.A. Marquet, G.D. Peterson, C. Restrepo, C.A. Stow, and B.E. Weeks. 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9:630-643.
- Alroy, J. 1998. Diachrony of mammalian appearance events: implications for biochronology. Geology 26:23-26.
- Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319-329.
- Alroy, J., P.L. Koch and C. Zachos. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259-288.
- Alroy, J. 2002. How many named species are valid? Proceedings of the National Academy of Sciences 99:3706-3711.
- Bains, S., R.D. Norris, R.M. Corfield, and K.L. Faul. 2000. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171-74.
- Bak, P., and K. Sneppen. 1993. Punctuated equilibrium and criticality in a simple-model of evolution. Physical Review Letters 71:4083-4086.
- Bakker, V.J. and D.A. Kelt. 2000. Scale-dependent patterns in body size distributions of neotropical mammals. Ecology 81:3530-3547.
- Benton, M.J., and P.N. Pearson. 2001. Speciation in the fossil record. Trends in Ecology & Evolution 16:405-411.
- Black, C.C., and M.R. Dawson. 1966. A review of the late Eocene mammalian fauna from North America. American Journal of Science 264:321-49.
- Blackburn, T.M., and K.J. Gaston. 1994. The distribution of body sizes of the worlds bird species. Oikos 70:127-130.
- Brown, J.H. and Nicoletto, P. 1991. Spatial scaling of species composition: body masses of North American land mammals. American Naturalist 138:1478-1512.
- Cerling, T.E., J.R. Ehleringer, and J.M. Harris. 1998. Carbon dioxide starvation, the development of C-4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society of London B 353:159-170.
- Chipman, H.A., E.I. George, and R.E. McCulloch. 1998. Bayesian CART model search. Journal of the American Statistical Association 93:935-948.
- Cumming, G.S. and T.D. Havlicek. 2002. Evolution, ecology and multimodal distributions of body size. Ecosystems 5:705-711.
- Evanoff, E., P. Robinson, P. Murphey, D. Kron and D. Engard. 1994. An early Uintan Fauna from the Bridger "E". Journal of Vertebrate Paleontology (Supplement) 13:24A.
- Fleiss, J.L., B. Levin, and M.C. Paik. 2003. Comparative studies: cross-sectional,

- naturalistic, or multinomial sampling. *Statistical methods for rates and proportions* (ed. by J.L. Fleiss, B. Levin, and M.C. Paik), pp. 95-143. John Wiley & Sons, Inc. Hoboken, New Jersey, USA.
- Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, and C.S. Holling. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology and Evolutionary Systems 35:557-81.
- Forys, E.A., and C.R. Allen. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339-347.
- Gunnell, G.F., M.E. Morgan, M.C. Maas, and P.D. Gingerich. 1995. Comparative paleoecology of Paleogene and Neogene mammalian faunas: trophic structure and composition. Paleogeography, Paleoclimatology, Paleoecology 115:265–286.
- Havlicek, T. and S.R. Carpenter. 2001. Pelagic size distributions in lakes: are they discontinuous? Limnology and Oceanography 46:1021-1033.
- Hilton-Taylor, C., C.M. Pollock, J.S. Chanson, S.H.M. Butchart, T.E.E. Oldfeld and V. Katariya. 2008. State of the world's species. *Wildlife in a changing world: an analysis of the 2008 IUCN red list of threatened species* (ed. by J.C. Vie, C. Hilton-Taylor, and S.N. Stuart), pp. 15-41. IUCN, Gland, Switzerland. http://data.iucn.org/dbtw-wpd/edocs/RL-2009-001.pdf.
- Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447-502.
- Holling, C.S., L.H. Gunderson, and G.D. Peterson. 2002. Sustainability and panarchies. *Panarchy: understanding transformations in human and natural systems* (ed. by L.H. Gunderson and C.S. Holling), pp. 63-102. Island Press, Washington, D.C., USA.
- Holling, C.S., G.D. Peterson and C.R. Allen. 2008. Panarchies and discontinuities. *Discontinuities in ecosystems and other complex systems* (ed. by C.R. Allen and C.S. Holling), pp. 3-19. University of Chicago Press, Chicago, USA.
- Hunter, J. P., and J. Jernvall. 1995. The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences USA 92:10718-10722.
- Jablonski, D. 1997. Body-size evolution in Cretaceous mollusks and the status of Cope's rule. Nature 385:250-252.
- Janis, C.M., and P.B. Wilhelm. 1993. Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. Journal of Mammalian Evolution 1:103-125.
- Jenner, R.A. 2004. Accepting partnership by submission? morphological phylogenetics in a molecular millennium. Systematic Biology 53:333-359.
- Jernvall, J., J.P. Hunter, and M. Fortelius. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:1489-1492.
- Lambert, W.D., and C.S. Holling. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body-mass distributions. Ecosystems 1:157-175.
- Lambert, W.D. 2006. Functional convergence of ecosystems: evidence from body mass

- distributions of North American late Miocene faunas. Ecosystems 9:97-118.
- Legendre, S. 1989. Les communaute's de mammife`res du Pale'oge`ne (E' oce`ne supe'rieur et Oligoce`ne) d'Europe occidentale: structures, milieux et e'volution. Mu" nchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Pala"ontologie 16:1-110.
- Loh, J., B. Collen, L. McRae, T.T. Carranza, F.A. Pamplin, R. Amin and J.E.M. Baillie. 2008. Living Planet Index. *Living Planet Report 2008* (ed. by C. Hails), pp. 6-20. WWF International, Gland, Switzerland. http://assets.panda.org/downloads/living_planet_report_2008.pdf.
- MacFadden, B.J. 2000. Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annual Review of Ecology and Systematics 31:33-59.
- Marquet, P.A. and Cofre, H. 1999. Large temporal and spatial scales in the structure of mammalian assemblages in South America: A macroecological approach. Oikos 85:299-309.
- Marquet, P.A., S. Abades, J.E. Keymer, and H. Zeballos. 2008. Discontinuities in body-size distributions: a view from the top. *Discontinuities in ecosystems and other complex systems* (ed. by C.R. Allen and C.S. Holling), pp. 45-57. University of Chicago Press, Chicago, USA.
- McCarroll, S.M., J.J. Flynn, W.D. Turnbull. 1996. Biostratigraphy and magnetostratigraphy of the Bridgerian-Uintan Washakie Formation, Washakie Basin, Wyoming. *The Terrestrial Eocene-Oligocene Transition in North America* (ed. by D.R. Prothero and R.J. Emry), pp. 75-119. Cambridge University Press, Cambridge, United Kingdom.
- Miller, R.G., Jr. 1981. *Simultaneous statistical inference*. MacGraw Hill, New York, NY. Morrison, M.L. 1988. On sample sizes and reliable information. The Condor 90:275-278.
- Olson, E.C. 1952. The evolution of a Permian vertebrate chronofauna. Evolution 6:181-96.
- Olson, E.C. 1966. Community evolution and the origin of mammals. Ecology 47:291-302.
- Ott, R.L. and M. Longnecker. 2001. Chapter 10: Categorical Data. *An introduction to statistical methods and data analysis*, 5th edition. pp. 469-528. Wadsworth Group, Pacific Grove, CA.
- Prothero, D. R. 1998. The chronological, climatic, and paleogeographic background to North American mammalian evolution. *Evolution of Tertiary Mammals of North America* (ed. by C.M. Janis, K.M. Scott and L.L. Jacobs). Cambridge University Press, Cambridge, United Kingdom.
- Raffaelli, D., S. Hall, C. Emes, and B. Manly. 2000. Constraints on body size distributions: an experimental approach using a small-scale system. Oecologia 122:389-398.
- Raup, D.M., and J.J. Sepkoski, Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Science 81:801-805.
- Restrepo, C., L.M. Renjifo, and P. Marples. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. Tropical forest remnants: ecology, management and conservation of fragmented

- *communities* (ed. by W.F. Laurance, R.O. Bierregaard, and C. Moritz), pp. 171-189. University of Chicago Press, Chicago, IL, USA.
- Schmidt-Nielsen, K. 1984. *Scaling: why is animal size so important?* Cambridge University Press, New York, NY, USA..
- Scotland, R.W., R.G. Olmstead, and J.R. Bennett. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology 52:539-548.
- Sendzimir, J., C.R. Allen, L. Gunderson and C. Stow. 2003. Implications of body mass patterns: linking ecological structure and process to wildlife conservation and management. *Landscape ecology and resource management: linking theory with practice* (ed. by J. Bissonette, J. and I. Storch), pp. 125-152. Island Press, Washington, D.C., USA.
- Sepkoski, Jr., J.J. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London Series B 353:315-326.
- Skillen, J.J and B.A. Maurer. 2008. The ecological significance of discontinuities in body mass distributions. *Discontinuities in ecosystems and other complex systems* (ed. by C.R. Allen and C.S. Holling), pp. 193-218. University of Chicago Press, Chicago, IL, USA.
- Smith, F.A., J.H. Brown, J.P. Haskell, S.K. Lyons, J. Alroy, E.L. Charnov, T. Dayan, B.J. Enquist, S.K.M. Ernest, E.A. Hadley, K.E. Jones, D.M. Kaufman, P.A. Marquet, B.A. Maurer, K.J. Niklas, W.P. Porter, B. Tiffney, and M.R. Willig. 2004.
 Similarity of mammalian body size across the taxonomic hierarchy and across space and time. The American Naturalist 163:672-691.
- Stow, C.A., C.R. Allen, and A.S. Garmestani. 2007. Comparison of methods for detecting discontinuities in complex systems. Ecology and Society 12:26.
- Townsend, K.E. 2004. Stratigraphy, paleoecology, and habitat change in the middle eocene of North America. Doctoral Dissertation. Department of Anthropology, Graduate School of Arts & Sciences, Washington University. Saint Louis, MO.
- Willard, D.A. and T.M. Cronin. 2007. Paleoecology and ecosystem restoration: case studies from Chesapeake Bay and the Florida Everglades. Frontiers in Ecology & Environment 5:491-498.
- Wing, S. L. 1998. Tertiary vegetation of North America as a context for mammalian evolution. *Evolution of Tertiary Mammals of North America* (ed. by C.M. Janis, K.M. Scott and L.L. Jacobs). Cambridge University Press, Cambridge, United `Kingdom.
- Woodburne, M.O., and C.C. Swisher III. 1995. Land-mammal high-resolution geochronology, intercontinental overland dispersals, sea level, climate and vicariance. *Geochronology, Time Scales and Global Stratigraphic Correlation* (ed. by W.A. Berggren), pp. 335-364. SEPM Special Publication No. 54.
- Zimov, S.A., V.I. Chuprynin, A.P. Oreshko, F.S. Chapin III, J.F. Reynolds, and M.C. Chapin. 1995. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. The American Naturalist 146:765-794.

CHAPTER 5: CHANGES IN BODY MASS DISCONTINUITIES WITH CHANGES IN SCALE

Landscapes form hierarchies that are structured by vegetative, geomorphologic and contagious disturbance processes (Holling 1992). These hierarchies are linked to the availability of resources throughout the landscape and structurally different landscapes will have differently scaled resources (Skillen & Maurer 2008). Ecological patterns observed at one scale cannot usually be extrapolated to other scales (Gaston & Blackburn 1999). The spatial and temporal patterns inherent in landscapes may reflect numerous processes, interacting on distinct scales, which potentially shape the assembly of animal communities and has been the subject of much debate.

In order to understand these patterns, one must be able to understand interactions taking place between organisms and each other and organisms with their environment.

Studies have suggested predation (Winemiller 1989), age class (Yamahira et al. 1996) and diet (Siaw-Yang 1988) affect community structure at a local scale. Tropho-dynamics and productivity could reinforce clumping in body-mass distributions by increasing amplitude of the clumps (Holling 1992). Oksanen et al. (1979) suggest body mass discontinuities are caused by interspecific aggression modulated by habitat structure. There are conflicting results as to the relationship between habitat architecture and observed body mass patterns. Leaper et al. (2001) suggest that habitat architecture may not be as closely related to body-size patterns at a very fine, marine benthos scale, whereas Schwinghamer (1981) suggests a relationship.

Other studies have demonstrated the influence of community interactions on body mass distributions (Oksanen et al. 1979, Stubblefield et al. 1993, and Nummi et al. 2000). These studies support Hutchinson's (1959) community interaction hypothesis, which states that in the process of community formation species may be displaced, unfilled niches may be occupied, and niches may be portioned. Community interaction may become important only at a local scale, once community structure (under the premise of the textural discontinuity hypothesis) has formed (Allen et al. 2006). Historical processes that occur over evolutionary time have a major role in determining the species composition of a community (Mouquet et al. 2003). Rodriguez et al. (2006) also suggest environmental factors, such as climate, along with chance events play a role in the development of community structure.

Analysis of body mass patterns have been suggested as methods to provide insight about these underlying processes, as they are important in ecosystem level biotic structure (Forys & Allen 2002). Many studies have reported a discontinuous body mass distribution reflecting the architecture of the landscape (Restrepo et al. 1997, Raffaelli et al. 2000, Havlicek & Carpenter 2001). These studies support Holling's (1992) textural discontinuity hypothesis, which states that hierarchical landscape structures with scale-specific pattern entrain attributes of animals inhabiting the landscape.

Organisms of different body sizes have different requirements for resources and operate at different spatiotemporal scales (West et al. 1997). Therefore, an animal cannot simultaneously interact with multiple scales, but has to specialize at a single scale or shift between two scales (Allen & Saunders 2002). Allen et al. (1999) suggest that the gaps between body mass aggregations represent scale breaks and that these points in the body

mass distribution are highly susceptible to change in structure and ecological processes. Variations in body size may not only reflect cross-scale structure, but may also operate over micro-, meso-, and macroscales. In order to test Holling's (1992) textural discontinuity hypothesis, I determined whether discontinuous body mass patterns existed within each ecoregion, biome, continental and hemispheric scale. A lack of discontinuous body mass patterns would provide strong evidence against the textural discontinuity hypothesis.

Ecoregions are defined as large units of land which contain unique assemblages of species sharing similar environmental conditions (Olson et al. 2001). Ecoregions within biomes, or communities in the same biogeographical region, provide replicated examples of ecosystems that should be similar in history (Rodriguez et al. 2006). Thus, each biome enables the comparison of scale specific vertebrate community structure and the ecoregions within them should exhibit similar body mass patterns. In order to test Holling's (1992) textural discontinuity hypothesis, I examined whether the vertebrate body mass structures are similar among the ecoregions within each biome. A lack of similarity would provide strong evidence against the textural discontinuity hypothesis. If body mass structure reflects landscape structure at these different scales, this will support the textural discontinuity hypothesis and create a fundamental link between landscape and community ecology.

METHODS

I examined two terrestrial vertebrate groups: birds and mammals of the contiguous western hemisphere. Islands were not included in this study due in part to the

highly variable body size of animals on islands (Foster 1964). Humans were not included in mammal data because "the spatial grain and ambit of the human is restricted not by body-mass class, but by technological innovation" (Holling 1992). Digital distribution maps of birds (Ridgely et al. 2007) and mammals (Patterson et al. 2007) were obtained from NatureServe, Arlington, VA. Digital distribution maps of birds and mammals were also obtained online from the World Wildlife Fund (WWF) (Olson et al. 2004). Data sets were combined and duplicate entries were removed in order to obtain a more accurate distribution database. Ecoregions, biomes, and continents were delineated according to WWF protocol (Figure 5.1, Olson et al. 2001).

I examined mammal and bird body mass distributions at four distinct scales. I define scale as a range of spatial and temporal frequencies (see Peterson et al. 1998). The ecoregion scale included regions that ranged from ~2,000 km² to ~800,000 km². The biome scale included areas that ranged from ~100,000 km² to ~9,000,000km². The continental scale included North America (~20,800,000 km²) and South America (~17,800,000 km²). The western hemisphere scale was the combination of North and South America's land masses (km²).

Body-mass estimates

In most cases, body mass estimates for birds were compiled from Dunning (1993) and estimates for mammals were obtained from Silva and Downing (1995). Where possible, body mass estimates from the region of interest were used, otherwise estimates were taken from the nearest geographic location. Male and female body mass estimates were averaged when weights for both sexes are provided. Body sizes were recorded in grams and subsequently logarithmically transformed.

Discontinuity Analysis

Body mass pattern or structure refers to the distribution of body mass aggregations and gaps along the body mass axis. Body mass distributions were analyzed for discontinuities using simulations of actual data compared to a null distribution (a continuous unimodal kernel distribution of the log-transformed data (Restrepo et al. 1997). A body-mass aggregation consisted of three or more species with body masses that did not exceed the expectation of the null distribution and was defined by the upper and lower extremes of the aggregation (Allen et al. 1999). Gaps in body-mass aggregations were defined as significantly large areas between adjacent body masses that exceeded the expectation of the null distribution (Forys and Allen 2002). Significance of discontinuities in the data was determined by calculating the probability that the observed discontinuities were chance events (compared observed values with output of 1,000 simulations run against the null set (Restrepo et al. 1997).

The number of species in my data sets vary from < 30 to > 150, therefore I maintained a constant statistical power of approximately 0.50 when setting alpha for detecting discontinuities (Lipsey 1990). Two other methods were also used to confirm the location of discontinuities. I used Bayesian Classification and Regression Trees (Chipman et al. 1998) and hierarchical cluster analysis (SAS Institute 1999) to further validate any patterns detected in body mass distributions. A multiple method approach in detecting significance in body mass patterns has been suggested as the best protocol (Allen et al. 2006, Stow et al. 2007). Abundance data for each individual species was not integrated into my analyses. Changes in dominance of species (greater numbers of individuals) could change aggregation and gap locations, but body mass distribution

patterns will be conserved despite changes in species composition or number (Havlicek & Carpenter 2001).

Body Mass Distribution Pattern Analysis

Differences between taxa in the average gap size and in the average number of body mass aggregations, at each scale, were tested with a Mann-Whitney Rank Sum test because the data were not normally distributed. Correlations between the number of species in an ecosystem and the number of body mass aggregations were tested with a Pearson Product Moment Correlation (if the data was normally distributed) and a Spearman Rank Order Correlation (if the data was not normally distributed).

I tested for similarities in body mass distributions found within systems of similar landscape structure (biomes) by implementing a bootstrapping method (Chernick 2008) using R statistical software (R 2010). I wanted to determine whether the ecoregions within each biome were more similar to each other than by chance. All comparisons were made first by dividing the log10 body mass axis into 0.001 increments. Then, each increment was assigned either a 0 or 1 condition, with 0 representing a gap and 1 representing a body mass aggregation. Upper and lower limits were determined by the largest and smallest body masses in the comparison. The sum of observations that were within each body mass aggregation across each of the ecoregions within a biome were calculated. Then, the variance of all the sums of observations across ecoregions, in each biome, was calculated to determine the observed variance.

Each biome contained a unique number of ecoregions and that number determined the size of each resample. Each biome was resampled with replacement, 1,000 times, to determine the approximate distribution or simulated variance. If the

simulated variance is the same as the observed (actual) variance, then the ecoregions in that particular biome are not similar to each other because simply selecting a random assortment of all possible ecoregions in the western hemisphere would result in a similar variance. The exact rank, or location of the observed variance, within the 1,000 simulated variances was used to determine if the simulated versus observed variances were significantly different. An exact rank of 950 or higher ($\alpha = 0.05$) was the level of significance. A binomial distribution was calculated in order to determine whether all the observed variances for ecoregions within each biome were higher than the simulated variances by chance alone.

A Phi correlation analysis was used to determine differences in ecoregion body mass distributions between biomes. Species in each ecoregion within a biome were assigned a binary variable (where 1 represented a body mass aggregation and 0 represented a gap), based on the log10 body mass axis, and divided into a 0.001 gram increment bin. The Phi coefficient ranges from -1 to 1. Values approaching 1 indicate a positive correlation and values approaching -1 indicate a negative correlation. Fleiss et al. (2003) suggested that values greater than ± 0.30 indicate a strong relationship.

I analyzed the temperate broadleaf and mixed forest biome, boreal forests and taiga biome, temperate grasslands, savannas and shrublands biome, and the deserts and xeric shrublands biome. These four biomes were selected due to the similar number of ecoregions within each biome. I compared the mean phi correlation of ecoregions within one biome to the mean phi correlation of ecoregions in a different biome. A Kruskal-Wallis One Way Analysis of Variance on Ranks was used to determine significant differences in mean phi correlation values.

RESULTS

All bird and mammal body-mass distributions were discontinuous at the ecoregion, biome, continental, and hemisphere scales. I observed discontinuities in 253 mammal and 263 bird communities in 14 biomes located throughout the Western Hemisphere. There were between 6 - 20 body mass aggregations in each community. The numbers of body mass aggregations were positively correlated to the number of mammal species in each ecoregion within 12 out of 14 biomes (Table 5.1) and in each ecoregion within 11 out of 14 biomes in birds (Table 5.2). The numbers of body mass aggregations were positively correlated to the number of species in each biome, in mammals (Correlation Coefficient = 0.943, p < 0.001) and in birds (Correlation Coefficient = 0.968, p < 0.001). At the continental scale both taxa were combined and the numbers of body mass aggregations were positively correlated to the number of species (Correlation Coefficient = 0.997, p = 0.003).

In general, mammal communities at the ecoregion scale, had larger gaps on average than bird communities (p = < 0.001) (Table 5.3). Bird communities at the ecoregion scale, had more discontinuities than mammal communities as shown by a higher number of aggregations on average (p = < 0.001) (Table 5.4). When all mammal and bird body masses were combined into one distribution for each biome (i.e. biome scale), the average size of gaps in mammals was larger than birds (p = < 0.001). The average gap size in mammal body mass distributions at the biome scale were smaller than the gap size found at the ecoregion scale (p = < 0.001) (Table 5.5). At the biome scale, the average gap size in bird body mass distributions was smaller than the gap size at the

ecoregion scale (p = 0.004) (Table 5.6). The number of body mass aggregations were higher at the biome scale than in the ecoregion scale in both mammals (p = < 0.001) and birds (p = 0.006). As in the ecoregion and biome level scales, bird body mass aggregations had a smaller gap size (p = 0.330) and more aggregations (p = 0.330) than mammals at the continental scale, but were not significantly different (Table 5.7). At the hemisphere scale, both birds and mammals had equal size gaps, but birds had more aggregations (Table 5.8).

In mammals and birds, as scale increased from ecoregion to biome, the number of body mass aggregations increased (Figure 5.2). As scale increased from biome to continent in mammals, the number of body mass aggregations observed in both North America and South America equaled the highest number of body mass aggregations observed in the biome scale. In birds, as scale increased from biome to continent, the numbers of body mass aggregations in both North America and South America were as high as the upper half of body mass aggregations observed in the biome scale. In mammals, the highest numbers of body mass aggregations were observed at the hemisphere scale. In birds, at the hemisphere scale, the numbers of body mass aggregations observed at the South America continent scale, but higher than the numbers of body mass aggregations observed at the North America continent scale.

The observed variance in the sum of observations that were within each bird body mass aggregation across each of the ecoregions within a biome were higher than the observed variance in the sum of observations that were within each mammal body mass aggregation across each of the ecoregions within a biome (Table 5.9). The observed

variances in the sum of observations that were within each mammal body mass aggregation across each of the ecoregions within a biome were higher than the simulated variances in every biome and there was less than a 0.006% chance it is not a random effect (Table 5.10). In 9 out of 14 biomes, the simulated variance is not the same as the observed variance in the sum of observations that were within each mammal body mass aggregation across each of the ecoregions, which indicates that the ecoregions in those particular biomes are similar to each other. The observed variances in the sum of observations that were within each bird body mass aggregation across each of the ecoregions within a biome were higher than the simulated variances in all but three biomes and there was less than a 2% chance it is not a random effect (Table 5.11). In 7 out of 14 biomes, the simulated variance is not the same as the observed variance in the sum of observations that were within each bird body mass aggregation across each of the ecoregions, which indicates that the ecoregions in those particular biomes are similar to each other.

Body mass distributions of ecoregions within the temperate broadleaf and mixed forest biome were more similar to each other than to the body mass distributions of ecoregions within the boreal forests and taiga biome, temperate grasslands, savannas and shrublands biome, and the deserts and xeric shrublands biome. Body mass distributions of ecoregions within the boreal forests and taiga biome were more similar to each other than to the body mass distributions of ecoregions within the temperate grasslands, savannas and shrublands biome, and the deserts and xeric shrublands biome. There was no difference in body mass distributions of ecoregions within the temperate grasslands,

savannas and shrublands biome compared to the body mass distributions of ecoregions within the deserts and xeric shrublands biome (Table 5.12).

DISCUSSION

Discontinuous body-mass distributions were found in all bird and mammal communities that were examined. Discontinuities in body mass distributions have also been shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, birds, and mammals (Allen 2006, Forys & Allen 2002), Pleistocene and Miocene mammals (Lambert 2006, Lambert and Holling 1998), tropical forest birds (Restrepo et al. 1997), and boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed in Sendzimir et al. 2003). This analysis extends these conclusions to include bird and mammal communities in almost every ecosystem of the western hemisphere.

As scale increased from ecoregion to hemisphere, each body mass distribution pattern was very distinct. There were no general patterns observed in any body mass distributions across scales or taxa. In some instances, some gaps and/or body mass aggregations remained at or near the exact location along the body mass axis as scale increased from ecoregion to hemisphere. In other cases, as scale increased, some gaps and/or body mass aggregations were observed at different locations along the body mass axis. Although there were no clear general patterns observed, gaps and/or body mass aggregations that remained at or near the same location along the body mass axis as scale increased may be the result of historical events. Marquet and Cofre (1999) observed a strong historic component, the Great American Biotic Interchange, which they suggest

explain the structure of multiple body mass modes in South American mammals at different spatial scales.

At the ecoregion, biome, continental, and hemisphere scales bird communities had more aggregations than mammal communities. Mammals had larger gap sizes than birds at every scale except hemispheric. These differences may be due to how each taxa perceive and interact with landscape structure. It has been suggested that birds live in a more three dimensional world and mammals live in a one dimensional world (Holling 1992). If this were the case, birds would be able to access a greater number of resources enabling the use of a more complex landscape structure and allow birds to occupy more niches. More niches could account for a greater number of aggregations, which would contradict the textural discontinuity hypothesis. TDH would posit that as a landscape becomes more structurally complex, the opportunity to fill new niches increases, not vice versa.

Birds and mammals also have different locomotory modes, affording birds the ability to utilize both terrestrial and aerial resources in any given landscape (Sendzimir 1998). Another explanation might be in our lack of understanding in the interaction between animals and the different structures in their environment. We cannot assume that different structural types in the landscape, in the eyes of an animal, are equally weighted in importance. Also, the body mass pattern analysis methodology used might not have been the appropriate manner to analyze the data at these various scales (Sendzimir 1998).

Only 64% of the biomes in mammals had ecoregions with similar structure and only 50% of the biomes in birds had ecoregions with similar structure. This lack of universal congruence between ecoregions within a biome, in both mammals and birds,

could be the result of the information put into the analysis. Current landscape classification schemes are presumably quite subjective in nature. They may also be too coarse and even exclude key components of a complex system (Strand 2011, Gallant 2009). If key components, or enough components in general, were excluded from one or more ecoregions within a biome then the similarity between ecoregions within a particular biome could be considerably diminished.

Phi correlation analyses comparing the body mass distributions of ecoregions between two different biomes indicated that the temperate broadleaf and mixed forest biome and boreal forests and taiga biome were unique among the biomes examined, which provides support that the ecoregions within these biomes were correctly classified into their respective biome categorization. Analyses comparing the body mass distributions of ecoregions between the temperate grasslands, savannas and shrublands biome with the body mass distributions of ecoregions within the deserts and xeric shrublands biome failed to detect any difference between them. As mentioned above, landscape classification schemes may be too coarse or exclude key components of a complex system which might have differentiated the body mass distributions of the ecoregions between these two biomes.

Ecosystems are a complex juxtaposition of numerous variables, many of which are poorly understood. Ecosystems are affected by different processes at different scales. Vegetative processes control the microscale, disturbance and environmental processes at the mesoscale and geomorphologic and evolutionary processes at the macroscale (Holling 1992). Analysis of animal-landscape interactions can now be used as an additional parameter when modeling ecosystems. Local community composition depends on local

and regional processes (Gaston & Blackburn 1999). Therefore, body mass distribution analysis at multiple scales will allow the identification of subsets of animal communities within subsets of the landscape structure.

This will provide a more refined and useful approach to the study of animal-landscape interactions. Processes unique at a specific landscape scale can be tied to animal communities that exist only at that scale, which makes the textural discontinuity hypothesis a key management tool. Correct use and knowledge of this paradigm shift in ecology will help simplify the complexity of nature so that effective conservation efforts can be realized.

Table 5.1. The correlation between body mass aggregations the number of mammal species in each ecoregion. The number of ecoregions within each biome, the correlation coefficient and p-values.

Biome	# of Ecoregions	Correlation Coefficient	P
1	71	0.853	0.001
2	26	0.911	0.001
3	9	0.953	0.001
4	19	0.573	0.011
5	29	0.859	0.001
6	15	0.709	0.003
7	8	0.856	0.002
8	19	0.568	0.011
9	6	0.683	0.136
10	9	0.939	0.002
11	10	0.449	0.172
12	4	0.937	0.063
13	22	0.906	0.001
14	6	0.939	0.017

Table 5.2. The correlation between body mass aggregations the number of bird species in each ecoregion. The number of ecoregions within each biome, the correlation coefficient and p-values.

Biome	Number of Ecoregions	Correlation Coefficient	P
1	72	0.921	0.001
2	27	0.943	0.001
3	9	0.962	0.001
4	19	0.781	0.001
5	30	0.73	0.001
6	17	0.917	0.001
7	8	0.913	0.001
8	19	0.775	0.001
9	6	0.765	0.103
10	9	0.973	0.001
11	15	0.939	0.001
12	4	0.889	0.111
13	22	0.962	0.001
14	6	0.96	0.002

Table 5.3. Mammal summary statistics, including standard deviations (SD), of all ecoregions within each biome.

The total number of ecoregions within each biome, the average distance of gaps between body mass aggregations within each biome, the total number of body mass aggregations within each biome and the average number of body mass aggregations within each biome.

Biome	Habitat	Number of Ecoregions	Average Distance of Gaps	Number of Aggregations	Average Number of Aggregations
Dionic	Tropical and Subtropical Moist Broadleaf	Leoregions	or Gaps	Aggregations	Aggregations
1	Forests	71	0.12(0.05)	618	8.70(1.21)
•	Tropical and Subtropical Dry Broadleaf	, 1	0.12(0.05)	010	0.70(1.21)
2	Forests	26	0.15(0.06)	207	7.96(1.11)
3	Tropical and Subtropical Coniferous Forests	9	0.16(0.07)	71	7.89(1.45)
4	Temperate Broadleaf and Mixed Forests	19	0.23(0.04)	142	7.47(0.61)
5	Temperate Coniferous Forests	29	0.18(0.04)	214	7.64(0.87)
6	Boreal Forests/Taiga	15	0.28(0.05)	91	6.59(0.76)
7	Tropical and Subtropical Grasslands, Savannas and Shrublands Temperate Grasslands, Savannas and	8	0.10(0.04)	72	9(1.41)
8	Shrublands	19	0.17(0.04)	150	7.89(0.81)
9	Flooded Grasslands and Savannas	6	0.15(0.05)	45	7.5(0.550
10	Montane Grasslands and Shrublands	9	0.12(0.04)	76	8.44(1.33)
11	Tundra	10	0.32(0.08)	61	6.1(0.57)
12	Mediterranean Forests, Woodlands and Scrub	4	0.20(0.04)	29	7.25(0.96)
13	Deserts and Xeric Shrublands	22	0.18(0.09)	165	7.5(1.26)
14	Mangroves	6	0.10(0.03)	57	9.59(1.22)

Table 5.4. Bird summary statistics, including standard deviations (SD), of all ecoregions within each biome. The total number of ecoregions within each biome, the average distance of gaps between body mass aggregations within each biome, the total number of body mass aggregations within each biome and the average number of body mass aggregations within each biome.

Biome	Habitat	Number of Ecoregions	Average Distance of Gaps	Number of Aggregations	Average Number of Aggregations
Dionic	Tropical and Subtropical Moist	Leoregions	от Сирь	7 1ggregations	or riggregations
1	Broadleaf Forests	72	0.02(0.02)	1264	17.56(2.38)
	Tropical and Subtropical Dry Broadleaf		, ,		,
2	Forests	27	0.03(0.03)	437	16.19(3.01)
	Tropical and Subtropical Coniferous				
3	Forests	9	0.03(0.01)	138	15.33(1.80)
	Temperate Broadleaf and Mixed				
4	Forests	19	0.05(0.02)	217	12.06(0.54)
5	Temperate Coniferous Forests	30	0.05(0.01)	340	11.33(0.88)
6	Boreal Forests/Taiga	17	0.07(0.02)	176	10.35(1.17)
	Tropical and Subtropical Grasslands,				
7	Savannas and Shrublands	8	0.02(0.01)	145	18.13(2.23)
	Temperate Grasslands, Savannas and				
8	Shrublands	19	0.04(0.01)	230	12.11(0.81)
9	Flooded Grasslands and Savannas	6	0.03(0.02)	88	14.67(1.97)
10	Montane Grasslands and Shrublands	9	0.05(0.03)	154	17.11(3.62)
11	Tundra	15	0.10(0.04)	122	8.13(1.64)
	Mediterranean Forests, Woodlands and		, ,		, ,
12	Scrub	4	0.06(0.02)	50	12.50(1.29)
13	Deserts and Xeric Shrublands	22	0.04(0.02)	307	13.95(2.21)
14	Mangroves	6	0.02(0.01)	102	17.00(2.00)

Table 5.5. All mammal species within each biome combined into one body mass distribution. The average distance of gaps between body mass aggregations within each biome (including standard deviations (SD)), the total number of body mass aggregations within each biome and the total number of species within each biome.

		Average	Number of	
Biome	Habitat	Distance of Gaps	Number of Aggregations	Number of Species
Dionie	Tropical and Subtropical Moist	or Gaps	Aggregations	Number of species
1	Broadleaf Forests	0.02(0.03)	18	862
1	Tropical and Subtropical Dry	0.02(0.03)	10	002
2	Broadleaf Forests	0.02(0.02)	17	671
_	Tropical and Subtropical Coniferous	****(*****)		V -
3	Forests	0.06(0.06)	12	301
	Temperate Broadleaf and Mixed	, ,		
4	Forests	0.07(0.04)	12	223
5	Temperate Coniferous Forests	0.08(0.06)	13	275
6	Boreal Forests/Taiga	0.15(0.06)	8	88
	Tropical and Subtropical Grasslands,	, ,		
7	Savannas and Shrublands	0.02(0.03)	15	457
	Temperate Grasslands, Savannas and			
8	Shrublands	0.06(0.08)	14	346
9	Flooded Grasslands and Savannas	0.06(0.05)	11	230
10	Montane Grasslands and Shrublands	0.04(0.02)	14	421
11	Tundra	0.22(0.10)	7	64
	Mediterranean Forests, Woodlands	(
12	and Scrub	0.09(0.08)	9	161
13	Deserts and Xeric Shrublands	0.03(0.03)	17	584
14	Mangroves	0.05(0.04)	15	423

Table 5.6. All bird species within each biome combined into one body mass distribution. The average distance of gaps between body mass aggregations within each biome (including standard deviations (SD)), the total number of body mass aggregations within each biome and the total number of species within each biome.

Dioma	Habitat	Average Distance of	Number of	Number of
Biome	Tropical and Subtropical Moist Broadleaf	Gaps	Aggregations	Species
1	Forests	0.01(0.01)	32	3304
2	Tropical and Subtropical Dry Broadleaf Forests	0.01(0.02)	28	2646
3	Tropical and Subtropical Coniferous Forests	0.02(0.02)	20	926
4	Temperate Broadleaf and Mixed Forests	0.03(0.03)	16	525
5	Temperate Coniferous Forests	0.02(0.03)	16	473
6	Boreal Forests/Taiga	0.05(0.04)	12	268
7	Tropical and Subtropical Grasslands, Savannas and Shrublands Temperate Grasslands, Savannas and	0.01(0.02)	25	1868
8	Shrublands	0.02(0.02)	19	832
9	Flooded Grasslands and Savannas	0.02(0.03)	21	1231
10	Montane Grasslands and Shrublands	0.01(0.04)	27	1861
11	Tundra	0.06(0.04)	11	193
	Mediterranean Forests, Woodlands and	` ,		
12	Scrub	0.03(0.03)	16	415
13	Deserts and Xeric Shrublands	0.01(0.02)	26	1868
14	Mangroves	0.01(0.03)	26	1845

Table 5.7. Species combined into one body mass distribution for each continent. The average distance of gaps between body mass aggregations within each continent (including standard deviations (SD)), the total number of body mass aggregations within each continent and the total number of species within each continent.

	Average Distance of	Number of	Number of
Continent	Gaps	Aggregations	Species
Mammals			
North			
America	0.04(0.04)	17	609
South			
America	0.02(0.02)	18	829
Birds			
North			
America	0.01(0.01)	23	1534
South			
America	0.01(0.02)	31	3136

Table 5.8. Mammal and bird body mass distribution summary statistics for the entire western hemisphere. The average distance of gaps between body mass aggregations, including standard deviations (SD), the total number of body mass aggregations and the total number of species.

	Average Distance of	Number of	Number of
	Gaps	Aggregations	Species
Mammals	0.01(0.02)	22	1261
Birds	0.01(0.01)	32	3560

Table 5.9. The observed variance is the sum of observations that were within each mammal and bird body mass aggregation across each of the ecoregions within a biome, including standard deviations (SD), at the ecoregion, biome and continental scales.

		Mammals	Birds
Biome	Habitat	Variance	Variance
1	Tropical and Subtropical Moist Broadleaf Forests	650.23(25.5)	722.54(26.88)
2	Tropical and Subtropical Dry Broadleaf Forests	71.53(8.46)	90.68(9.53)
3	Tropical and Subtropical Coniferous Forests	8.6(2.93)	13.49(3.67)
4	Temperate Broadleaf and Mixed Forests	42.67(6.53)	61.54(7.84)
5	Temperate Coniferous Forests	88.79(9.42)	148.81(12.2)
6	Boreal Forests/Taiga	34.13(5.84)	51.35(7.16)
7	Tropical and Subtropical Grasslands, Savannas and Shrublands	8.73(2.96)	9.92(3.15)
8	Temperate Grasslands, Savannas and Shrublands	32.99(5.74)	56.5(7.52)
9	Flooded Grasslands and Savannas	4.38(2.09)	5.51(2.35)
10	Montane Grasslands and Shrublands	12.12(3.48)	10.12(3.18)
11	Tundra	16.1(4.01)	31.1(5.58)
12	Mediterranean Forests, Woodlands and Scrub	2.33(1.53)	2.56(1.6)
13	Deserts and Xeric Shrublands	43.52(6.6)	63.11(7.94)
14	Mangroves	4.79(2.19)	5.46(2.34)
Biome		18.12(4.26)	23.75(4.87)
Western			
Hemisphere		0.5(0.7)	0.58(0.76)

Table 5.10. The sum of observations that were within each mammal body mass aggregation across each of the ecoregions within a biome. The observed variance of all the sums of observations across ecoregions, in each biome. An exact rank of 950 or higher ($\alpha = 0.05$) was the level of significance. A binomial distribution was calculated in order to determine whether all the observed variances for ecoregions within each biome were higher than the simulated variances by chance alone.

				Exact
Biome	Habitat	Simulated	Observed	Rank
1	Tropical and Subtropical Moist Broadleaf Forests	405.7	650.23	1000
2	Tropical and Subtropical Dry Broadleaf Forests	56.73	71.53	998
3	Tropical and Subtropical Coniferous Forests	7.676	8.6	850
4	Temperate Broadleaf and Mixed Forests	30.89	42.67	1000
5	Temperate Coniferous Forests	70.2	88.79	1000
6	Boreal Forests/Taiga	19.92	34.13	1000
7	Tropical and Subtropical Grasslands, Savannas and Shrublands	6.158	8.73	996
8	Temperate Grasslands, Savannas and Shrublands	31.04	32.99	768
9	Flooded Grasslands and Savannas	3.703	4.38	882
10	Montane Grasslands and Shrublands	7.618	12.12	1000
11	Tundra	9.246	16.1	1000
12	Mediterranean Forests, Woodlands and Scrub	1.859	2.33	920
13	Deserts and Xeric Shrublands	41.37	43.52	753
14	Mangroves	3.699	4.79	971
	Binomial Distribution		6.10E-05	

Table 5.11. The sum of observations that were within each bird body mass aggregation across each of the ecoregions within a biome. The observed variance of all the sums of observations across ecoregions, in each biome. An exact rank of 950 or higher ($\alpha = 0.05$) was the level of significance. A binomial distribution was calculated in order to determine whether all the observed variances for ecoregions within each biome were higher than the simulated variances by chance alone.

Biome	Habitat	Simulated	Observed	Exact Rank
1	Tropical and Subtropical Moist Broadleaf Forests	663.7	722.54	1000
2	Tropical and Subtropical Dry Broadleaf Forests	94.86	90.68	169
3	Tropical and Subtropical Coniferous Forests	11.15	13.49	999
4	Temperate Broadleaf and Mixed Forests	47.59	61.54	1000
5	Temperate Coniferous Forests	116.6	148.81	1000
6	Boreal Forests/Taiga	38.15	51.35	1000
7	Tropical and Subtropical Grasslands, Savannas and Shrublands	8.844	9.92	949
8	Temperate Grasslands, Savannas and Shrublands	47.34	56.5	1000
9	Flooded Grasslands and Savannas	5.132	5.51	805
10	Montane Grasslands and Shrublands	11.05	10.12	114
11	Tundra	29.86	31.1	764
12	Mediterranean Forests, Woodlands and Scrub	2.376	2.56	760
13	Deserts and Xeric Shrublands	63.26	63.11	483
14	Mangroves	5.12	5.46	772
	Binomial Distribution		0.02	

Table 5.12. Mean (x) and standard deviation (SD) of Phi coefficients and difference in ranks for each comparison between biomes.

		Difference in	
Biome Comparisons	X	Ranks	p
Temperate Broadleaf and Mixed Forests	0.568(0.1560)		
with Boreal Forests/Taiga	0.48(0.1210)	233.577	< 0.05
with Temperate Grasslands, Savannas and			
Shrublands	0.469(0.1210)	281.236	< 0.05
with Deserts and Xeric Shrublands	0.417(0.0968)	478.105	< 0.05
Boreal Forests/Taiga	0.637(0.1410)		
with Temperate Grasslands, Savannas and			
Shrublands	0.414(0.0794)	662.276	< 0.05
with Deserts and Xeric Shrublands	0.398(0.0671)	727.445	< 0.05
Temperate Grasslands, Savannas and			
Shrublands	0.506(0.1490)		
Deserts and Xeric Shrublands	0.454(0.1180)	149.355	>0.05
Deserts and Xeric Shrublands	0.472(0.1480)		

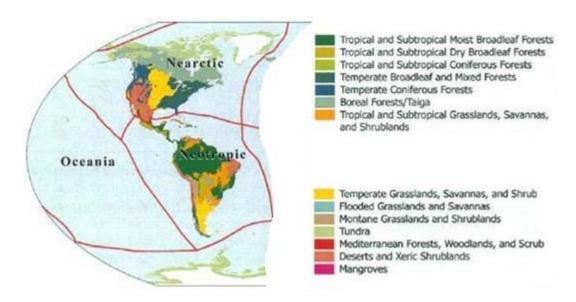


Figure 5.1. Biomes of the Western Hemisphere. Image adapted from Olson et al. (2001).

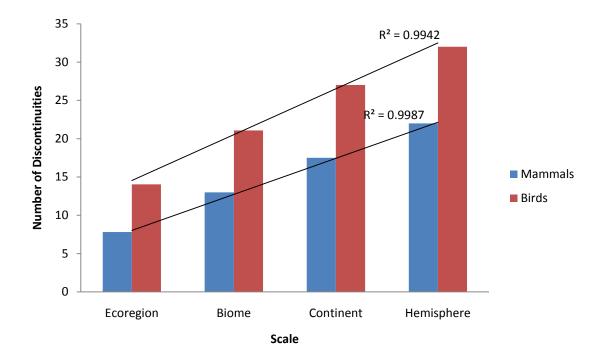


Figure 5.2. The number of discontinuities detected by Bayesian CART and SAS cluster analysis at four different scales. The average number of discontinuities was used at the ecoregion, biome and continental scale.

LITERATURE CITED

- Allen, C.R., E.A. Forys, and C.S. Holling. 1999. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2:114-121.
- Allen, C.R., and D.A. Saunders. 2002. Variability between scales: predictors of nomadism in birds of an Australian Mediterranean-climate ecosystem. Ecosystems 5:348-359.
- Allen, C.R. 2006. Predictors of introduction success in the South Florida avifauna. Biological Invasions 8:491-500.
- Allen, C.R., A.S. Garmestani, T.D. Havlicek, P.A. Marquet, G.D. Peterson, C. Restrepo, C.A. Stow, and B. Weeks. 2006. Patterns in body mass distributions: sifting among alternative competing hypotheses. Ecology Letters 9:630-643.
- Chernick, M.R. 2008. *Bootstrap Methods: A guide for practitioners and researchers*. John Wiley & Sons, Inc. Hoboken, New Jersey, USA.
- Chipman, H.A., E.I. George, and R.E. McCulloch. 1998. Bayesian CART model search. Journal of the American Statistical Association 93:935-948.
- Dunning, J.B. Jr. 1993. *CRC handbook of avian body masses*. CRC Press, Ann Arbor, MI, USA.
- Fleiss, J.L., B. Levin, and M.C. Paik. 2003. Comparative studies: cross-sectional, naturalistic, or multinomial sampling. *Statistical methods for rates and proportions* (ed. by J.L. Fleiss, B. Levin, and M.C. Paik), pp. 95-143. John Wiley & Sons, Inc. Hoboken, New Jersey, USA.
- Forys, E.A., and C.R. Allen. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339-347.
- Foster, J.B. 1964. Evolution of mammals on islands. Nature 202:234-235.
- Gallant, A.L. 2009. What you should know about land-cover data. The Journal of Wildlife Management 73:796-805.
- Gaston, K.J. and T.M. Blackburn. 1999. A critique for macroecology. Oikos 84:353-368.
- Havlicek, T. and S. R. Carpenter. 2001. Pelagic size distributions in lakes: are they discontinuous? Limnology and Oceanography 46:1021-1033.
- Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447-502.
- Hutchinson, G.E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93:145-159.
- Lambert, W.D., and C.S. Holling. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body-mass distributions. Ecosystems 1:157-175.
- Lambert, W.D. 2006. Functional convergence of ecosystems: evidence from body mass distributions of North American late Miocene faunas. Ecosystems 9:97-118.
- Leaper, R., D. Raffaelli, C. Emes, and B. Manly. 2001. Constraints on body-size distributions: an experimental test of the habitat architecture hypothesis. Journal of Animal Ecology 70:248-259.
- Lipsey, M.W. 1990. *Design sensitivity statistical power for experimental research*. Sage Publications, Inc. Newbury Park, CA, USA.
- Marquet, P.A. and H. Cofre. 1999. Large temporal and spatial scales in the structure of

- mammalian assemblages in South America: a macroecological approach. Oikos 85:299-309.
- Mouquet, N., P. Munguia, J.M. Kneitel, and T.E. Miller. 2003. Community assembly time and the relationship between local and regional species richness. Oikos 103:618-626.
- Nummi, P., K. Sjoberg, H. Poysa, and J. Elmberg. 2000. Individual foraging behaviour indicates resource limitation: an experiment with mallard ducklings. Canadian Journal of Zoology 78:1891-1895.
- Oksanen, L., S.D. Fretwell, and O. Jarvinen. 1979. Interspecific aggression and the limiting similarity of close competitors: the problem of size gaps in some community arrays. The American Naturalist 114:117-129.
- Olson, D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D'Amico, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt, J.F. Lamoreux, T.H. Ricketts, I. Itoua, W.W. Wettengel, Y. Kura, P. Hedao, and K. Kassem. 2001. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience 51:933-938.
- Olson, D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D'Amico, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt, J.F. Lamoreux, T.H. Ricketts, I. Itoua, W.W. Wettengel, Y. Kura, P. Hedao, and K. Kassem. 2004. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience 51:933-938. Updated database: http://www.worldwildlife.org/science/data/item6373.html
- Patterson, B. D., G. Ceballos, W. Sechrest, M. F. Tognelli, T. Brooks, L. Luna, P. Ortega, I. Salazar, and B. E. Young. 2007. Digital Distribution Maps of the Mammals of the Western Hemisphere, version 3.0. NatureServe, Arlington, Virginia, USA. Peterson, G., C.R. Allen, and C.S. Holling. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6-18.
- R Development Core Team. 2010. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. www.r-project.org
- Raffaelli, D., S. Hall, C. Emes, and B. Manly. 2000. Constraints on body size distributions: an experimental approach using a small-scale system. Oecologia 122:389-398.
- Restrepo, C., L.M. Renjifo, and P. Marples. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. *Tropical forest remnants: ecology, management and conservation of fragmented communities* (ed. by W.F. Laurance, R.O. Bierregaard, and C. Moritz), pp. 171-189. University of Chicago Press, Chicago, IL, USA.
- Ridgely, R. S., T. F. Allnutt, T. Brooks, D. K. McNicol, D. W. Mehlman, B. E. Young, and J. R. Zook. 2007. Digital Distribution Maps of the Birds of the Western Hemisphere, version 3.0. NatureServe, Arlington, Virginia, USA.
- Rodriguez, J., J. Hortal, and M. Nieto. 2006. An evaluation of the influence of environment and biogeography on community structure: the case of Holarctic mammals. Journal of Biogeography 33:291-303.
- Schwinghamer, P. 1981. Characteristic size distributions of integral benthic communities. Canadian Journal of Fisheries and Aquatic Sciences 38:1255-1263.

- Sendzimir, J.P. 1998. Patterns of animal size and landscape complexity: correspondence within and across scales. Dissertation, University of Florida.
- Sendzimir, J., C.R. Allen, L. Gunderson and C. Stow. 2003. Implications of body mass patterns: linking ecological structure and process to wildlife conservation and management. *Landscape ecology and resource management: linking theory with practice* (ed. by J. Bissonette, J. and I. Storch), pp. 125-152. Island Press, Washington, D.C., USA.
- Siaw-Yang, Y. 1988. Food resource utilization partitioning of fifteen fish species at Bukit Merah Reservoir, Malaysia. Hydrobiologia 157:143-160.
- Silva M. and J.A. Downing. 1995 *CRC handbook of mammalian body masses*. CRC Press, Boca Raton, FL, USA.
- Skillen, J.J. and B.A. Maurer. 2008. The ecological significance of discontinuities in body-mass distributions. Discontinuities in ecosystems and other complex systems (ed. by C.R. Allen and C.S. Holling), pp. 193-218. Columbia University Press, New York, NY, USA.
- Strand, G.H. 2011. Uncertainty in classification and delineation of landscapes: a probabilistic approach to landscape modeling. Environmental Modeling & Software
- Stow, C.A., C.R. Allen, and A.S. Garmestani. 2007. Comparison of methods for detecting discontinuities in complex systems. Ecology and Society 12:26.
- Stubblefield, J.W., J. Seger, J.W. Wenzel, and M.M. Heisler. 1993. Temporal, spatial, sex-ratio and body size heterogeneity of prey species taken by the beewolf *Philanthus sanbornii*, Hymenoptera: Sphecidae. Philosophical Transactions of the Royal Society of London (Series B) 339:397-423.
- West, G.B., J.H. Brown and B.J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:5309.
- Winemiller, K.O. 1989. Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan ilanos. Environmental Biology of Fishes 26:177-199.
- Yamahira, K., T. Kikuchi, and S. Nojima. 1996. Age specific food utilization and spatial distribution of the puffer, *Takifugu niphobles*, over an intertidal sand flat. Environmental Biology of Fishes 45:311-318.

CHAPTER 6: A SOCIO-ECOLOGICAL ANALYSIS OF GLOBAL INVASIONS AND EXTINCTIONS

Multiple forces, exacerbated by human activity, work together to cause the decline of many species (Wilson 2002). Human population size, CO2 production, biomass consumption, energy use and geographical range size are orders of magnitude greater than any other species (Fowler & Hobbs 2003). The debate, as to what aspect(s) of humanity is responsible for environmental degradation, has been going on since the 1970s (Ehrlich & Holdren 1971, Commoner et al. 1971) and current governance regimes are unable to mitigate the adverse ecological impacts of socio-ecological systems (UNEP 2007).

One of the major unresolved problems, at the forefront of worldwide environmental concerns, is the increase in invasive and endangered species.

Unfortunately, even after 40 years of study, ecologists are still not able to determine the processes which govern invasions and extinctions with any predictive power (Bright 1998). There are thousands of invasive plants and animal species that have established themselves throughout the world and the number is rising. Invasive species can alter the evolutionary pathway of native species via predation, hybridization, niche displacement, competitive exclusion and possibly extinction (Mooney & Cleland 2001). As native species decline, introduced non-indigenous species may become established and can affect ecosystem processes at varying scales and can potentially lead to the further extinction of native species (Williamson 1996, Vitousek et al. 1997a, Forys & Allen 2002).

Biodiversity has been increasing for the past 600 million years (Signor 1990); yet recent studies indicate a global decline in biodiversity, no reduction in rate of decline, and an increase in pressures on biodiversity (Butchart et al. 2010). Changes in biodiversity due to human actions have been more profound in the last 50 years than in entire recorded human history, with an astonishing 52% of cycads, 32% of amphibians, 25% of conifers, 23% of mammals, and 12% of bird species threatened with extinction (Millennium Ecosystem Assessment 2005). According to The World Conservation Union's (IUCN) Invasive Species Specialist Group (ISSG), 1159 species have possibly gone extinct and 22% of vertebrates, 41% of invertebrates and 70% of plants are endangered (Vie et al. 2009). The integrity of the ecosystem declines with the loss of native species (Noss 1995, Sanders et al. 2003) and may affect the delivery of ecosystem services (Ehrlich & Ehrlich 1992). Extinction rates are 100 to 1,000 times their prehuman levels (Pimm et al. 1995, UNEP 2007). This potential loss of native species diversity may disrupt the numerous ecological processes that inherently shape landscape structure, such as predator-prey dynamics, dispersal, foraging behavior and functional group composition.

The term "landscape structure" has many different definitions in science, business, government, and in different cultures. There is a critical need for integrated concepts and research capable of uniting the natural and social sciences (Pickett et al. 1997). Studies have recognized the need to couple human systems with environment systems (Turner et al. 2003), the convergence of environmental and financial markets (Sandor et al. 2002), the importance of socio-cultural dynamics in natural resource management (Stratford & Davidson 2002) and the tremendous impact of humans on the

environment in comparison to other species (Fowler & Hobbs 2003). Numerous studies have focused on only one aspect of the socio-ecological relationship such as carbon emissions (Kratena 2004), water (Postel 2003) or human population growth (Struglia & Winter 2002).

At present, only three projects have attempted to focus on and integrate multiple socio-ecological factors at a national scale, with an emphasis on their roles in an ecologically sustainable society, into an index of values that can be ranked and compared. In 2003, the Global Footprint Network was established in an effort to establish and maintain a sustainable future. As part of that effort, the Ecological Footprint was created. This metric, comprised of 5 levels and 6 sub-categories, calculates how much natural resources we have, how much we use and who uses it in order to track human demands on the biosphere (Ewing et al. 2008). The U.S. National Aeronautics and Space Administration's (NASA) Socioeconomic Data and Applications Center (SEDAC) published three indexes, the 2005 Environmental Sustainability Index (ESI) (Esty et al. 2005), the 2006 Environmental Performance Index (EPI) (Esty et al. 2006) and the 2008 EPI (Esty et al. 2008). Each index was developed in order to explore the relationships, at a national scale, between multiple socio-ecological factors and their effect on a country's environmental performance and sustainability.

The 2005 ESI consisted of 76 socio-ecological variables that were grouped into 21 subcategories, under 5 main categories. The 2006 EPI consisted of 16 socio-ecological variables that were grouped into 6 main categories. The 2008 EPI consisted of 26 socio-ecological variables that were grouped into 10 subcategories, under 6 main categories. In 2004, the Environmental Vulnerability Index (EVI) was created by the South Pacific

Applied Geoscience Commission and the United Nations Environment Program in order to provide a rapid and standardized method of assessing a country's vulnerability to negative impacts on sustainable development (Kaly et al. 2004). This index incorporated 50 indicators organized under 7 main categories. Final countrywide index results, the indicator selection process and indicator definitions can be found in their respective final reports.

These indices utilized indicators that represented another layer of the ecosystem, previously unaccounted for in ecological research. These indices demonstrated that the economic, demographic, environmental and societal variables are not mutually exclusive, but highly integrated and have profound impacts on a country's sustainability. Indices create a single condensed quantity based on multiple, multi-dimensional variables (Ebert & Welsch 2004). In order to ascertain which socio-ecological variables are important, I must utilize multi-modal inference and model selection. There is a clear need for better models that can help elucidate the complex interactions between humans and their environment (Balmford et al. 2005).

The three aforementioned indices incorporated a diverse range and number of indicators, unique categorical organization of indicators, and were created in order to measure a country's environmental performance and sustainability. A more relevant measure of a country's sustainability or performance lies in its ecosystem resilience (Carpenter et al. 2001). Ecosystem resilience is defined as the magnitude of disturbance that can be absorbed by a system before it changes its structure and control (Holling & Gunderson 2002). I suggest that ecosystem resilience can be measured by the proportion of invasive and endangered bird and mammal species within a country. Those countries

with a higher proportion of invasive and endangered bird and mammal species would presumably have lower ecosystem resilience.

I plan to utilize a unique set of socio-ecological factors to explore their relationships with the proportion of endangered and invasive birds and mammals within each country and resilience. I divided fifteen socio-ecological factors into three broad groups which included; (i) Economic, (ii) Ecological, and (iii) Social/Governance. The economic group included; 1) GDP per capita, 2) Export/Import ratio, 3) Tourism, 4) Under Nourishment, and 5) Energy Efficiency. The ecological group included; 1) Agriculture intensity, 2) Rainfall, 3) Water stress, 4) Wilderness protection, and 5) Total biodiversity. The Social/Governance group included; 1) Life expectancy, 2) Adult literacy, 3) Pesticide regulations, 4) Political stability, and 5) Women in government. I also included three other factors and two reference indexes.

Socio-ecological Factors

<u>Economic</u>

Gross national product (GNP) has been shown to have an inverse relation to species richness; countries with high GNP are located in the upper latitudes with low biodiversity and countries with low GNP are located in the tropics with high biodiversity (Huston 1994). Gross domestic product per capita (GDP), a standard measure of affluence, has been shown to have a curvilinear relationship with environmental impact and this relationship has been termed the environmental Kuznets curve (EKC) (Cavlovic et al. 2000, Stern 2004, Dietz et al. 2007). Species richness of invasive plants (Liu et al. 2005) and all invasive taxonomic groups combined (Lin et al. 2007) were both positively

correlated with increased GDP per capita. International trade positively affects a country's income (Frankel and Romer 1999). Therefore, limiting trade would limit a country's income and subsequently diminish opportunities for biological invasions. In fact, a closed international trade policy helped Eastern European bloc countries limit invasive bird species introductions during the Cold War (Chiron et al. 2010).

Commercial energy consumption was reported to be positively correlated with exports (developing countries were observed having a stronger correlation than developed countries) and imports by industrialized countries were associated with less energy consumption (Suri & Chapman 1998). International trade typically results in the exporting country bearing more ecological costs than the country importing those goods (Machado et al. 2001). International trade has grown at twice the rate of economic growth since 1950 (Kates & Parris 2003) and this globalization has resulted in a sharp increase in non-indigenous introductions (GISP 2001, Perrings et al. 2002). A 3-24% increase in invasive insects and plants by 2020 were predicted by using establishment rates of non-indigenous species and international trade data for the past 100 years in the United States with projected trade forecasts for the United States (Levine & D'Antonio 2003). These non-indigenous introductions are hard to reverse, amount to severe economic losses, alter the structure of and function of ecosystems and decrease the diversity of native species (Vitousek et al. 1997a).

International tourist arrivals are estimated to reach approximately 1.6 billion people per year by 2020 (UNWTO 2009a) combined with a similar number of domestic tourists (Holden 2009). Nature has been hypothesized and empirically shown to be an influential factor in tourism demand. Based on tourism arrivals per capital (mass-

tourism) and tourism expenditures per GDP (individual tourism), Freytag & Vietze (2010) suggest that nature is an influential factor in individual tourism demand. Tourism may provide new employment, income, local participation in ownership or management and eliminate dependence on exploitative natural resource activities (reviewed in Mbaiwa & Stronza 2009). However, eco-tourism has a paradoxical nature; the more attractive a site is, the more popular it becomes, which in turn brings more tourists and this heavy visitation will degrade the site and other numerous environmental impacts (Hillery et al. 2001, reviewed in Holden 2009). In other words, there is a "resource paradox" in which tourism needs environmental resources, but it depends on the protection of those resources for sustained competitiveness (Williams & Ponsford 2009). Tourism in a country is positively correlated with its degree of biodiversity and a high degree of endangered biodiversity is negatively correlated with tourism (Freytag & Vietze 2009).

Tourism infrastructure (i.e. roads, trails, fences, parking lots, tourist shops, etc.) limits available land and resources of the local people, promotes human sprawl, enables encroachment on wildlife and degradation of protected areas (Vanderpost 2006, Geneletti & Dawa 2009), causes noise pollution and results in poor waste management (Mbaiwa 2003) and can even result in harmful provisioning of food to wildlife (Orams 2002). This loss of habitat and degradation of protected areas could negatively impact biodiversity and international tourism development, specifically in developing countries, has given little regard to the environmental impact caused by tourists (Honey 1999). Nonindigenous species can enter a country unintentionally as a byproduct of tourism, enabling species to overcome geographic barriers (Chown et al. 1998, Wilcove et al. 1998, GISP 2001, Perrings et al. 2002, Messing & Wright 2006). Climate change could

alter tourism and commerce, thereby potentially linking new geographic regions which may be subsequently invaded by non-indigenous species (Armstrong & Ball 2005, Hellmann et al. 2008).

The Food and Agriculture Organization of the United Nations estimates that more than 1.02 billion people in the world are undernourished and most live in developing countries (FAO 2009). Malnutrition can reduce the economic performance of people and promote unsustainable farming practices that can lead to more poverty, political instability, violence, and environmental degradation (Gonzalez 2004, Chapman et al. 2006, Gonzalez 2006). Smith et al. (2010) suggest that on a global scale, regions with high levels of undernourishment have weaker governance, which results in a failure of governments to regulate overfishing, bycatch and the environmental impacts of aquaculture.

Energy efficiency is a measure of technology. As technology improves, humans become more energy efficient. Environmental impacts can therefore be potentially reduced via "refinement of production" or super industrialization (Mol 1995). Improved technology cannot substitute for an ecosystem service, but it allows humans the ability to determine the trade-offs among ecosystem services (Rodriguez et al. 2006). An increase in agricultural energy efficiency would reduce the withdrawal of freshwater, which would in turn lessen the impact on the environment (Kates & Parris 2003) and lead to improvements in the supply of ecosystem services (Carpenter et al. 2006).

Ecological

Land use is determined by what ecosystem services can be provided and are needed by humans (Nelson et al. 2006). Humans have appropriated, managed and

modified approximately 50% of the terrestrial ecosystem (Vitousek et al. 1997b). Agricultural land is now one of the largest terrestrial biomes in the world, occupying about 40% of the earth's surface, and continual expansion has resulted in increased energy demand, water consumption, pesticide application and fertilizer use (Kates & Parris 2003, reviewed in Foley et al. 2005). Drainage, crop rotation, tillage, intercropping, grazing and the use of fertilizers and pesticides are the tools used in most agricultural activities and they have negative impacts on biodiversity (reviewed in McLaughlin & Mineau 1995). Using the past 35 years of global trends in agriculture, Tilman et al. (2001) have forecasted, by the year 2050, that the eutrophication and habitat destruction inherent in agriculture will lead to unprecedented species extinctions and loss of critical ecosystem services. Dobson et al. (1997) observed a positive correlation between agricultural activity and the density of endangered plants, mammals and birds at the state level in the United States of America. More invasive plant species were observed next to intensely farmed fields than next to moderate or low intensity farmed fields (Boutin & Jobin 1998). Human-modified ecosystems can provide the optimal environment for successful invasions (Vitousek et al. 1997a) and the disturbance or complete destruction of natural habitat via human agricultural activities is responsible for the global distribution of invasive weeds and pests (Huston 1994).

Small mammal (Williams 1995, Badgley & Fox 2000, Heaney 2001), bird (Rensburg et al. 2002, Hawkins et al. 2003), amphibian and reptile species richness increased with an increase in annual rainfall (Woinarski et al. 1999). However, in the case of desert rodents, it has been shown that the highest species richness occurred at intermediate levels of rainfall, with biodiversity actually decreasing in areas of extremely

high rainfall (Abramsky & Rosenzweig 1984). Mean annual precipitation was positively correlated with the number of threatened bird and mammal species in a global country by country analysis (McKee et al. 2003) and positively correlated with the overall density of endangered species within the United States of America at the state level (Dobson et al. 1997). There is no evidence of an increase in invasive birds or invasive mammals in relation to higher rainfall in the literature. However, a positive correlation between high rainfall and an increase in the biomass of non-indigenous plants has been reported in the deserts (Brooks & Pyke 2001) and grasslands (Hobbs & Mooney 1991) of North America. Annual variation in the abundance of invasive Argentine ants *Linepithema humile* was positively correlated to annual rainfall (Bolger 2007).

Approximately one quarter of the fresh water supply on the earth has been modified, managed or appropriated by humans (Postel et al. 1996) and the costs (e.g., considerable biodiversity losses) outweigh the benefits (Postel 2003, reviewed in Foley et al. 2005). Agricultural use accounts for approximately 90% of total human consumption of freshwater resources (CSD 1997). Running water ecosystems, which may be the most impacted ecosystem on the planet, may be rapidly degrading due to damming, diversion and extraction (Malmqvist & Rundle 2002). On a state by state analysis in the United States of America, human water use was negatively correlated to the density of endangered reptiles (Dobson et al. 1997). Physiological differences in invasive plant species, such as higher reproductive effort (White et al. 1997) and more efficient water use (Lambrinos 2002), can negatively impact native plant species when water availability is limited.

Approximately 12% of the Earth's land is protected and less than half of it is for the sake of biodiversity conservation (Hoekstra et al. 2005). Wilderness protection, if done correctly and based on science, is an essential factor in the preservation and conservation of the remaining biodiversity worldwide and the protection has been shown to be effective (DeFries et al. 2005, reviewed in Fischer et al. 2006). In order to protect and preserve global biodiversity, it is estimated that each country would have to set aside at least 50% of its land area (Soulé & Sanjayan 1998). However, more reserves in a country does not necessarily equate to the protection of more endangered species. In a study of 30 important reserves in Mexico, 10 reserves represented all the endangered mammals in their analysis (Ceballos 2007). Well managed, protected wilderness areas, via strict control and restoration measures, can help reduce, slow or even halt potential spread of invasive species (Randall 2000). Oceanic island reserves have a higher number of invasive species than mainland reserves, reserve size is inversely related to the proportion of invasive plants in mediterranean-type ecosystems, and reserves located in extreme climates have fewer invasive species than reserves located in moderate climates (reviewed in Cole & Landres 1996).

The use of total biodiversity, or species richness, as an indicator has been used in other studies, but with mixed results. In areas of high species richness, there were relatively low proportions of threatened species. However, in hotspots that contained a high proportion of threatened species, there was also higher overall species richness (Orme et al. 2005). McKee et al. (2003) observed a positive correlation between the number of threatened bird and mammal species with species richness. There are also conflicting results in invasive species analyses. As species richness increased, invasive

species success declined in some studies (Chown et al. 1998, Levine 2000). However, invasive species richness was positively correlated with native species richness in another study (Lonsdale 1999). There is no single theory or process that can explain biological diversity (Huston 1994).

Social/Governance

Life expectancy has been extended by more than 20 years since 1950 and that improvement reflects a reduction in infant and child mortality due to improvements in water quality, sanitation, nutrition and immunizations (Kates & Parris 2003). Life expectancies are higher in high-income countries than in developed countries, but that gap has closed in recent years (Nelson et al. 2006). Life expectancy is a complex metric that has many direct and indirect components and has been used in other studies to determine the extent to which human well-being could increase without an accompanying increase in environmental deterioration (Dietz et al. 2007).

Miller (2002) reports that fewer than 20% of Americans are literate enough to comprehend a science book, read a science article in a newspaper or understand a science-based television program. Literacy in many areas of science is lacking and may be insufficient to maintain an informed citizenry (Jordan et al. 2009). A high degree of adult literacy brings with it greater access to information, which in turn would suggest that better decisions would be made concerning the environment. In a study that compared approximately 140 countries, a higher adult literacy rate correlated with less pollution in the cases of sulfur dioxide, heavy particles, dissolved oxygen, fecal coliform pollution and sanitation (Torras & Boyce 1998).

The notion that pesticides are detrimental to the environment was first brought to the forefront of public concern by Rachel Carson, in her book entitled 'Silent Spring' (Carson 1962). Pesticide use has led to declines in amphibians (Sparling et al. 2001), birds (Anthony et al. 1993) and the decimation of pollination systems (Kearns et al. 1998) and numerous other deleterious effects (reviewed in Pimentel et al. 1992). The enactment and implementation of pesticide regulations can control direct, human-caused mortality of endangered species (Miller et al. 2002). Pesticides have been used to successfully control invasive species, but these attempts are very expensive and the targeted species may develop a resistance (Pimentel et al. 1992, Schmitz & Simberloff 1997, McKee et al. 2009).

The pygmy hippo *Hexaprotodon liberiensis* is now classified as endangered due to political instability and unrest in West African nations (IUCN 2006). Environmental degradation can lead to social collapse, famine, disputes within and between nations, and war and vice versa (McNeely 2000, Nelson et al. 2006). Political stability is essential to the success of ecological restoration projects, which are typically undergone to increase species richness in degraded ecosystems. It has been asserted that the persistence of these conservation projects is directly tied to the degree and frequency of political unrest (Soulé 1991). Di Castri (2000) presents new approaches and tools that could be used to promote environmental health, such as early monitoring of invasive species, but the success of these recommendations relies on many factors, including political stability. Risk assessment and risk management are political processes (Peterson et al. 2000).

Studies have shown that women have a very different perspective than men on the subject of the environment. Since the turn of the twentieth century, women have been

political champions of the environmental protection and conservation movement (reviewed in Kleehammer 2011). Women are more concerned about the pain and suffering of animals (e.g., more opposed to hunting, predator control, and trapping), more involved in protest efforts and constitute the majority membership of humane societies and animal-welfare organizations (Kellert & Berry 1987). In a political survey conducted in the United States of America, women respondents answered in overwhelming majority that a female candidate would be more competent at protecting the environment than a male candidate (Sapiro 1981). In the United Kingdom, the Labour and Green Parties have the highest proportion of women candidates (Norris & Lovenduski 1995). In 1992, at the Democratic National Convention, women candidates had a common theme of protecting the environment (Kahn & Gordon 1997). A country with a high proportion of seats held by women in national parliament or government could result in more environmental protections, which could result in fewer endangered or invasive species.

Other Factors

Total population has been suggested as a key driver of environmental impact (Ehrlich and Holdren 1971) and numerous studies have reported negative effects of population on environmental impact (Kates & Parris 2003, McKee et al. 2003, York et al. 2003, Dietz et al. 2007). In one study, a positive relationship was found between the number of United States federally listed mammals and total human population (Kirkland & Ostfeld 1999). Human total population growth is an ultimate driver in the increase in biological invasions by non-indigenous species (Vitousek et al. 1997b, Mooney & Cleland 2001).

Latitude and total land area were used in the analyses to account for climate and biogeography (York et al. 2003, Dietz et al. 2007). Diversity is lowest near the poles and increases towards the tropics for most plant and animal species (Huston 1994). Latitude has been shown to influence local environmental conditions which affect plant growth (Li et al. 1998). Environmental impacts have been reported to be greater the further a country is from the tropics (York et al. 2003). Non-indigenous species richness has been shown to peak in the subtropics and decline with latitude (Sax 2001) and this was also observed at a country level scale (Liu et al. 2005). Ecological niche models based on four future climate scenarios predicted that the invasive Argentine ant would retract its range in the tropics and expand into higher latitudes (Roura-Pascual et al. 2004). The species-area relationship states that species richness tends to increase with increasing sampling area (Gleason 1922, MacArthur & Wilson 1967, Rosenzweig 1995). Species richness of land mammals in 155 countries was positively correlated with total land area (Ceballos & Brown 1995). Studies have reported that as total land area increased, a country's environmental impact increased, due to presumed effects of energy demand, efficiency and usage (York et al. 2003, Dietz et al. 2007).

METHODS

Data Collection

There were sufficient data to analyze 100 countries, which contain approximately 87% of the world's population, 43% of the world GDP per capita and 74% of the earth's total land area (Appendix S-U). The region of Africa was represented by 26 countries.

The region of Asia was represented by 29 countries. The region of Europe was

represented by 22 countries. The regions of North and Central America were represented by 12 countries. South America and Oceania were represented by 11 countries. Energy efficiency or total primary energy consumption was calculated by tabulating the consumption of petroleum, dry natural gas, coal, and net hydroelectric, nuclear, and geothermal, solar, wind, wood and waste electric power, and net electricity imports (electricity imports minus electricity exports) (Esty et al. 2006). Total biodiversity, included known mammals, birds, reptiles, plants, amphibians and fishes in each country as of 2004 (WRI 2005). Each country's latitude was obtained from the Central Intelligence Agency's World Factbook (CIA 2008a).

Total population and GDP per capita for each country were reported in the 2008 EPI and values represented the year 2005 (Esty et al. 2008). Total land area was reported in the 2008 EPI (Esty et al. 2008). Water stress was defined as the percentage of national territory with water withdrawals exceeding 40% of available water (Esty et al. 2008). Agricultural intensity was measured as the percentage of cropland area that is in agriculture-dominated landscapes. High agricultural intensity was defined as having more than 60% of a country's lands cultivated, low intensity having at least 40% of the land uncultivated (Esty et al. 2008). Pesticide regulation was the legislative status of countries under the Rotterdam and Stockholm conventions and to what degree they have followed through on the convention bylaws (Esty et al. 2008).

The numbers of international tourist arrivals per country were obtained by accessing the United Nations World Tourism Organization database (UNWTO 2009b). Undernourishment, or the percentage of the population between 2001 and 2003 that were malnourished, were obtained from the FAO (FAOc 2006). Annual rainfall data were

reported by the FAO and represent annual rainfall for the year 2002 (FAOb 2006). Average rainfall between 1971 and 2000 was not different than rainfall in 2002 (Mann-Whitney Rank Sum Test, p=0.839). Adult literacy or the percentage aged 15 and above, between 1995 – 2005, that are literate were obtained from the United Nations Development Programme's Human Development Report (UNDP 2007). Political stability within a country measured the likelihood that the government would be destabilized or overthrown by unconstitutional or violent means (Kaufmann et al. 2008).

Women in government represent the proportion of seats held by women in national parliament as of 2007 (MDGD 2009). Exports were divided by imports to create an export/import ratio. Export and import data were obtained from the FAO and represented the year 2004 (FAOa 2006). Wilderness protection was defined as the amount of land classified by the United Nations Statistics Division as protected ("an area of land and/or sea especially dedicated to the protection and maintenance of biological diversity, and of natural and associated cultural resources, and managed through legal or other effective means"), divided by the total land area of a country (UNSD 2008). Life expectancy data were obtained from the CIA World Factbook and were calculated as the overall life expectancy at birth regardless of gender (CIA 2008b).

For the purpose of this study, endangered birds and mammals included those species that were classified by the IUCN Red List of Threatened Species as vulnerable, endangered, critically endangered, extinct in the wild and extinct (IUCN 2008). Invasive birds were determined using Birdlife International's world bird database, avibase (BLI 2008). Invasive mammals were determined using J.L. Long's definitive book on

introduced mammals of the world (Long 2004). The total number of birds and mammals in each country were determined using the IUCN database (IUCN 2008).

Data Analysis

Models are devices that make abstractions clear and understandable, by providing the ability to compare and contrast those abstractions with other models (Carpenter et al. 2005). The Information Theoretic approach (Burnham & Anderson 2002; Johnson & Ohmland 2004) was used to model these data based on Akaike Information Criteria (AIC) (Akaike 1973). For the complete set of models, AIC, the difference in AIC for that model relative to the best-fitting model with the minimum AIC (termed Δ AIC) and the Akaike weight (termed w_i) were all calculated. The best-fitting model was defined as that with the lowest AIC. Models that differed by less than 2 AIC units have substantial support in terms of explaining the data (Burnham & Anderson 2002). Evidence ratios were also calculated for each model (Burnham & Anderson 2002). Colinearity between explanatory variables was investigated using correlation matrices. Although associations were apparent, they were not sufficient to preclude their inclusion into the modeling process. All data were log transformed, when appropriate, so that every variable would be on the same scale. All analyses were performed in SAS version 9.1 (SAS 1999).

An a-priori set of models was selected and included a combination of all socio-ecological landscape factors, each socio-ecological landscape factor by itself and various combinations of socio-ecological landscape factors grouped into three broad classes.

These three broad classes included; (i) Economic, (ii) Ecological, and (iii)

Social/Governance. The economic class included; 1) GDP per capita, 2) Export/Import ratio, 3) Tourism, 4) Under Nourishment, and 5) Energy Efficiency. The ecological class

included; 1) Agriculture intensity, 2) Rainfall, 3) Water stress, 4) Wilderness protection, and 5) Total biodiversity. The Social/Governance class included; 1) Life expectancy, 2) Adult literacy, 3) Pesticide regulations, 4) Political stability, and 5) Women in government.

Analyses were separated by taxonomic group. The dependent variable in each of the four groups was; 1) the number of endangered mammals divided by the total number of mammals within a country, 2) the number of endangered birds divided by the total number of birds within a country, 3) the number of invasive mammals divided by the total number of mammals within a country, and 4) the number of invasive birds divided by the total number of birds within a country. In the resilience analysis, the dependent variable was calculated as the number of both endangered and invasive birds and mammals divided by the total number of birds and mammals in each country.

The ESI and EVI were used as reference indexes in these analyses. The EPI was not used as one of the reference indexes because it was correlated with both the ESI and its predecessor the EVI (Pearson CC= 0. 434, Pearson CC= 0. 544). The ecological footprint was not used as reference index because it does not account for local impacts (Dietz et al. 2007). Each country's percent of endangered and invasive birds and mammals, their combined percentage (i.e. resilience), ESI, EVI and total population can be found in Appendix A. Each country's GDP per capita, total land area, latitude, life expectancy, water stress, agricultural intensity, pesticide regulations, adult literacy and tourism values can be found in Appendix B. Each country's under nourishment, annual rainfall, energy efficiency, wilderness protection, total biodiversity, exports/imports, political stability and women in government values can be found in Appendix C.

RESULTS

The percentage of endangered birds in a country was best predicted by a model that included total biodiversity ($w_i = 0.442$) and total land area ($w_i = 0.275$) (Table 6.1). As total biodiversity and total land area increased, the percentage of endangered birds in a country increased (Table 6.2). The island nation of New Zealand was the exception to this trend (Figures 6.1 & 6.2). The percentage of endangered mammals in a country was best predicted by the ecological class model ($w_i = 0.938$) which included; 1) Agriculture intensity, 2) Rainfall, 3) Water stress, 4) Wilderness protection, and 5) Total biodiversity (Table 6.3). All variables had a positive correlation, except wilderness protection which was inversely correlated with the percentage of endangered mammals (i.e., as the amount of wilderness area protected decreased, the proportion of endangered mammals in a country increased). Only rainfall and water stress were significant in the model (Table 6.4).

The percentage of invasive birds in a country was best predicted by a model that included GDP per capita (w_i = 0.938) (Table 6.5). As GDP per capita increases, the percentage of invasive birds increases (Table 6.6). The island nation of New Zealand was the exception to this trend (Figure 6.3). The percentage of invasive mammals in a country was best predicted by a model that included GDP per capita (w_i = 0.837) (Table 6.7). As GDP per capita increases, the percentage of invasive mammals increases (Table 6.8). The island nations of New Zealand and the United Kingdom were the exceptions to this trend (Figure 6.4).

The resilience of a country was best predicted by a model that included life expectancy (w_i = 0.526) (Table 6.9). As life expectancy increases, the resilience of a country decreases (i.e., as human life expectancy increases, the proportion of endangered and invasive birds and mammals in a country increases, which indicates less resilience) (Table 6.10). The island nation of New Zealand was the exception to this trend. Twenty-three of the 26 countries in the Africa region were included in the top 25 most resilient countries (Figure 6.5).

DISCUSSION

Although the correlational nature of this study limits our ability to determine causal factors, the patterns observed in this study have provided insight into the dynamics of a complex, global, socio-ecological system. The percentage of endangered birds in a country was positively correlated with total biodiversity and total land area. These results were similar to other analyses on the relationship between the percentage of endangered birds and total biodiversity (McKee et al. 2003, Orme et al. 2005). Although there was no evidence in the literature describing a relationship between the percentage of endangered birds and total land area, I could presume that an increase in sampling area would result in an increase in species richness (reviewed in Huston 1994) and therefore a possibility of there being more endangered species present.

The percentage of endangered mammals in a country was correlated with a combination of factors (i.e., the ecological class of variables). The results were similar to other analyses on the relationship between endangered mammals and agriculture intensity (Dobson et al. 1997), total annual rainfall and total biodiversity (McKee et al. 2003).

Water stress has been reported as a threat to endangered species populations throughout the United States (Flather et al. 1998). There is evidence that the preservation of more habitat will allow for the survival of more species (Bruner et al. 2001), therefore I might assume fewer endangered species to be present. The inverse correlation observed in this study between wilderness protection and the percentage of endangered mammals suggests that this may be true.

The relationship between GDP per capita and invasive species has been observed in other studies. GDP per capita and invasives have been found to correlate with the richness of alien spiders (Kobelt & Nentwig 2008), plants (Liu et al. 2005), fishes (Leprieur et al. 2008), birds and mammals in Europe (Hulme 2007) and all taxonomic groups combined (Lin et al. 2007). The United Kingdom had a far greater percentage of invasive mammals than predicted by the model. This may be due to the unique history of this island nation. Around 1775 AD, London was at the crossroads of the 'globalization' of European trade routes, establishing trade between the Dutch, Spanish, Portuguese and French (Di Castri 1989). This vast trade economy, at an early period in this island nation's history, presumably has also meant a long history of biological invasions.

The most resilient countries were those located in Africa and this may be due to the lack of invasive species in most of these countries. There were only 29 invasive bird species and 39 invasive mammal species reported in the 26 African countries included in this study. The lack of invasive species in these African countries may best be explained by international trade. Increased international trade has been positively correlated with an increase in invasive species (GISP 2001, Perrings et al. 2002). I obtained international trade data of the past 60+ years from the World Trade Organization (WTO 2008) and

found that African countries comprised approximately 50% or more of the countries in a list of the 25 countries with the least average amount (in U.S. dollars) of exports, imports and both figures combined. These countries have had very little international trade relative to a majority of the countries in this analysis due to a closed trade policy (Sachs & Warner 1997).

In every analysis, New Zealand was an extreme outlier. New Zealand had the highest proportion of endangered birds, invasive birds, and invasive mammals, and had the highest proportion of endangered and invasive species combined. New Zealand's complete lack of native terrestrial mammals (Diamond 1990) was a key factor in its outlier position relative to the rest of the countries analyzed. New Zealand has had a massive invasion by non-indigenous species since its human colonization, in the past 700-800 years, and this has resulted in catastrophic biodiversity loss (Clout 2001). New Zealand's invasive species crisis may be due in large part to its isolation, high endemism and recent human colonization (Norton 2009). Island ecosystems are often the most invaded and consequently threatened worldwide (Towns et al. 2006).

No other analysis to date has calculated a measure of resilience for a country, thus there is no evidence in the literature regarding its relationship with human life expectancy. Dietz et al. (2007) found no relationship between life expectancy and environmental impact. The overall trend in high income countries, with improvements to the HDI (which includes human life expectancy as one of its variables), is one towards a disproportionately larger negative impact on their ecological footprint. However, some lower income countries have high level of development without high impact on ecosystem services (Moran et al. 2008).

Human population control is a potential option that may increase the resilience of a country. Total population was not a factor in the selected models, but population control may be one of many crucial steps that must be taken in order to conserve global biodiversity (McKee et al. 2003). Furthermore, more humans may equate to higher human population densities which has been shown to have a negative correlation with the size of protected areas (Luck 2007). Even though the population growth rate is decreasing in developed countries, developed countries still have a high level of consumption which may be equivalent to rapid population growth in developing countries that have low consumption (York et al. 2003). The total fertility rate of the world has been declining since 1965, but this has been counteracted by a decreasing death rate (UNPD 2008). The idea of having only one offspring per human, or replacement level fertility, would be one method of human population control and stabilization. Educated women tend to have fewer children than uneducated women, therefore an education program for young women would be effective in developing regions of the world (Osili & Long 2008).

Humans are an integral part of the ecosystems in which they inhabit, accounting for the consumption of nearly 40% of potential terrestrial net primary productivity (Vitousek et al. 1986). As global climate change occurs, warming in some areas and cooling in others, species will be forced to shift their ranges (Thomas & Lennon 1999). These range shifts will be difficult for some species, impossible for others and beneficial to those that can quickly adapt (Parmesan et al. 1999). Conservation will only be successful if local communities are given the incentives, tools and capacity to manage ecosystems sustainably (Leader-Williams 2002) and understand that they are living on environmental capital rather than on interest (Jones 2003). The negative impacts of

humans will continue to increase as the global population grows, therefore humans must realize that the economic value of conserving what is left in nature is a magnitude of order greater than that of developing it (Costanza et al. 1997). Until that paradigm shift is achieved, we will continue to "have the appearance of a great deal of intellectual activity, but an outcome of social inertia" (Albrecht 2001).

Table 6.1. Model selection results for endangered birds. Bold values indicate variables in the best model. Evidence Ratio (ER).

Model	AIC_c	ΔAIC_c	\mathbf{W}_i	ER
Total Biodiversity	214.13	0.00	0.44	1.00
Total Land Area	215.08	0.94	0.23	1.60
Life Expectancy	217.43	3.30	0.09	5.20
Total Population	218.58	4.44	0.05	9.21
Agricultural Intensity + Annual Rainfall +Water Stress + Wilderness Protection +				
Total Biodiversity	219.54	5.40	0.03	14.91
Adult Literacy	220.46	6.33	0.02	23.68
Under Nourishment	220.70	6.56	0.02	26.63
Pesticide Regulations	221.10	6.97	0.01	32.62
Water Stress	221.43	7.30	0.01	38.46
Null	221.84	7.71	0.01	47.22
Export Import Ratio	222.52	8.39	0.01	66.29
Energy Efficiency	222.75	8.62	0.01	74.37
Annual Rainfall	223.05	8.91	0.01	86.19
Tourism	223.08	8.94	0.01	87.53
Environmental Vulnerability Index	223.13	9.00	0.01	89.79
GDP per capita	223.70	9.57	0.00	119.46
Wilderness Protection	223.79	9.66	0.00	125.02
Agricultural Intensity	223.85	9.71	0.00	128.57
Environmental Sustainability Index	223.88	9.75	0.00	130.84
Women in Government	223.96	9.83	0.00	135.98
Political Stability	223.96	9.83	0.00	136.25
Latitude	223.97	9.84	0.00	136.66
Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability +				
Women in Government	224.42	10.29	0.00	171.26
GDP per capita + Export Import Ratio + Tourism + Under Nourishment + Energy	225 16	10.00	0.00	554 04
Efficiency	227.43	13.30	0.00	771.01
All variables	236.31	22.18	0.00	1000.4

Table 6.2. Parameter estimates for variables selected in the best models in the endangered birds analysis.

		\mathcal{E}		
Variable	Estimate	Standard Error	t Value	Pr > t
Intercept	2.41576	0.38245	6.32	<.0001
Total Biodiversity	0.09117	0.02864	3.18	0.002
Intercept	2.77852	0.3239	8.58	<.0001
Total Land Area	0.04528	0.015	3.02	0.0032

Table 6.3. Model selection results for endangered mammals.

				Evidence
Model	AIC_c	ΔAIC_c	W_i	Ratio
Ag. Intensity + Ann. Rainfall + Water Stress + Wilderness Protection + Total Biodiversity Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability + Women in	353.704	0.000	0.938	1.00
Government	361.023	7.319	0.024	38.84
Total Biodiversity	363.402	8.731	0.012	78.67
Water Stress	364.166	9.495	0.008	115.27
Political Stability	365.664	10.993	0.004	243.79
Total Population	365.962	11.291	0.003	282.96
Environmental Sustainability Index	366.407	11.736	0.003	353.47
Latitude	367.070	12.399	0.002	492.41
Life Expectancy	368.364	13.694	0.001	940.40
Environmental Vulnerability Index	368.877	14.206	0.001	1215.37
Null	369.554	14.756	0.001	1600.66
GDP per capita	369.473	14.802	0.001	1637.30
Annual Rainfall	369.714	15.043	0.001	1846.97
Total Land Area	370.190	15.519	0.000	2343.27
Agricultural Intensity	370.221	15.550	0.000	2379.88
Under Nourishment	370.291	15.620	0.000	2464.65
All variables	363.166	15.708	0.000	2576.05
Pesticide Regulations	370.653	15.982	0.000	2953.67
Women in Government	370.816	16.145	0.000	3204.48
Wilderness Protection	371.210	16.539	0.000	3902.23
Tourism	371.389	16.718	0.000	4267.59
Export Import Ratio	371.472	16.801	0.000	4448.42
Energy Efficiency	371.505	16.834	0.000	4522.43
Adult Literacy	371.546	16.875	0.000	4616.09
GDP per capita + Export Import Ratio + Tourism + Under Nourishment + Energy Efficiency	370.805	17.101	0.000	5169.33

Table 6.4. Parameter estimates for variables selected in the best model(s) in the endangered mammals analysis.

	Standard				
Variable	Estimate	Error	t Value	Pr > t	
Intercept	4.21526	1.82371	2.31	0.023	
Agricultural Intensity	0.05029	0.04093	1.23	0.2222	
Annual Rainfall	0.33938	0.12343	2.75	0.0072	
Water Stress	0.14313	0.04013	3.57	0.0006	
Wilderness Protection	-0.07443	0.05017	-1.48	0.1413	
Total Biodiversity	0.10826	0.06668	1.62	0.1078	

Table 6.5. Summary of model selection results for invasive birds. Evidence Ratio (ER).

Model	AIC_c	ΔAIC_c	W_i	ER
GDP per capita	57.040	0.000	0.879	1.00
GDP per capita + Export Import Ratio + Tourism + Under Nourishment + Energy				
Efficiency	61.762	4.722	0.083	10.60
Life Expectancy	64.650	7.610	0.020	44.93
Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability +				
Women in Government	66.333	9.293	0.008	104.20
Political Stability	66.350	9.310	0.008	105.11
Under Nourishment	71.228	14.188	0.001	1204.90
Adult Literacy	72.777	15.737	0.000	2613.90
Pesticide Regulations	74.712	17.672	0.000	6877.77
Latitude	74.965	17.925	0.000	7803.68
Environmental Vulnerability Index	76.748	19.708	0.000	19036.24
Women in Government	78.143	21.103	0.000	38230.92
Wilderness Protection	78.557	21.516	0.000	47013.97
Tourism	78.733	21.693	0.000	51351.53
Null	79.771	22.731	0.000	86280.22
Environmental Sustainability Index	79.786	22.746	0.000	86946.65
Annual Rainfall	80.828	23.788	0.000	146400.31
Energy Efficiency	80.830	23.790	0.000	146554.11
Total Biodiversity	80.998	23.957	0.000	159324.77
Total Land Area	81.010	23.970	0.000	160323.67
Water Stress	81.037	23.997	0.000	162518.97
Agricultural Intensity	81.340	24.300	0.000	189084.64
Total Population	81.704	24.664	0.000	226828.61
Export Import Ratio	81.886	24.846	0.000	248425.93
All variables	82.153	25.113	0.000	283908.51
Agricultural Intensity + Annual Rainfall +Water Stress + Wilderness Protection +				<u> </u>
Total Biodiversity	83.303	26.263	0.000	504536.59 🖔

Table 6.6. Parameter estimates for variables selected in the best model in the invasive birds analysis.

Variable	Estimate	Standard Error	t Value	Pr > t
Intercept	0.15755	0.1856	0.85	0.398
GDP per capita	0.06531	0.01242	5.26	<.0001

Table 6.7. Summary of model selection results for invasive mammals. Evidence Ratio (ER).

Model	AIC_c	ΔAIC_c	W_i	ER
GDP per capita	418.705	0.000	0.837	1.00
Political Stability	422.967	4.262	0.099	8.42
Latitude	425.283	6.578	0.031	26.82
Life Expectancy + Adult Literacy + Pesticide Regulations + Political				
Stability + Women in Government	426.261	7.556	0.019	43.74
GDP per capita + Export Import Ratio + Tourism + Under				
Nourishment + Energy Efficiency	427.430	8.725		78.47
Life Expectancy	431.141	12.436	0.002	501.70
Adult Literacy	433.987	15.282	0.000	2081.83
Under Nourishment	434.133	15.428	0.000	2239.48
Pesticide Regulations	434.323	15.618	0.000	2462.67
Women in Government	435.917	17.212	0.000	5464.35
Environmental Sustainability Index	436.273	17.568	0.000	6528.94
Environmental Vulnerability Index	440.229	21.524	0.000	47192.96
Tourism	440.453	21.748	0.000	52785.93
Null	440.779	22.074	0.000	62122.01
Total Biodiversity	440.981	22.276	0.000	68734.05
Wilderness Protection	441.104	22.399	0.000	73093.89
Export Import Ratio	441.250	22.545	0.000	78629.33
Agricultural Intensity	442.300	23.595	0.000	132919.64
Annual Rainfall	442.414	23.709	0.000	140716.15
Energy Efficiency	442.683	23.978	0.000	160974.30
Water Stress	442.685	23.980	0.000	161135.35
Total Population	442.723	24.018	0.000	164226.20
Total Land Area	442.890	24.185	0.000	178527.87
Ag. Intensity + Ann. Rainfall +Water Stress + Wilderness Protection +				
Total Biodiversity	445.434	26.729	0.000	637108.76
All variables	450.474	31.769	0.000	7918460.13

Table 6.8. Parameter estimates for variables selected in the best model in the invasive mammals analysis.

Variable	Estimate	Standard Error	t Value	Pr > t
Intercept	0.06318	1.13218	0.06	0.9556
GDP per capita	0.39242	0.07576	5.18	<.0001

Table 6.9. Summary of model selection results for resilience (endangered + invasive birds and mammals). Evidence Ratio (ER).

Model	AIC_c	ΔAIC_c	W_i	ER
Life Expectancy	312.859	0	0.526	1
Total Biodiversity	316.466	3.607	0.087	6.07
Pesticide Regulations	316.796	3.937	0.073	7.16
Total Land Area	316.819	3.96	0.073	7.24
Adult Literacy	317.581	4.722	0.05	10.6
Under N□urishment	317.822	4.963	0.044	11.96
GDP per capita	319.103	6.244	0.023	22.69
Total Population	319.224	6.365	0.022	24.11
Life Expectancy + Adult Literacy + Pesticide Regulations + Political Stability +				
Women in Government	319.745	6.886	0.017	31.28
Tourism	320.37	7.511	0.012	42.76
Environmental Vulnerability Index	320.687	7.828	0.01	50.1
Political Stability	320.789	7.93	0.01	52.72
Null	321.067	8.208	0.009	60.57
Annual Rainfall	321.195	8.336	0.008	64.59
Women in Government	321.673	8.814	0.006	82.02
Wilderness Protection	321.909	9.05	0.006	92.3
Export Import Ratio	321.947	9.088	0.006	94.07
Water Stress	322.381	9.522	0.004	116.86
Environmental Sustainability Index	322.421	9.562	0.004	119.22
Latitude	322.601	9.742	0.004	130.45
Agricultural Intensity + Annual Rainfall +Water Stress + Wilderness Protection				
+ Total Biodiversity	322.956	10.097	0.003	155.82
Agricultural Intensity	323.19	10.331	0.003	175.13
Energy Efficiency	323.193	10.334	0.003	175.39
GDP per capita + Export Import Ratio + Tourism + Under Nourishment +				
Energy Efficiency	324.895	12.036	0.001	410.84
All variables	338.079	25.22	0	1000.13

Table 6.10. Parameter estimates for variables selected in the best model in the resilience analysis.

		Standard		
Variable	Estimate	Error	t Value	Pr > t
Intercept	-4.1801	3.09793	-1.35	0.1803
Life				
Expectancy	0.14422	0.04415	3.27	0.0015

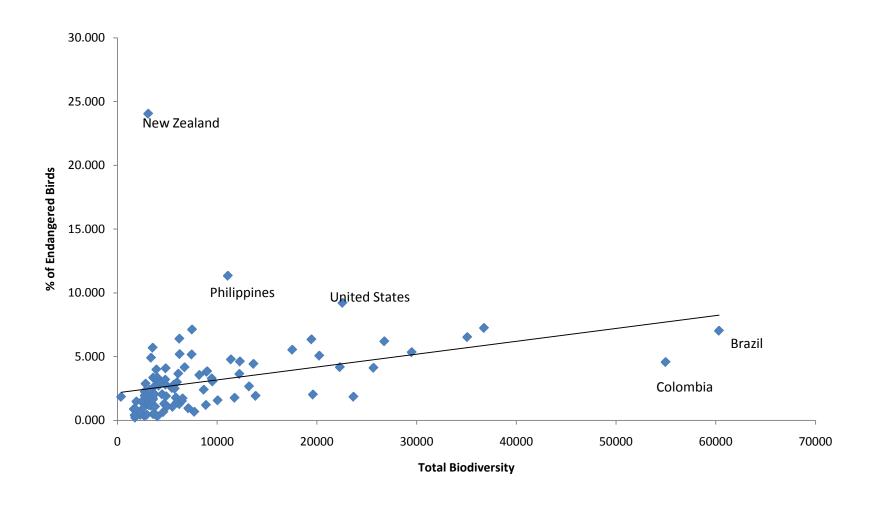


Figure 6.1. Endangered birds in relation to total biodiversity.

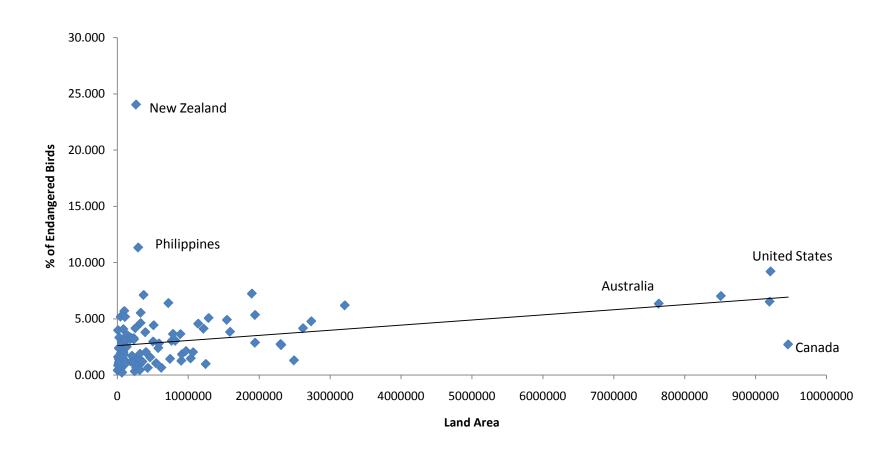


Figure 6.2. Endangered birds in relation to total land area.

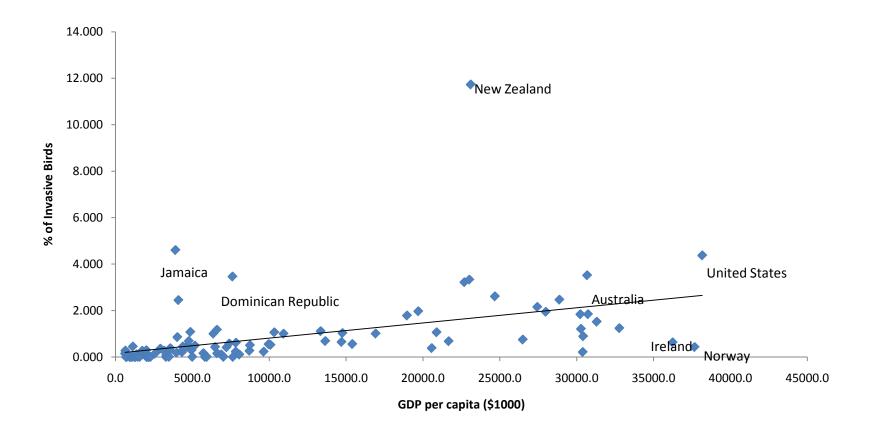


Figure 6.3. Invasive birds in relation to GDP per capita.

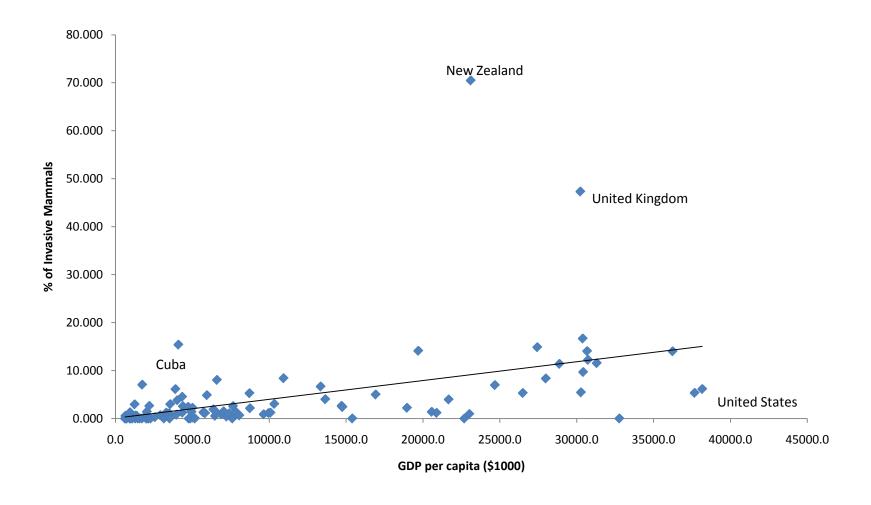


Figure 6.4. Invasive mammals in relation to GDP per capita.

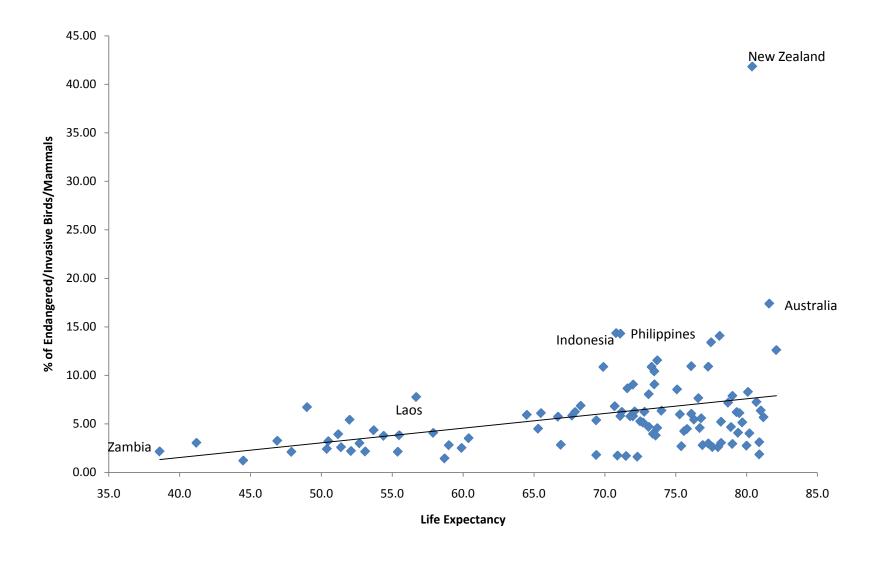


Figure 6.5. The percentage of endangered and invasive birds and mammals combined in relation to life expectancy. A higher percentage equates to a lower resilience.

LITERATURE CITED

- Abramsky, Z., M.L. Rosenzweig. 1984. Tilman's predicted productivity-diversity relationship shown by desert rodents. Nature 309:150-151.
- Akaike, II. 1973. Information theory as an extension of the maximum likelihood principle. *Second international symposium on information theory* (ed. by B.N. Petrov and F. Csaki), pp. 267-281. Akademiai Kiado, Budapest, Hungary.
- Albrecht, G.A. 2001. Applied Ethics in Human and Ecosystem Health: The Potential of Ethics and an Ethic of Potentiality. Ecosystem Health 7:243-252.
- Anthony, R.G., M. G. Garrett, C. A. Schuler. 1993. Environmental Contaminants in Bald Eagles in the Columbia River Estuary. The Journal of Wildlife Management 57:10-19.
- Armstrong, K.F., and S. L. Ball. 2005. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B 360:1813-1823.
- Badgley, C. and D.L. Fox. 2000. Ecological Biogeography of North American Mammals: Species Density and Ecological Structure in Relation to Environmental Gradients. Journal of Biogeography 27:1437-1467.
- Balmford, A., P. Crane, A. Dobson, R.E. Green and G.M. Mace. 2005. The 2010 challenge: data availability, information needs and extraterrestrial insights. Philosophical Transactions of the Royal Society B 360:221-228.
- BLI, Birdlife International. 2008. Avibase the world bird database. Accessed December 1, 2008. http://avibase.bsc-eoc.org/
- Bolger, D.T. 2007. Spatial and temporal variation in the Argentine ant edge effect: implications for the mechanism of edge limitation. Biological Conservation 136:295-305.
- Boutin, C. and B. Jobin. 1998. Intensity of agricultural practices and effects on adjacent habitats. Ecological Applications 8:544-557.
- Bright, C. 1998. *Life Out of Bounds: Bioinvasion in a Borderless World*. W. W. Norton & Company, New York, NY, USA.
- Brooks, M.L., and D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America. *Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species. Fire Conference 2000: the First National Congress on Fire Ecology, Prevention, and Management* (ed. by K.E.M. Galley and T.P. Wilson), pp. 1-14. Miscellaneous Publication No. 11, Tall Timbers Research Station, Tallahassee, FL, USA.
- Bruner, A.G., R.E. Gullison, R.E. Rice and G.A.B. da Fonseca. 2001. Effectiveness of parks in protecting tropical biodiversity. Science 291:125-128.
- Burnham, K.P., and D.R. Anderson. 2002. *Model Selection and Multimodal Inference*. Springer, New York, NY, USA.
- Butchart, S.H.M., M. Walpole, B. Collen, A. van Strien, J.P. W. Scharlemann, R.E. A. Almond, J.E.M. Baillie, B. Bomhard, C. Brown, J. Bruno, K.E. Carpenter, G.M. Carr, J. Chanson, A.M. Chenery, J. Csirke, N.C. Davidson, F. Dentener, M. Foster, A. Galli, J.N. Galloway, P. Genovesi, R.D. Gregory, M. Hockings, V. Kapos, J.F. Lamarque, F. Leverington, J. Loh, M.A. McGeoch, L. McRae, A. Minasyan, M.H. Morcillo, T.E.E. Oldfield, D. Pauly, S. Quader, C. Revenga, J.R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S.N. Stuart, A. Symes, M.

- Tierney, T.D. Tyrrell, J.C. Vié, and R. Watson. 2010. Global biodiversity: indicators of recent declines. Science 328:1164-1168.
- Carpenter S.R., B. Walker, J. M. Anderies and N. Abel. 2001. From Metaphor to Measurement: Resilience of What to What? Ecosystems 4:765-781.
- Carpenter, S.R., F. Westley and M.G. Turner. 2005. Surrogates for resilience of social-ecological systems. Ecosystems 8:941-944.
- Carpenter, S. R., E. M. Bennett and G. D. Peterson. 2006. Scenarios for ecosystem services: an overview. Ecology and Society 11:29. http://www.ecologyandsociety.org/vol11/iss1/art29
- Carson, R. 1962. Silent Spring. Houghton Mifflin Company, Boston, MA, USA.
- Cavlovic T, Baker KH, Berrens RP, and Gawande K. 2000. A meta-analysis of Kuznets curve studies. Agricultural and Resource Economics Review 29:32-42.
- Ceballos, G. and J.H. Brown. 1995. Global patterns of mammalian diversity, endemism and endangerment. Conservation Biology 9:559-568.
- Ceballos, G. 2007. Conservation priorities for mammals in megadiverse Mexico: the efficiency of reserve networks. Ecological Applications 17:569-578.
- Chapman, C.A., M. J. Lawes and H. A. C. Eeley. 2006. What hope for African primate diversity? African Journal of Ecology 44:116-133.
- Chiron, F., S.M. Shirley and S. Kark. 2010. Behind the Iron Curtain: Socio-economic and political factors shaped exotic bird introductions into Europe. Biological Conservation 143:351-356.
- Chown, S.L., N.J.M. Gremmen, and K. Gaston. 1998. Ecological Biogeography of Southern Ocean Islands: Species-Area Relationships, Human Impacts, and Conservation. The American Naturalist 152:562-575.
- CIA, Central Intelligence Agency, 2007. *The CIA World Factbook 2008*. Skyhorse Publishing, New York, NY, USA.
- CIA, Central Intelligence Agency, 2009. The CIA World Factbook 2008. Accessed September 2, 2009. https://www.cia.gov/library/publications/the-world-factbook/fields/2102.html
- Clout, M.N. 2001. Biodiversity conservation and the management of invasive animals in New Zealand. *Invasive species and biodiversity management* (ed. by O.T. Sandlund, P.J. Schei and A. Viken), pp. 349-361. Springer, New York, NY, USA.
- Cole, D.N. and P. B. Landres. 1996. Threats to Wilderness Ecosystems: Impacts and Research Needs. Ecological Applications 6:168-184.
- Commoner, B., M. Corr and P.J. Stamler. 1971. The causes of pollution. Environment 13:2-19.
- Costanza, R., R. dArge, R. deGroot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. Oneill, J. Paruelo, R.G. Raskin, P. Sutton and M. vandenBelt. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253-260.
- CSD, Commission on Sustainable Development. 1997. Comprehensive Assessment of the Freshwater Resources of the World (United Nations, New York), ECN 17/1997/9.
- DeFries, R., A. Hansen, A.C. Newton, and M.C. Hansen. 2005. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecological Applications 15:19-26.

- Di Castri, F. 1989. History of biological invasions with special emphasis on the Old World. *Biological Invasions: a global perspective* (ed. by J. A. Drake and H. A. Mooney), pp. 1-30. John Wiley & Sons, Ltd., Hoboken, New Jersey, USA.
- Di Castri, F. 2000. Ecology in a Context of Economic Globalization. BioScience 50:321-332.
- Diamond, J.M. 1990. New Zealand as an archipelago: an international perspective. *Ecological restoration of New Zealand islands* (ed. by D.R. Towns, C.H. Daugherty and I.A.E. Atkinson), pp. 3-8. Conservation Sciences Publication No. 2. Department of Conservation, Wellington, Australia.
- Dietz, T., E.A. Rosa, and R. York. 2007. Driving the human ecological footprint. Frontiers in Ecology and the Environment 5:13-18.
- Dobson, A. P., J. P. Rodriguez, W. M. Roberts, and D. S. Wilcove. 1997. Geographic Distribution of Endangered Species in the United States. Science 275:550-553.
- Ebert, U., and H. Welsch. 2004. Journal of Environmental Economics and Management 47:270-283.
- Ehrlich, P.R. and J.P. Holdren. 1971. Impact of population growth. Science 171:1212-17.
- Ehrlich, P. R. and A. H. Ehrlich. 1992. The value of biodiversity. Ambio 21:219-226.
- Esty, D.C., M.A. Levy, T. Srebotnjak, and A. de Sherbinin. 2005. 2005 Environmental Sustainability Index: Benchmarking National Environmental Stewardship. New Haven: Yale Center for Environmental Law & Policy.
- Esty, D.C., M.A. Levy, T. Srebotnjak, A. de Sherbinin, C.H. Kim, and B. Anderson. 2006. Pilot 2006 Environmental Performance Index. New Haven: Yale Center for Environmental Law & Policy.
- Esty, D.C., M.A. Levy, C.H. Kim, A. de Sherbinin, T. Srebotnjak, and V. Mara. 2008. 2008 Environmental Performance Index. New Haven: Yale Center for Environmental Law & Policy.
- Ewing B., S. Goldfinger, M. Wackernagel, M. Stechbart, S. M. Rizk, A. Reed and J. Kitzes. 2008. The Ecological Footprint Atlas 2008. Oakland: Global Footprint Network.
- FAOa, Food and Agriculture Organization of the United Nations. 2006. FAO Statistical Yearbook 2005-2006. Accessed May 15, 2009. http://faostat.fao.org
- FAOb, Food and Agriculture Organization of the United Nations. 2006. FAO Statistical Yearbook 2005-2006. Table A5. Accessed May 15, 2009. http://faostat.fao.org/
- FAOc, Food and Agriculture Organization of the United Nations. 2006. FAO Statistical Yearbook 2005-2006. Table G3. Accessed May 15, 2009. http://faostat.fao.org/
- FAOd, Food and Agriculture Organization of the United Nations. 2009. Accessed March 1, 2010. http://www.fao.org/hunger/en/
- Fischer, J., D. B. Lindenmayer, and A. D. Manning. 2006. Biodiversity, Ecosystem Function, and Resilience: Ten Guiding Principles for Commodity Production Landscapes. Frontiers in Ecology and the Environment 4:80-86.
- Flather, C.H., M. S. Knowles and I. A. Kendall. 1998. Threatened and Endangered Species Geography. BioScience 48:365-376.
- Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty,

- and P. K. Snyder. 2005. Global Consequences of Land Use. Science 309:570-574.
- Forys, E.A., and C.R. Allen. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339-347.
- Fowler, C.W., and L. Hobbs. 2003. Is humanity sustainable? Proceedings of the Royal Society of London (Series B) 270:2579-2583.
- Freytag, A. and C. Vietze. 2006. Can nature promote development? The role of sustainable tourism for economic growth. Jena Economic Research Papers 2010:1-33.
- Freytag, A. and C. Vietze. 2009. Biodiversity and International Tourism: A Story of Comparative Advantage. The Open Political Science Journal 2:23-34.
- Geneletti, D. and D. Dawa. 2009. Environmental impact assessment of mountain tourism in developing regions: a study in Ladakh, Indian Himalaya. Environmental Impact Assessment Review 29:229-242.
- GISP (Global Invasive Species Programme). 2001. *Invasive Alien Species: A Toolkit of Best Prevention and Management Practices* (ed. by R. Wittenberg and M. J. W. Cock). Cabi Publishing, Oxfordshire, UK.
- Gleason, H.A. 1922. On the relation between species and area. Ecology 3:158-162.
- Gonzalez, C.G. 2004. Trade Liberalization, Food Security, and the Environment: The Neoliberal Threat to Sustainable Rural Development. Transnational Law & Contemporary Problems 14:419-498.
- Gonzalez, C.G. 2006. Markets, monocultures, and malnutrition: agricultural trade policy through an environmental justice lens. Michigan State Journal of International Law 14:345-382.
- Hawkins, B.A., E.E. Porter and J.A.F. Diniz-Filho. 2003. Productivity and history as predictors of latitudinal diversity gradient of terrestrial birds. Ecology 84:1608-1623.
- Heaney, L.R. 2001. Small Mammal Diversity along Elevational Gradients in the Philippines: An Assessment of Patterns and Hypotheses. Global Ecology and Biogeography 10:15-39.
- Hellmann, J.J., J. E. Byers, B. G. Bierwagen and J. S. Dukes. 2008. Five Potential Consequences of Climate Change for Invasive Species. Conservation Biology 22:534-543.
- Hillery, M., B. Nancarrow, G. Griffin and G. Syme. 2001. Tourist perception of environmental impact. Annals of Tourism Research 28:853-867.
- Hobbs, R.J., and H. A. Mooney. 1991. Effects of Rainfall Variability and Gopher Disturbance on Serpentine Annual Grassland Dynamics. Ecology 72:59-68.
- Hoekstra, J.M., T.M. Boucher, T.H. Ricketts and C. Roberts 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters 8:23-29.
- Holden, A. 2009. Tourism and natural resources. *The Sage Handbook of Tourism Studies* (ed. by T. Jamal and M. Robinson), pp. 203-214. Sage Publications Ltd., Washington, D.C., USA.
- Holling, C.S., and L.H. Gunderson. 2002. Resilience and adaptive cycles. *Panarchy* (ed. by L.H. Gunderson, and C.S. Holling), pp. 25-62. Island Press, Washington, D.C., USA.

- Honey, H. 1999. Ecotourism and Sustainable Development: who owns paradise? Island Press, Washington, D.C.
- Hulme, P.E. 2007. Biological invasions in Europe: drivers, pressures, states, impacts and responses. *Biodiversity Under Threat* (ed. by R. Hester & R.M. Harrison), pp. 56-80. Issues in Environmental Science and Technology 2007, 25, Royal Society of Chemistry, Cambridge, UK.
- Huston, M.A. 1994. *Biological diversity: the coexistence of species on changing landscapes*. Cambridge University Press, UK.
- IUCN, The World Conservation Union. 2006. Release of the 2006 IUCN Red List of Threatened Species reveals ongoing decline of the status of plants and animals. Geneva, Switzerland, 4 May 2006 (IUCN) press release. http://www.flmnh.ufl.edu/fish/organizations/ssg/2006Mayredlist.pdf
- IUCN 2008. IUCN Red List of Threatened Species. Version 2008. www.iucnredlist.org. Downloaded on December 1, 2008.
- Johnson, J.B. and K.S. Ohmland. 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19:101-108.
- Jones, A.R. 2003. Population goals and ecological strategies for spaceship earth perspective. Journal of Population Research 20:223-234.
- Jordan, R., F. Singer, J. Vaughan, and A. Berkowitz. 2009. What should every citizen know about ecology? Frontiers in Ecology and the Environment 7:495-500.
- Kahn, K.F. and A. Gordon. 1997. How women campaign for the U.S. Senate: substance and strategy. *Women, Media and Politics* (ed. by P. Norris), pp. 59-76. Oxford University Press, Inc., Oxford, UK.
- Kaly, U.L., Pratt, C.R. and Mitchell, J. 2004. The Demonstration Environmental Vulnerability Index (EVI) 2004. SOPAC Technical Report 384, 323 pp.
- Kates, R.W. and T. M. Parris. 2003. Long-term trends and a sustainability transition. Proceedings of the National Academy of Sciences 100:8062-8067.
- Kaufmann, D., A. Kraay and M. Mastruzzi. 2008. Governance Matters VII: Governance Indicators for 1996-2007. World Bank Policy Research June 2008
- Kearns, C.A., D. W. Inouye, and N. M. Waser. 1998. Endangered Mutualisms: The Conservation of Plant-Pollinator Interactions. Annual Review of Ecology and Systematics 29:83-112.
- Kellert, S.R., and J. K. Berry. 1987. Attitudes, Knowledge, and Behaviors toward Wildlife as Affected by Gender. Wildlife Society Bulletin 15:363-371.
- Kirkland, G.L. and R.S. Ostfeld. 1999. Factors influencing variation among states in the number of federally listed mammal in the United States. Journal of Mammalogy 80:711-719.
- Kleehammer, M. 2011. Citizen bird. *California women and politics: from the gold rush to the great depression* (ed. by R.W. Cherny, M.A. Irwin, and A.M. Wilson), pp. 123-150. University of Nebraska Press, Lincoln, Nebraska, USA.
- Kobelt, M., and W. Nentwig. 2008. Alien spider introductions to Europe supported by global trade. Diversity and Distributions 14:273-280.
- Kratena, K. 2004. Ecological value added in an integrated ecosystem-economy modelan indicator for sustainability. Ecological Economics 48:189-200.
- Lambrinos, J.G. 2002. The Variable Invasive Success of Cortaderia Species in a Complex Landscape. Ecology 83:518-529.

- Leader-Williams, N. 2002. Animal conservation, carbon and sustainability. Phil. Trans. R. Soc. Lond. A 360:1787-1806.
- Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff and S. Brosse. 2008. Fish invasions in the world's river systems: when natural processes are blurred by human activities. Plos Biology 6:404-410.
- Levine, J.M. 2000. Species diversity and biological invasions: Relating local process to community pattern. Science 288:852-854.
- Levine, J. M., and C. D'Antonio. 2003. Forecasting biological invasions with increasing international trade. Conservation Biology 17:322-326.
- Li, B., Suzuki, J. & Hara, T. 1998. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115:293-301.
- Lin, W., G. Zhou, X. Cheng and R. Xu. 2007. Fast Economic Development Accelerates Biological Invasions in China. PLoS ONE 2:e1208.
- Liu, J., S. Liang, F. Liu, R. Wang, and M. Dong. 2005. Invasive alien plant species in China: regional distribution patterns. Diversity and Distributions 11:341-347.
- Long, J.L. 2004. *Introduced mammals of the world: their history, distribution and influence*. Cabi Publishing, Oxforshire, UK.
- Lonsdale, W.M. 1999. Global Patterns of Plant Invasions and the Concept of Invasibility. Ecology 80:1522-1536.
- Luck, G.W. 2007. A review of the relationships between human population density and biodiversity. Biological Review 82:607-645.
- MacArthur, R.H. and E.O. Wilson. 1967. *The theory of island biogeography*. Princeton University Press, Princeton, N.J., USA.
- Machado, G., R. Schaeffer, and E. Worrell. 2001. Energy and carbon embodied in the international trade of Brazil: an input–output approach. Ecological Economics 39:409-424.
- Malmqvist, B. and S. Rundle. 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29:134-153.
- Mbaiwa, J.E. 2003. The socio-economic and environmental impacts of tourism development on the Okavango Delta, north-western Botswana. Journal of Arid Environments 54:447-467.
- Mbaiwa, J.E. and A.L. Stronza. 2009. The challenges and prospects for sustainable tourism and ecotourism in developing countries. *The Sage Handbook of Tourism Studies* (ed. by T. Jamal and M. Robinson), pp. 333-353. Sage Publications Ltd., Washington, D.C., USA.
- McKee, J.K., P. W. Sciullia, C. D. Foocea, and T. A. Waitea. 2003. Forecasting global biodiversity threats associated with human population growth. Biological Conservation 115:161-164.
- McKee, G.J., R.E. Goodhue, F.G. Zalom, C.A. Carter, and J.A. Chalfant. 2009. Population dynamics and the economics of invasive species management: The greenhouse whitefly in California-grown strawberries. Journal of Environmental Management 90:561-570.
- McLaughlin, A. and P. Mineau. 1995. The impact of agricultural practices on biodiversity. Agriculture, Ecosystems and Environment 55:201-212.
- McNeely, J.A. 2000. How countries with limited resources are dealing with biodiversity

- problems. *Nature and Human Society: The Quest for a Sustainable World* (ed. by P.H. Raven and T. Williams), pp. 557-572. National Academy of Sciences and National Research Council, National Academies Press, Washington, D.C., USA.
- MDGD, Millennium Development Goals Database. 2009. Seats held by women in national parliament, percentage. http://data.un.org
- Messing, R.H. and M. G. Wright. 2006. Biological Control of Invasive Species: Solution or Pollution? Frontiers in Ecology and the Environment 4:132-140.
- Millennium Ecosystem Assessment. 2005. *Ecosystems and human well-being:* biodiversity synthesis. World Resources Institute, Washington, D.C., USA.
- Miller, J.D. 2002. Civic scientific literacy: a necessity in the 21st century. FAS Public Interest Report. The Journal of the Federation of American Scientists 5555:3-6.
- Miller, J.K., J. Michael Scott, C. R. Miller, and L. P. Waits. 2002. The Endangered Species Act: Dollars and Sense? BioScience 52:163-168.
- Mol, A. P. J. 1995. *The Refinement of Production: Ecological Modernization Theory and the Chemical Industry*. Van Arkel, Utrecht, Netherlands.
- Mooney, H.A. and E. E. Cleland. 2001. The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences 98:5446-5451.
- Moran, D.D., M. Wackernagel, J. A. Kitzes, S. H. Goldfinger, and A. Boutaud. 2008. Measuring sustainable development Nation by nation. Ecological Economics 64:470-474.
- Nelson, G.C., E. Bennett, A. A. Berhe, K. Cassman, R. DeFries, T. Dietz, A. Dobermann, A. Dobson, A. Janetos, M. Levy, D. Marco, N. Nakicenovic, B. O'Neill, R. Norgaard, G. Petschel-Held, D. Ojima, P. Pingali, R. Watson, and M. Zurek. 2006. Anthropogenic Drivers of Ecosystem Change: an Overview. Ecology and Society 11:29.
- Norris, P., and J. Lovenduski. 1995. *Political Recruitment: Gender, race and class in the British parliament*, pp. 77-90. Cambridge University Press, UK.
- Norton, D.A. 2009. Species invasions and the limits to restoration: learning from the New Zealand experience. Science 325:569-571.
- Noss, R., 1995. Maintaining ecological integrity in representative networks. World Wildlife Fund Canada and World Wildlife Fund-United States.
- Orams, M.B. 2002. Feeding wildlife as a tourism attraction: a review of issues and impacts. Tourism Management 23:281-293.
- Orme, C.D.L., R. G. Davies, M. Burgess, F. Eigenbrod, N. Pickup, V. A. Olson, A. J. Webster, T. Ding, P. C. Rasmussen, R. S. Ridgely, A. J. Stattersfield, P. M. Bennett, T. M. Blackburn, K. J. Gaston and I. P. F. Owens. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016-1019.
- Osili, U.A. and B.T. Long. 2008. Does female schooling reduce fertility? Evidence from Nigeria. Journal of Developmental Economics 87:57-75.
- Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas and M. Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583.
- Perrings, C., M. Williamson, E. B. Barbier, D. Delfino, S. Dalmazzone, J. Shogren, P.

- Simmons, and A. Watkinson. 2002. Biological invasion risks and the public good: an economic perspective. Conservation Ecology 6:1. http://www.consecol.org/vol6/iss1/i
- Peterson, G., S. Cunningham, L. Deutsch, J. Erickson, A. Quinlan, E. Raez-Luna, R. Tinch, M. Troell, P. Woodbury, and S. Zens. 2000. The risks and benefits of genetically modified crops: a multidisciplinary perspective. Conservation Ecology 4:13. http://www.consecol.org/vol4/iss1/art13/
- Pickett, S.T.A., W.R. Burch, Jr., S.E. Dalton, T.W. Foresman, J.M. Grove, and R. Rowntree. 1997. A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosystems 1:185-199.
- Pimentel, D., H. Acquay, M. Biltonen, P. Rice, M. Silva, J. Nelson, V. Lipner, S. Giordano, A. Horowitz, and M. D'Amore. 1992. Environmental and Economic Costs of Pesticide Use. BioScience 42:750-760.
- Pimm, S. L., G. J. Russell, J. L. Gittleman and M. Brooks. 1995. The future of biodiversity. Science 269:347-350.
- Postel, S. L., G. C. Daily, P. R. Ehrlich. 1996. Human Appropriation of Renewable Fresh Water. Science 271:785-788.
- Postel, S.L. 2003. Securing water for people, crops and ecosystems: new mindset and new priorities. Natural Resources Forum 27:89-98.
- Randall, J.M. 2000. Improving Management of Nonnative Invasive Plants in Wilderness and Other Natural Areas. *Wilderness science in a time of change conference Volume 5: Wilderness ecosystems, threats, and management; 1999 May 23-27; Missoula, MT.* (ed. by D.N. Cole, S.F. McCool, Borrie, W.T. Borrie, and J. O'Loughlin). Proceedings RMRS-P-15-VOL-5. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
- Rensburg, B.J.V., S.L. Chown and K.J. Gaston. 2002. Species Richness, Environmental Correlates, and Spatial Scale: A Test Using South African Birds. The American Naturalist 159:566-577.
- Rodriguez, J. P., T. Beard, Jr., E. Bennett, G. S.Cumming, S. Cork, J. Agard, A. P. Dobson and G. D. Peterson. 2006. Trade-offs across space, time, and ecosystem services. Ecology and Society 11:28. http://www.ecologyandsociety.org/vol11/iss1/art28/.
- Rosenzweig, M.L. 1995. *Species diversity in space and time*. Cambridge University Press, Cambridge, UK.
- Roura-Pascual, N., A.V. Suarez, C. Goomez, P. Pons, Y. Touyama, A.L. Wild and A.T. Peterson. 2004. Geographical potential of Argentine ants (*Linepithema humile* Mayr) in the face of global climate change. Proceedings of the Royal Society of London Series B, Biological Sciences 271:2527-2534.
- Sachs, J.D. and A.M. Warner. 1997. Sources of Slow Growth in African Economies. Journal of African Economies 6:335-376.
- Sanders, N.J., N. J. Gotelli, N. E. Heller, and D. M. Gordon. 2003. Community disassembly by an invasive species. Proceedings of the National Academy of Sciences 100:2474-2477.
- Sandor, R.L., E.C. Bettelheim, I.R. Swingland. 2002. An overview of a free-market approach to climate change and conservation. Philosophical Transactions of the Royal Society of London, Series A 360:1607-1620.

- Sapiro, V. 1981. If U.S. Senator Baker Were A Woman: An Experimental Study of Candidate Images. Political Psychology 3:61-83.
- SAS Institute Inc. 1999. SAS user's guide: statistics, version 5 edition. SAS Institute, Cary, N.C., USA.
- Sax, D.F. 2001. Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. Journal of Biogeography 28:139-150.
- Schmitz, D.C., and D. Simberloff. 1997. Biological invasions: a growing threat. Issues in Science and Technology 13:33-40.
- Signor, P.W. 1990. The geological history of diversity. Annual Review of Ecology and Systematics 21:509-539.
- Smith, M.D., C.A. Roheim, L.B. Crowder, B.S. Halpern, M. Turnipseed, J.L. Anderson, F. Asche, L. Bourillion, A.G. Guttormsen, A. Khan, L.A. Liguori, A. McNevin, M.I. O'Connor, D. Squires, P. Tyedmers, C. Brownstein, K. Carden, D.H. Klinger, R. Sagarin, and K.A. Selkoe. 2010. Sustainability and global seafood. Science 327:784-786.
- Soulé, M.E. 1991. Conservation: Tactics for a Constant Crisis. Science 253:744-750.
- Soule, M.E., and M.A. Sanjayan. 1998. Conservation targets: Do they help? Science 279:2060-2061.
- Sparling, D.W., G. M. Fellers, and L. L. Mcconnell. 2001. Pesticides and amphibian population declines in California, USA. Environmental Toxicology and Chemistry 20:1591-1595.
- Stern, D.I. 2004. The rise and fall of the environmental Kuznets curve. World Development 32:1419-39.
- Stratford, E, and J. Davidson. 2002. Capital assets and intercultural borderlands: sociocultural challenges for natural resource management. Journal of Environmental Management 66:429-440.
- Struglia, R., and P.L. Winter. 2002. The role of population projections in environmental management. Environmental Management 30:13-23.
- Suri, V. and D. Chapman. 1998. Economic growth, trade and energy: implications for the environmental Kuznets curve. Ecological Economics 25:195-208.
- Thomas, C.D. and J.J. Lennon. 1999. Birds extend their ranges northwards. Nature 399:213.
- Tilman, D., J. Fargione, B. Wolff, C. D'Antonio, A. Dobson, R. Howarth, D. Schindler, W.H. Schlesinger, D. Simberloff and D. Swackhamer. 2001. Forcasting agriculturally driven global environmental change. Science 292:281-284.
- Torras, M., and J.K. Boyce. 1998. Income, inequality, and pollution: a reassessment of The environmental Kuznets Curve. Ecological Economics 25:147-160.
- Towns, D.R., I.A.E. Atkinson and C.H. Daugherty. 2006. Have the harmful effects of introduced rats on islands been exaggerated? Biological Invasions 8:863-891.
- Turner, B.L., R.E. Kasperson, P.A. Matson, J.J. McCarthy, R.W. Corell, L. Christensen, N. Eckley, J.X. Kasperson, A. Luers, M.L. Martello, C. Polsky, A. Pulsipher, and A. Schiller. 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences 100:8074-8079.
- UNDP, United Nations Development Programme. 2007. Human Development Report 2007/2008. Fighting climate change: human solidarity in a divided world. New York, New York. http://hdr.undp.org/en/reports/global/hdr2007-2008/chapters/

- UNEP, United Nations Environmental Program. 2007. Global environmental outlook 4, London:Earthscan. http://www.unep.org/geo/geo4/report/GEO-4 Report Full en.pdf
- UNPD, United Nations Population Division. 2008. World population prospects: the 2008 edition. http://data.un.org/
- UNSD, United Nations Statistics Division. 2009. Proportion of terrestrial areas protected in 2008. http://unstats.un.org/unsd/environment/TerrestrialProtectedAreas.htm
- UNWTO, United Nations World Tourism Organization. 2009a. Tourism Highlights (2009Edition).http://www.unwto.org/facts/eng/pdf/highlights/UNWTO_Highlight s09_en_HR.pdf
- UNWTO, United Nations World Tourism Organization. 2009b. Accessed September 2, 2009. http://data.un.org/DocumentData.aspx?q=tourism&id=168#19
- Vanderpost, C. 2006. Pathways of human sprawl in wilderness buffer zones. Population & Environment 27:285-306.
- Vié, J.C., C. Hilton-Taylor and S.N. Stuart. 2009. Wildlife in a Changing World-An Analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland: IUCN. 180 pp.
- Vitousek, P.M., P. R. Ehrlich, A.H. Ehrlich, and P. A. Matson. 1986. Human Appropriation of the Products of Photosynthesis. BioScience 36:368-373.
- Vitousek, P.M., C.M. D'Antonio, L.L. Loope, M. Rejmanek and R. Westbrooks. 1997. Introduced species: A significant component of human-caused global change. New Zealand Journal of Ecology 21:1-16.
- Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of Earth's ecosystems. Science 277:494-499.
- White, T.A., B. D. Campbell, and P. D. Kemp. 1997. Invasion of Temperate Grassland by a Subtropical Annual Grass across an Experimental Matrix of Water Stress and Disturbance. Journal of Vegetation Science 8:847-854.
- Wilcove, D.S., D. Rothstein, J. Dubow, A. Phillips, and E. Losos. 1998. Quantifying Threats to Imperiled Species in the United States. BioScience 48:607-615.
- Williams, S.E. 1995. Patterns of mammalian species richness in the Australian tropical rainforests: are extinctions during historical contractions of the rainforest the primary determinants of current regional patterns in biodiversity? Wildlife Research 24:513-530.
- Williams, P.W. and I.F. Ponsford. 2009. Confronting tourism's environmental paradox: transitioning for sustainable tourism. Futures 41:396-404.
- Williamson, M. 1996. Biological invasions. Chapman & Hall, London, UK.
- Wilson, E.O. 2002. The future of life. Random House, Inc. New York, NY, USA.
- Woinarski, J.C.Z., A. Fisher and D. Milne. 1999. Distribution patterns of vertebrates in relation to an extensive rainfall gradient and variation in soil texture in the tropical savannas of the Northern Territory, Australia. Journal of Tropical Ecology 15:381-398.
- WRI, World Resources Institute in collaboration with United Nations Development Programme, United Nations Environment Programme, and World Bank. 2005. World Resources 2005: The Wealth of the Poor-Managing Ecosystems to Fight Poverty. Washington, DC: WRI.
- WTO, World Trade Organization. 2008. Statistical database. Accessed: March 11, 2010.

http://www.wto.org/english/res_e/statis_e/statis_e.htm
York R., E.A. Rosa, and T. Dietz. 2003. Footprints on the Earth: the environmental consequences of modernity. American Sociological Review 68:279-300.

CHAPTER 7: CONCLUSION

In chapter 2 and chapter 3, I examined body mass distributions in five Mediterranean-climate ecosystems. Specifically, I examined the relationship between endangered and invasive bird and mammal species and their location along a body mass axis. I also explored changes in alpha, beta, and gamma diversity of function after the introduction of invasive bird and mammal species and the loss of endangered species. Discontinuous body-mass distributions were found in all Mediterranean-climate ecosystems and taxa examined. Discontinuities in body mass distributions have also been shown in North American birds (Skillen and Maurer 2008), south Florida herpetofauna, birds, and mammals (Allen 2006, Allen et al. 1999), Pleistocene and Miocene mammals (Lambert 2006, Lambert and Holling 1998), tropical forest birds (Restrepo et al. 1997), and boreal region birds and mammals (Holling 1992) and in various other taxa (reviewed in Sendzimir et al. 2003). This analysis extends these conclusions to include animal communities across Mediterranean-climate ecosystems of the world.

More non-indigenous species (NIS) and endangered species were found to occur at the edges of body mass aggregations than could be expected by chance alone in 40% of datasets and in all datasets when analyzed by taxonomic group pooling ecosystems, thus supporting similar analyses which examined the distribution of NIS and endangered species in relation to body mass aggregations (Allen et al. 1999). However, this was not consistent across Mediterranean-climate ecosystems or taxa. Skillen and Maurer (2008) reported an average of 52% of declining species were closer to body mass aggregation edges than the median distance to the nearest body mass aggregation edge, but showed an

average of 72% of NIS were further away from body mass aggregation edges than the median distance (i.e., located in gaps).

Parker et al. (1999) and Vitousek et al. (1996) describe many kinds of environmental effects associated with non-indigenous species: including genetic (loss of genetic diversity and evolutionary pressure due to hybridization), ecosystem (alteration of nutrient cycling and productivity), and population or community (species richness may increase, but abundance of native species declines). Although there were no significant differences between pre- and post- invasion Shannon Index values, results of this study demonstrated a trend of non-indigenous species positively affecting alpha diversity and affecting beta diversity of function in birds and mammals differently.

Alpha diversity of function increased in 9 out of the 10 Mediterranean-climate ecosystems analyzed when NIS were introduced into the community. Removal of endangered species from the community after introducing NIS yielded mixed results. Alpha diversity of function increased in eight ecosystems and decreased in two. Beta diversity of function in birds decreased in 80% of the Mediterranean-climate pair-wise comparisons analyzed when NIS were introduced and remained the same or decreased in 60% of the Mediterranean-climate pair-wise comparisons with the removal of endangered species from the communities. Beta diversity of function in mammals increased in 70% of the Mediterranean-climate pair-wise comparisons analyzed when NIS were introduced and remained the same or increased in 80% of comparisons when endangered species were subsequently removed from the communities. Gamma diversity of function in birds and mammals increased with the inclusion of NIS and after endangered species were removed.

Most functional group membership declines were in insectivorous birds and mammals. Within each individual body mass aggregation, there were changes in species composition and functional groups present, however, there were no differences in functional group richness preinvasion and post invasion for each terrestrial vertebrate group or for both taxonomic groups combined. There was a decrease in cross-scale redundancy of functional groups in mammals and when both taxonomic groups were combined.

Despite differences in pre- and post- invasion species communities, the number of functional groups in a given body mass aggregation (functional richness w/n scales) remained similar pre- and postinvasion. However, changes in the distribution of species within functional groups across different body mass aggregations in mammals and when both taxonomic groups were combined, further validate an apparent decrease in functional redundancy and cross-scale resilience. The loss of cross-scale resilience and simplification of these communities due to human influences is well documented and may also have unforeseen consequences (i.e., functional groups involved have changed) (Regier and Baskerville 1986, Peterson et al. 1998, Forys and Allen 2002). With regard to cross-scale redundancy in birds remaining the same, it may be that the overall net effect of the establishment of NIS birds in these ecosystems has offset losses of species due to other anthropogenic impacts (e.g., habitat fragmentation, degradation or destruction) (Forys and Allen 2002). This may also be a result of no niche replacement, but conservation of broad functional patterns via functional complementarity (Rosenfeld 2002).

In my fourth chapter, I examined changes in body mass distributions and speciation events over paleoecologic time. Discontinuous body-mass distributions were found in all Bridger and Uinta faunal assemblage zones (FAZ) examined. Discontinuities in body mass distributions that have been constructed from the fossil record have also been shown in Miocene mammals (Lambert 2006) and Pleistocene mammals (Lambert & Holling 1998). New species of mammals did not occur at body mass aggregation edges in the observed distribution more often than expected in either analysis conducted. The distance to edge of new species was not less than those species already present and was only significant in two FAZs when new species were placed into the prior geologic layer. This study identified and analyzed patterns in body mass distributions within paleoecological faunal assemblage zones, but the use of body mass may have been too coarse to detect speciation events.

In my fifth chapter, I examined changes in body mass distributions with changes in scale. Specifically, I examined whether the vertebrate body mass structures are similar among the ecoregions within each biome. A lack of similarity would provide strong evidence against the textural discontinuity hypothesis. If body mass structure reflects landscape structure at these different scales, this will support the textural discontinuity hypothesis and create a fundamental link between landscape and community ecology. All bird and mammal body-mass distributions were discontinuous at the ecoregion, biome, continental, and hemisphere scales. At the ecoregion, biome, continental, and hemisphere scales bird communities had more aggregations than mammal communities. Mammals had larger gap sizes than birds at every scale except hemispheric.

In my last chapter, I examined what socio-ecological factors within a country might help determine the number of endangered and invasive birds and mammals. The percentage of endangered birds in a country was positively correlated with total biodiversity and total land area. These results were similar to other analyses on the relationship between the percentage of endangered birds and total biodiversity (McKee et al. 2003, Orme et al. 2005). Although there was no evidence in the literature describing a relationship between the percentage of endangered birds and total land area, I could presume that an increase in sampling area would result in an increase in species richness (reviewed in Huston 1994) and therefore a possibility of there being more endangered species present.

The percentage of endangered mammals in a country was correlated with a combination of factors (i.e., the ecological class of variables). The results were similar to other analyses on the relationship between endangered mammals and agriculture intensity (Dobson et al. 1997), total annual rainfall and total biodiversity (McKee et al. 2003). Water stress has been reported as a threat to endangered species populations throughout the United States (Flather et al. 1998). There is evidence that the preservation of more habitat will allow for the survival of more species (Bruner et al. 2001), therefore I might assume fewer endangered species to be present. The inverse correlation observed in this study between wilderness protection and the percentage of endangered mammals suggests that this may be true. The relationship between GDP per capita and invasive species has been observed in other studies. GDP per capita and invasives have been found to correlate with the richness of alien spiders (Kobelt & Nentwig 2008), plants (Liu

et al. 2005), fishes (Leprieur et al. 2008), birds and mammals in Europe (Hulme 2007) and all taxonomic groups combined (Lin et al. 2007).

The idea of actively trying to reduce human life expectancy in order to increase the resilience of a country is one that will never be adopted by humanity. However, human population control is a potential option. Total population was not a factor in the selected models, but population control may be one of many crucial steps that must be taken in order to conserve global biodiversity (McKee et al. 2003). No other analysis to date has calculated a resilience factor for a country, thus there is no evidence in the literature regarding its relationship with human life expectancy. Dietz et al. (2007) found no relationship between life expectancy and environmental impact. The overall trend in high income countries, with improvements to the Human Development Index (which includes human life expectancy as one of its variables), is one towards a disproportionately larger negative impact on their ecological footprint. However, some lower income countries have high level of development without high impact on ecosystem services (Moran et al. 2008).

My work consisted of loosely connected empirical analyses that built upon each other to improve our knowledge of cross-scale ecosystem structure and contributed to the basic foundations of the field of landscape ecology, thus providing a broader understanding of how animals interact with their environment. This work provided further support for Holling's textural discontinuity hypothesis. The results of this research has provided future researchers with the ability to predict the impact and success of invasive species and the ability to determine which native species are at greatest risk of extinction. This research elucidated the distribution of biological diversity in space and

time and the socio-ecological factors that are contributing to the worldwide increase in invasive and endangered species. Humans are an integral part of the ecosystems in which they inhabit, thus understanding their role is crucial. The negative socio-ecological impacts of humans will continue to increase, thereby altering the architecture of the landscape and changing the composition of animal communities.

LITERATURE CITED

- Allen, C.R., E.A. Forys, and C.S. Holling. 1999. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2:114-121.
- Allen, C.R. 2006. Predictors of introduction success in the South Florida avifauna. Biological Invasions 8:491-500.
- Bruner, A.G., R.E. Gullison, R.E. Rice and G.A.B. da Fonseca. 2001. Effectiveness of parks in protecting tropical biodiversity. Science 291:125-128.
- Dietz, T., E.A. Rosa, and R. York. 2007. Driving the human ecological footprint. Frontiers in Ecology and the Environment 5:13-18.
- Dobson, A. P., J. P. Rodriguez, W. M. Roberts, and D. S. Wilcove. 1997. Geographic Distribution of Endangered Species in the United States. Science 275:550-553.
- Flather, C.H., M. S. Knowles and I. A. Kendall. 1998. Threatened and Endangered Species Geography. BioScience 48:365-376.
- Forys, E.A., and C.R. Allen. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339-347.
- Frankel, J.A., and D. Romer. 1999. Does trade cause growth? The American Economic Review 89:379-399.
- Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447-502.
- Hulme, P.E. 2007. Biological invasions in Europe: drivers, pressures, states, impacts and responses. *Biodiversity Under Threat* (ed. by R. Hester & R.M. Harrison), pp. 56-80. Issues in Environmental Science and Technology 2007, 25, Royal Society of Chemistry, Cambridge, UK.
- Huston, M.A. 1994. *Biological diversity: the coexistence of species on changing landscapes*. Cambridge University Press, UK.
- Kobelt, M., and W. Nentwig. 2008. Alien spider introductions to Europe supported by global trade. Diversity and Distributions 14:273-280.
- Lambert, W.D., and C.S. Holling. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body-mass distributions. Ecosystems 1: 157-175.
- Lambert, W.D. 2006. Functional convergence of ecosystems: evidence from body mass distributions of North American late Miocene faunas. Ecosystems 9:97-118.
- Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff and S. Brosse. 2008. Fish invasions in the world's river systems: when natural processes are blurred by human activities. Plos Biology 6:404-410.
- Lin, W., G. Zhou, X. Cheng and R. Xu. 2007. Fast Economic Development Accelerates Biological Invasions in China. PLoS ONE 2:e1208.
- Liu, J., S. Liang, F. Liu, R. Wang, and M. Dong. 2005. Invasive alien plant species in China: regional distribution patterns. Diversity and Distributions 11:341-347.
- McKee, J.K., P. W. Sciullia, C. D. Foocea, and T. A. Waitea. 2003. Forecasting global biodiversity threats associated with human population growth. Biological Conservation 115:161-164.
- Moran, D.D., M. Wackernagel, J. A. Kitzes, S. H. Goldfinger, and A. Boutaud. 2008. Measuring sustainable development Nation by nation. Ecological Economics 64:470-474.

- Orme, C.D.L., R. G. Davies, M. Burgess, F. Eigenbrod, N. Pickup, V. A. Olson, A. J. Webster, T. Ding, P. C. Rasmussen, R. S. Ridgely, A. J. Stattersfield, P. M. Bennett, T. M. Blackburn, K. J. Gaston and I. P. F. Owens. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016-1019.
- Parker, I.M., D. Simberloff, W.M. Lonsdale, K. Goodell, M. Wonham, P.M. Kareiva, M.H. Williamson, B. Von Holle, P.B. Moyle, J.E. Byers and L. Goldwasser. 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1:3-19.
- Peterson, G., C.R. Allen, and C.S. Holling. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6-18.
- Regier, H.A. and F.L. Baskerville. 1986. Sustainable redevelopment of regional ecosystem degraded by exploitative development. *Sustainable development of the biosphere* (ed. by W.C. Munn and R.E. Munn), pp. 75-101. Cambridge University Press, Cambridge, United Kingdom.
- Restrepo, C., L.M. Renjifo, and P. Marples. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. *Tropical forest remnants: ecology, management and conservation of fragmented communities* (ed. by W.F. Laurance, R.O. Bierregaard, and C. Moritz) pp 171-189. University of Chicago Press, Chicago, IL, USA.
- Rosenfeld, J.S. 2002. Functional redundancy in ecology and conservation. Oikos 98:156-162.
- Sendzimir, J., C.R. Allen, L. Gunderson and C. Stow. 2003. Implications of body mass patterns: linking ecological structure and process to wildlife conservation and management. *Landscape ecology and resource management: linking theory with practice* (ed. by J. Bissonette, J. and I. Storch) pp 125-152. Island Press, Washington, D.C., USA.
- Skillen, J.J and B.A. Maurer. 2008. The ecological significance of discontinuities in body mass distributions. *Discontinuities in ecosystems and other complex systems* (ed. by C.R. Allen and C.S. Holling) pp 193-218. University of Chicago Press, Chicago, IL, USA.
- Vitousek, P.M., C.M. D'Antonio, L.L. Loope, and R. Westbrooks. 1996. Biological invasions as global environmental change. American Scientist 84:468-478.

APPENDIX A. Mediterranean-climate ecosystem mammals in California. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Sorex ornatus	Ornate Shrew	0.698	1	InTe	
Sorex vagrans	Vagrant Shrew	0.707	1	InTe	
Reithrodontomys megalotis	Harvest Mouse	1.049	1	GrTe	
Peromyscus maniculatus	Deer Mouse	1.299	1	GrTe	
Peromyscus boylii	Brush Mouse	1.329	1	HeAr	
Perognathus californicus	California Pocket Mouse	1.367	1	GrTe	
Peromyscus truei	Pinyon Mouse	1.427	1	GrTe	
Peromyscus californicus	California Mouse	1.656	2	GrTe	
Tamias obscurus	Obscure Chipmunk	1.748	2	HeAr	
Dipodomys stephensi	Stephen's Kangaroo Kat	1.807	2	GrTe	X
Dipodomys heermanni	Heermann Kangaroo Kat	1.857	2	GrTe	
Tamias merriami	Merriam's Chipmunk	1.875	2	GrTe	
Dipodomys venustus	Santa Cruz Kangaroo Rat	1.929	2	GrTe	
Dipodomys elephantinus	Big-eared Kangaroo Rat	1.93	2	GrTe	
Thomomys bottae	Botta Pocket Gopher	2.049	2	HeFs	
Neotoma lepida	Desert Wood Rat	2.164	2	НеТе	
Mustela frenata	Long-tailed Weasel	2.167	2	CaTe	
Peromyscus eremicus	Cactus Mouse	2.276	2	GrTe	
Neotoma fuscipes	Dusky-footed Woodrat	2.281	2	HeAr	
Spermophilus beecheyi	California Ground Squirrel	2.781	3	НеТе	
Sylvilagus bachmani	Brush Rabbit	2.785	3	НеТе	
Sylvilagus auduboni	Audubon Cottontail	2.879	3	НеТе	
Spilogale gracilis	Spotted Skunk	2.888	3	CaTe	
Bassaricus astutus	Ringtail	3.053	3	CaTe	X

APPENDIX A. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Mephitis mephitis	Striped Skunk	3.253	3	InTe	
Urocyon cinereoargenteus	Gray Fox	3.548	4	CaTe	
Procyon lotor psora	Raccoon	3.557	4	OmTe	
Taxidea taxus	Badger	3.857	4	CaTe	
Lynx rufus	Bobcat	3.889	4	CaTe	
Canis latrans	Coyote	4.102	4	CaTe	
Odocoileus hemionus	Mule Deer	4.635	5	НеТе	
Felis concolor	Cougar	4.754	5	CaTe	
Felis onca	Jaguar	5.061	5	CaTe	X
Ursos arctos	Grizzly Bear	5.19	5	OmTe	X
Non-Indigenous Species					
Mus musculus	House Mouse	1.205		НеТе	
Rattus rattus	Black Rat	2.328		OmTe	
Rattus norvegicus	Norway Rat	2.384		OmTe	
Sciurus niger	Fox Squirrel	2.875		OmTe	
Didelphis virginianus	Common Opossum	3.301		OmTe	
Castor canadensis	Beaver	4.297		HeAq	

APPENDIX B. Mediterranean-climate ecosystem mammals in Chile. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

Latin name	Common name	Mass(g)	BCART	Functional Group	Endangered
Marmosa elegans	Mouse Opossum	1.481	1	InTe	
Oryzomys longicaudatus	Rice Rat	1.560	1	GrTe	
Akodon olivaceus	Olivaceous Akodon	1.639	1	GrTe	
Phyllotis darwini	Darwin's Leaf-eared Mouse	1.789	1	НеТе	
Akodon longipilis	Long-haired Akodon	1.796	1	InTe	
Notiomys megalonyx	Mole Mouse	1.830	1	GrTe	
Chelemys macronyx	Field Mole Mouse	1.865	1	GrTe	
Euneonys mordax	Biting Chinchilla Mouse	1.914	1	НеТе	
Octodon bridgesi	Bridges' Degu	1.966	1	НеТе	
Spalacopus cyanus	Coruro	2.011	1	HeFs	
Aconaemys fuscus	Chilean Rock Rat	2.090	1	НеТе	
Ctenomys maulinus	Maule Tuco-Tuco	2.215	1	НеТе	
Octodon degus	Degu	2.264	1	HeAr	
Abrocoma bennetti	Chinchilla Rat	2.363	1	HeAr	
Octodon lunatus	Moon-toothed Degu	2.367	1	НеТе	
Lagidium viscacia	Mountain Vizcacha	3.188	2	НеТе	
Galictis guia	Grison	3.199	2	CaTe	
Conepatus chinga	Molina's Hog-nosed Skunk	3.275	2	InTe	
Felis Guigna	Kokod	3.348	2	CaTe	
Felis Colocolo	Pampas Cat	3.470	2	CaAr	
Myocaster coypus	Nutria	3.579	2	HeAq	
Dusicyon griseus	Gray Fox	3.601	2	CaTe	
Lutra felina	Marine Otter	3.653	2	InAq	
Dusicyon culpaeus	Culpeo Fox	3.867	3	CaTe	
=					

APPENDIX B. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Lutra provocax	Southern River Otter	3.880	3	CaAq	
Pudu puda	Pudu	3.989	3	НеТе	X
Felis concolor	Mountain Lion	4.549	4	CaTe	
Hippocamelus bisulcus	Patagonian Huemul	4.845	4	НеТе	X
Lama guanicoe	Guanaco	5.079	4	НеТе	X
Non-Indigenous Species					
Mus musculus	House Mouse	1.230		CaAq	
Rattus rattus	Black Rat	2.328		CaTe	
Rattus norvegicus	Norway Rat	2.384		HeAq	
Ondatra zibethica	Muskrat	3.009		HeAq	
Mustela vison	Mink	3.167		НеТе	
Oryctolagus cuniculus	European Rabbit	3.196		НеТе	
Lepus capensis	Brown Hare	3.301		НеТе	
Felis catus	Feral Cat	3.591		CaTe	
Castor canadensis	North American Beaver	4.297		HeAq	
Dama dama	Fallow Deer	4.686		НеТе	
Sus scrofa	Wild Hog	4.740		OmTe	
Cervus elaphus	Red Deer	5.188		НеТе	

APPENDIX C. Mediterranean-climate ecosystem mammals in Spain. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Suncus etruscus	Pygmy White-toothed Shrew	0.352	1	InTe	
Sorex minutus	Pygmy Shrew	0.477	1	InTe	
Micromys minutus	Harvest Mouse	0.756	1	GrTe	
Sorex granarius	Spanish Shrew	0.796	1	GrTe	X
Crocidura russula	Greater White-toothed Shrew	0.806	1	InTe	
Crocidura suaveolens	Lesser White-toothed Shrew	0.825	1	InTe	
Mus spretus	Algerian Mouse	1.090	2	GrTe	
Neomys fodiens	Water Shrew	1.114	2	InAq	
Neomys anomalus	Miller's Water Shrew	1.134	2	InTe	
Pitymys lusitanicus	Lusitanian Pine Vole	1.212	2	НеТе	
Microtus arvalis	Common Vole	1.262	2	HeFs	
Clethrionomys glareolus	Bank Vole	1.288	2	НеТе	
Apodemus sylvaticus	Wood Mouse	1.344	2	InTe	
Microtis agrestis	Field Vole	1.344	2	НеТе	
Pitymys duodecimcostatus	Mediterranean Pine Vole	1.345	2	НеТе	
Talpa caeca	Blind Mole	1.505	3	InFs	
Microtus nivalis	Snow Vole	1.591	3	НеТе	
Microtus cabrerae	Cabrera's vole	1.645	3	НеТе	X
Galemys pyrenaicus	Pyrenean Desman	1.760	3	InAq	
Talpa europaea	Common Mole	1.881	3	InFs	
Talpa romana	Roman Mole	1.966	3	InFs	
Eliomys quercinus	Garden Dormouse	1.980	3	НеТе	X
Mustela nivalis	Weasel	2.150	4	СаТе	
Arvicola sapidus	Southern Water Vole	2.230	4	HeAq	X
=				=	

APPENDIX C. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Myoxis glis	Edible Dormouse	2.284	4	HeAr	
Sciurus vulgaris	Red Squirrel	2.398	4	HeAr	X
Erinaceus europaeus	Western Hedgehog	2.805	5	InTe	
Erinaceus algirus	Algerian Hedgehog	2.845	5	InTe	
Martes foina	Beech Marten	3.000	5	СаТе	
Mustela putorius	Western Polecat	3.000	5	СаТе	
Oryctolagus cuniculus	Rabbit	3.196	6	НеТе	
Lepus capensis	Brown Hare	3.310	6	НеТе	
Lepus granatensis	Iberian Hare	3.334	6	НеТе	
Felis silvestris	Wildcat	3.385	6	СаТе	
Vulpes vulpes	Red Fox	3.678	7	СаТе	
Lutra lutra	Otter	3.796	7	CaAq	X
Meles meles	Eurasian Badger	3.964	7	InTe	
Lynx pardinus	Pardel Lynx	4.043	7	CaTe	X
Macaca sylvanus	Barbary Ape	4.049	7	НеТе	
Capreolus capreolus	Roe Deer	4.079	7	НеТе	
Castor fiber	European Beaver	4.145	7	НеТе	
Canis lupus	Wolf	4.632	8	CaTe	
Sus scrofa	Wild Boar	4.740	8	НеТе	
Capra pyrenaica	Spanish Ibex	4.760	8	НеТе	X
Cervus elaphus	Red Deer	5.176	8	НеТе	
Ursus arctos	Brown Bear	5.247	8	НеТе	
Non-Indigenous Species					
Mus musculus	House Mouse	1.283		GrTe	
Rattus rattus	Black Rat	2.092		НеТе	

Latin Name	Common Name	Mass(g) BCA	RT Functional Group	Endangered
Rattus norvegicus	Norway Rat	2.455	НеТе	
Atelerix algirus	Algerian Hedgehog	3.097	InTe	
Genetta genetta	Common Genet	3.236	CaTe	
Herpestes ichneumon	Egyptian Mongoose	3.474	CaTe	
Ammotragus lervia	Barbary Sheep	4.926	НеТе	

APPENDIX D. Mediterranean-climate ecosystem mammals in South Africa. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Mus minutoides	Pygmy Mouse	0.767	1	НеТе	
Suncus varilla	Lesser Dwarf Shrew	0.813	1	InTe	
Dendromus melanotis	Grey Climbing Mouse	0.826	1	InTe	
Crocidura cyanea	Reddish-grey Musk Shrew	0.934	1	InTe	
Dendromus mesomelas	Brant's Climbing Mouse	1.053	1	InTe	
Malacothrix typica	Large-eared Mouse	1.127	1	НеТе	
Myosorex varius	Forest Shrew	1.130	1	InTe	
Acomys subspinosus	Cape Spiny Mouse	1.325	2	НеТе	
Steatomys krebsi	Kreb's Fat Mouse	1.380	2	НеТе	
Graphiurus murinus	Woodland Dormouse	1.450	2	InTe	
Gerbillurus paeba	Hairy-footed Gerbil	1.511	2	НеТе	
Rhabdomys pumilo	Striped Mouse	1.559	2	НеТе	
Macroscelides proboscideus	Round-eared Elephant Shrew	1.582	2	InTe	
Myomyscus verroxii	Verreaux's Mouse	1.613	2	InTe	
Desmmodillus auricularis	Short-tailed Gerbil	1.664	2	НеТе	
Aethomys namequensis	Namaqua Rock Mouse	1.688	2	НеТе	
Chrysochloris asiatica	Cape Golden Mole	1.690	2	InFs	
Amblysomus hottentotus	Hottentot Golden Mole	1.832	3	InFs	
Graphiurus ocularis	Spectacled Dormouse	1.838	3	InTe	
Cryptomys hottentotus	Common Molerat	1.897	3	HeFs	
Mystromys albicaudatus	White-tailed Mouse	1.939	3	НеТе	X
Dasymys incomtus	Water Rat	1.972	3	НеТе	
Tatera afra	Cape Gerbil	1.987	3	НеТе	
Otomys saundersiae	Saunder's Vlei Rat	2.013	3	НеТе	

APPENDIX D. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Otomys irroratus	Vlei Rat	2.072	3	НеТе	
Crocidura flavescens	Greater Musk Shrew	2.088	3	InTe	
Otomys unisulcatus	Bush Karoo Rat	2.095	3	НеТе	
Otomys laminatus	Laminate Vlei Rat	2.176	3	НеТе	
Georychus capensis	Cape Molerat	2.338	3	НеТе	
Poecilogale albinucha	Striped Weasel	2.338	3	CaTe	
Bathyergus suillus	Cape Dune Molerat	2.796	4	HeFs	
Ictonyx striatus	Striped Polecat	2.866	4	InTe	
Herpestes pulverulenta	Small Grey Mongoose	2.901	4	InTe	
Cynictis penicillata	Yellow Mongoose	2.919	4	InTe	
Pronolagus rupestris	Smith's Red Rock Rabbit	3.210	5	НеТе	
Genetta tigrina	Large-spotted Genet	3.270	5	CaTe	
Genetta genetta	Small-spotted Genet	3.279	5	CaTe	
Lepus capensis	Cape Hare	3.310	5	НеТе	
Vulpes chama	Cape Fox	3.423	5	CaTe	
Procavia capensis	Rock Dassie	3.480	5	НеТе	
Atilax paludinosus	Water Mongoose	3.531	5	CaTe	
Lepus saxatilis	Scrub Hare	3.556	5	НеТе	
Felis libyca	African Wildcat	3.633	5	CaTe	
Proteles cristatus	Aardwolf	3.840	6	InTe	
Canis mesomelas	Black-backed Jackal	3.898	6	CaTe	
Mellivora capensis	Honey Badger	3.899	6	CaTe	
Oreotragus oreotragus	Klipspringer	4.009	6	НеТе	X
Raphicerus melanotis	Grysbok	4.011	6	НеТе	X
Felis caracal	Caracal	4.029	6	CaTe	

APPENDIX D. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Felis serval	Serval	4.047	6	CaTe	
Raphicerus campestris	Steenbok	4.053	6	НеТе	
Aonyx capensis	Clawless Otter	4.061	6	CaAq	
Hystrix africaeaustralis	Porcupine	4.097	6	НеТе	
Sylvicapra grimmia	Grey Duiker	4.207	6	НеТе	
Pelea capreolus	Grey Ribbok	4.352	6	НеТе	
Papio ursinus	Chacma Baboon	4.365	6	НеТе	
Panthera pardus	Leopard	4.416	6	CaTe	
Hyaena brunnea	Brown Hyaena	4.583	6	CaTe	X
Orycteropus afer	Aardvark	4.719	6	InTe	
Damaliscus dorcas dorcas	Bontebuck	4.826	6	НеТе	X
Alcelaphus buselaphus	Hartebeest	5.134	7	НеТе	X
Panthera leo	Lion	5.193	7	CaTe	X
Hippotragus leucophaeus	Bluebuck	5.204	7	НеТе	X
Equus zebra	Cape Mountain Zebra	5.388	7	НеТе	X
Tragelaphus oryx	Eland	5.587	7	НеТе	X
Diceros bicornis	Black Rhinoceros	5.939	7	НеТе	X
Non-Indigenous Species					
Mus musculus	House Mouse	1.205		НеТе	_
Rattus rattus	Black Rat	2.045		OmTe	
Rattus norvegicus	Norway Rat	2.455		OmTe	
Sciurus carolinensis	Grey Squirrel	2.763		GrAr	
Felis catus	Domestic Cat	3.533		CaTe	
Hemitragus jemlahicus	Himalayan Tahr	4.167		НеТе	
Cervus dama	Fallow Deer	4.686		НеТе	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Sus scrofa	Feral Pig	4.740		OmTe	_

APPENDIX E. Mediterranean-climate ecosystem mammals in southwestern Australia. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Tarsipes rostratus	Honey Possum	0.954	1	HeAr	
Cercartetus concinnus	Western Pygmy-possum	1.114	1	InAr	
Sminthopsis dolichura	Little Long-tailed Dunnart	1.134	1	InTe	
Sminthopsis crassicaudata	Fat-tailed Dunnart	1.176	1	InTe	
Sminthopsis griseoventer	Grey-bellied Dunnart	1.243	1	InTe	X
Sminthopsis gilberti	Gilbert's Dunnart	1.290	1	InTe	
Sminthopsis granulipes	White-tailed Dunnart	1.398	1	InTe	
Pseudomys albocinereus	Ash-grey Mouse	1.484	1	НеТе	
Pseudomys occidentalis	Western Mouse	1.531	1	НеТе	X
Pseudomys nanus	Western Chestnut Mouse	1.531	1	НеТе	X
Notomys alexis	Spinifex Hopping Mouse	1.544	1	GrTe	
Pseudomys fieldi	Shark Bay Mouse	1.653	1	НеТе	X
Antichinus flavipes	Yellow-footed Antechinus	1.653	1	InTe	
Phascogale calura	Red-tailed Phascogale	1.712	1	InAr	X
Notomys mitchelli	Mitchell's Hopping Mouse	1.716	1	GrTe	
Notomys macrotis	Big-eared Hopping Mouse	1.720	1	GrTe	X
Parantechinus apicalis	Southern Dibbler	1.837	1	InTe	X
Pseudomys shortridgei	Heath Rat	1.845	1	НеТе	
Notomys longicaudatus	Long-tailed Hopping Mouse	2.000	2	GrTe	X
Rattus tunneyi	Pale Field-Rat	2.093	2	НеТе	X
Rattus fuscipes	Bush Rat	2.122	2	InTe	
Phascogale tapoatafa	Brush-tailed Phascogale	2.287	2	InAr	X
Perameles bougainville	Western Barred Bandicoot	2.354	2	НеТе	X
Myrmecobius fasciatus	Numbat	2.673	3	InTe	X

APPENDIX E. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Hydromys chrysogaster	Water Rat	2.833	3	InAq	
Potorous platyops	Broad-faced Potoroo	2.845	3	НеТе	X
Isoodon obesulus	Southern Brown Bandicoot	2.889	3	InTe	
Pseudocheirus occidentalis	Western ringtail Possum	3.000	3	HeAr	X
Dasyurus geoffroii	Western Quoll	3.041	3	CaTe	X
Potorus tridactylus	Long-nosed Potoroo	3.041	3	НеТе	X
Lagorchestes hirsutus	Rufous Hare-wallaby	3.102	3	НеТе	X
Bettongia penicillata	Brush-tailed Bettong	3.114	3	НеТе	X
Bettongia leseur	Burrowing Betong	3.176	3	НеТе	X
Lagostrophus fasciatus	Banded Hare-wallaby	3.230	3	НеТе	X
Trichosurus vulpecula	Common Brushtail Possum	3.419	4	HeAr	
Setonix brachyurus	Quokka	3.512	4	НеТе	X
Onychogalea lunata	Crescent Nailtail Wallaby	3.544	4	НеТе	X
Petrogale lateralis	Black-footed Rock-wallaby	3.602	4	НеТе	X
Tachyglossus aculeatus	Short-beaked Echidna	3.653	4	InTe	
Macropus eugenii	Tammar Wallaby	3.813	4	НеТе	X
Macropus irma	Western Brush Wallaby	3.903	4	НеТе	X
Canis lupus	Dingo	4.225	5	CaTe	X
Macropus robustus	Common Wallaroo	4.327	5	НеТе	
Macropus fuliginosus	Western Grey Kangaroo	4.345	5	НеТе	
Non-Indigenous Species					
Mus musculus	House Mouse	1.217		НеТе	
Rattus rattus	Black Rat	2.447		OmTe	
Rattus norvegicus	Brown Rat	2.505		OmTe	
Oryctolagus cuniculus	European Rabbit	3.199		НеТе	

Latin Name	Common Name	Mass(g) BCAF	RT Functional Group Endangered
Felis catus	Cat	3.626	СаТе
Vulpes vulpes	Red Fox	3.775	CaTe
Capra hircus	Goat	4.525	НеТе
Sus scrofa	Feral Hog	4.936	OmTe

APPENDIX F. Mediterranean-climate ecosystem birds in California. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

		Mass			
Latin Name	Common Name	(g)	BCART	Functional Group	Endangered
Calypte costae	Costa's Hummingbird	0.491	1	HeAe	
Cynanthus latirostris	Broad-billed Hummingbird	0.491	1	HeAe	
Archilochus alexandri	Black-chinned Hummingbird	0.531	1	HeAe	
Calypte anna	Anna's Hummingbird	0.623	1	HeAe	
Polioptila melanura	Black-tailed Gnatcatcher	0.708	1	InFo	
Psaltriparius minimus	Bushtit	0.724	1	InFo	
Polioptila caerulea	Blue-gray Gnatcatcher	0.778	1	InFo	
Wilsonia pusilla	Wilson's Warbler	0.839	1	InFo	
Dendroica nigrescens	Black-throated Gray Warbler	0.922	2	InFo	
Vireo bellii pusillus	Least Bell's Vireo	0.929	2	InFo	X
Vermivora celata	Orange-crowned Warbler	0.954	2	InFo	
Dendroica petechia	Yellow Warbler	0.978	2	GrFo	X
Carduelis psaltria	Lesser Goldfinch	0.978	2	InFo	
Thryomanes bewickii	Bewick's Wren	0.996	2	InTe	
Empidonax difficilis	Pacific-slope Flycatcher	1.000	2	InAe	
Geothlypis trichas	Common Yellowthroat	1.004	2	InFo	
Poecile gambeli	Mountain Chickadee	1.033	2	InFo	
Troglodytes aedon	House Wren	1.037	2	InTe	
Carduelis lawrencei	Lawrence's Goldfinch	1.039	2	GrFo	
Cistothorus palustris	Marsh Wren	1.051	2	InTe	
Vireo huttoni huttoni	Hutton's Vireo	1.064	2	InFo	
Spizella atrogularis cana	Black-chinned Sparrow	1.076	2	InTe	
Spizella passerina	Chipping Sparrow	1.090	2	InTe	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Catherpes mexicanus	Canyon Wren	1.100	2	InTe	
Contopus sordidulus	Western Wood-Pewee	1.107	2	InAe	
Vireo vicinior	Gray Vireo	1.107	2	InFo	X
Carduelis tristis	American Goldfinch	1.111	2	GrFo	
Empidonax traillii	Willow Flycatcher	1.127	2	InAe	X
Tachycineta thalassina	Violet-green Swallow	1.151	2	InAe	
Chamaea fasciata	Wrentit	1.166	2	InFo	
Vireo gilvus	Warbling Vireo	1.170	2	InFo	
Stelgidopteryx serripennis	Northern Rough-winged Swallow	1.182	2	InAe	
Passerina amoena	Lazuli Bunting	1.190	2	InTe	
Ammodramus savannarum	Grasshopper Sparrow	1.230	3	InTe	X
Baeolophus inornatus	Oak Titmouse	1.243	3	InAe	
Sayornis nigricans	Black Phoebe	1.271	3	InAe	
Aimophila ruficeps	Rufous-crowned Sparrow	1.272	3	InTe	
Amphispiza belli	Sage Sparrow	1.286	3	InTe	
Melospiza melodia	Song Sparrow	1.291	3	InTe	
Sitta carolinensis	White-breasted Nuthatch	1.324	3	InBa	
Sayornis saya	Say's Phoebe	1.326	3	InAe	
Carpodacus mexicanus	House Finch	1.330	3	GrTe	
Petrochelidon pyrrhonota	Cliff Swallow	1.334	3	InAe	
Phainopepla nitens	Phainopepla	1.380	4	HeFo	
Icterus cucullatus	Hooded Oriole	1.386	4	InFo	
Carpodacus purpureus	Purple Finch	1.396	4	GrTe	
Icteria virens auricollis	Yellow-breasted Chat	1.403	4	InFo	
Picoides pubescens	Downy Woodpecker	1.431	4	InBa	
	·				

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Myiarchus cinerascens	Ash-throated Flycatcher	1.435	4	InAe	
Sialia mexicana	Western Bluebird	1.448	4	InAe	
Passerina caerulea	Blue Grosbeak	1.453	4	InTe	
Chondestes grammacus	Lark Sparrow	1.462	4	GrTe	
Pipilo chlorurus	Green-tailed Towhee	1.468	4	InTe	
Catharus ustulatus	Swainson's Thrush	1.489	4	InFo	
Eremophila alpestris	Horned Lark	1.496	4	GrTe	X
Aeronautes saxatalis	White-throated Swift	1.507	4	InAe	
Passerella iliaca	Fox Sparrow	1.509	4	InTe	
Icterus bullockii	Bullock's Oriole	1.526	4	InFo	
Picoides nuttallii	Nutall's Woodpecker	1.583	5	InBa	
Campylorhynchus brunneicapillus	Cactus Wren	1.590	5	InTe	
Tyrannus verticalis	Western Kingbird	1.598	5	InAe	
Pheucticus melanocephalus	Black-headed Grosbeak	1.623	5	InFo	
Molothrus ater	Brown-headed Cowbird	1.642	5	InTe	
Tyrannus vociferans	Cassin's Kingbird	1.659	5	InAe	
Lanius ludovicianus	Loggerhead Shrike	1.676	5	InAe	
Mimus polyglottos	Northern Mockingbird	1.686	5	InTe	
Progne subis subis	Purple Martin	1.694	5	InAe	
Chordeiles acutipennis	Lesser Nighthawk	1.698	5	InAe	
Phalaenoptilus nuttallii	Common Poorwill	1.713	5	InAe	
Agelaius phoeniceus	Red-winged Blackbird	1.721	5	InTe	
Agelaius tricolor	Tricolored Blackbird	1.769	6	InTe	X
Euphagus cyanocephalus	Brewer's Blackbird	1.797	6	InTe	
Coccyzus americanus	Yellow-billed Cuckoo	1.806	6	InFo	X

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Xanthocephalus xanthocephalus	Yellow-headed Blackbird	1.810	6	InTe	X
Porzana carolina	Sora	1.873	7	GrTe	X
Aphelocoma californica	Western Scrub-Jay	1.904	7	OmTe	
Melanerpes formicivorus	Acorn Woodpecker	1.906	7	OmBa	
Rallus limicola limicola	Virginia Rail	1.914	7	InAq	
Toxostoma redivivum	California Thrasher	1.926	7	InTe	
Ixobrychus exilis hesperis	Least Bittern	1.936	7	CaAq	
Charadrius vociferus	Killdeer	1.985	7	InTe	
Sturnella neglecta	Western Meadowlark	2.003	7	InTe	
Falco sparverius	American Kestrel	2.063	7	InAe	
Zenaida macroura	Mourning Dove	2.076	7	GrTe	
Colaptes auratus	Northern Flicker	2.102	7	InTe	
Cyanocitta stelleri	Steller's Jay	2.107	7	OmTe	
Megascops kennicottii	Western Screech Owl	2.155	7	CaAe	
Athene cunicularia	Burrowing Owl	2.190	7	InAe	X
Callipepla gambelii	Gambel's Quail	2.220	7	GrTe	
Callipepla californica	California Quail	2.238	7	GrTe	
Butorides virescens anthonyi	Green Heron	2.326	7	CaAq	
Oreortyx pictus	Mountain Quail	2.367	7	GrTe	
Asio otus wilsonianus	Long-eared Owl	2.418	7	CaAe	X
Elanus leucurus	White-tailed Kite	2.522	8	CaAe	X
Geoccyx californianus	Greater Roadrunner	2.575	8	InTe	
Patagioenas fasciata	Band-tailed Pigeon	2.593	8	HeFo	
Circus cyaneus hudsonius	Northern Harrier	2.639	8	CaAe	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Accipiter cooperii	Cooper's Hawk	2.642	8	CaAe	
Corvus brachyrhynchos	American Crow	2.651	8	OmTe	
Tyto alba pratincola	Barn Owl	2.719	8	CaAe	
Buteo lineatus	Red-shouldered Hawk	2.747	8	CaAe	
Strix occidentalis	Spotted Owl	2.785	8	CaAe	X
Falco mexicanus	Prairie Falcon	2.850	8	CaAe	
Dendrocygna bicolor	Fulvous Whistling-duck	2.851	8	HeAq	X
Falco peregrinus	Peregrine Falcon	2.893	8	CaAe	X
Nycticorax nycticorax	Black-crowned Night Heron	2.946	8	CaAq	
Buteo swainsoni	Swainson's Hawk	2.995	8	CaAe	X
Buteo jamaicensis	Red-tailed Hawk	3.052	8	CaAe	
Corvus corax clarionensis	Common Raven	3.079	8	OmTe	
Bubo virginianus	Great Horned Owl	3.117	8	CaAe	
Cathartes aura	Turkey Vulture	3.166	8	CaAe	
Aquila chrysaetos	Golden Eagle	3.623	9	CaAe	
Gymnogyps californicus	California Condor	4.004	9	CaAe	X
Non-Indigenous Species					
Lonchura punctulata	Nutmeg Mannikin	1.146		GrTe	
Passer domesticus	House Sparrow	1.442		GrTe	
Cardinalis cardinalis	Northern Cardinal	1.650		GrTe	
Sturnus vulgaris	European Starling	1.915		InTe	
Streptopelia decaocto	Eurasian Collared-Dove	2.173		GrTe	
Aratinga erythrogenys	Red-masked Conure	2.243		HeFo	
Aratinga acuticaudata	Blue-crowned Parakeet	2.279		HeFo	
Calocitta colliei	Black-throated Magpie-Jay	2.377		OmFo	

Latin Name	Common Name	Mass(g) BCAR	T Functional Group Endangered
Amazona viridigenalis	Red-crowned Parrot	2.468	GrFo
Bubulcus ibis	Cattle Egret	2.529	InTe
Columba livia	Rock Dove	2.550	GrTe
Phasianus colchicus	Ring-necked Pheasant	3.055	НеТе
Aix galericulata	Mandarin Duck	3.233	OmAq
Meleagris gallopavo	Wild Turkey	3.764	OmTe

APPENDIX G. Mediterranean-climate ecosystem birds in Chile. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

		Mass			
Latin Name	Common Name	(g)	BCART	Functional Group	Endangered
Sephanoides sephanoides	Green-backed Firecrown	0.716	1	NeAe	
Anairetes parulus	Tufted Tit-Tyrant	0.771	1	InFo	
Tachuris rubrigastra	Many-colored Rush-Tyrant	0.857	1	InFo	
Pseudocolopteryx flaviventris	Warbling Doradito	0.875	1	InFo	
Cistothorus platensis	Sedge Wren	0.954	1	InFo	
Leptasthenura aegithaloides	Plain-mantled Tit-Spinetail	0.954	1	InFo	
Pygochelidon cyanoleuca	Blue-and-white Swallow	1.000	1	InAe	
Troglodytes aedon	House Wren	1.017	1	InFo	
Sylviorthorhynchus desmursii	Des Murs's Wiretail	1.037	1	InTe	
Scytalopus magellanicus	Magellanic Tapaculo	1.085	1	InTe	
Aphrastura spinicauda	Thorn-tailed Rayadito	1.086	1	InBa	
Lessonia rufa	Austral Negrito	1.130	2	InTe	
Phleocryptes melanops	Wren-like Rushird	1.152	2	InFo	
Elaenia albiceps	White-Crested Elaenia	1.201	2	InAe	
Sicalis luteola	Puna Yellow-Finch	1.204	2	GrTe	
Carduelis barbata	Black-chinned Siskin	1.220	2	GrTe	
Phrygilus alaudinus	Band-tailed Sierra-Finch	1.255	2	GrTe	
Tachycineta meyeni	Chilean Swallow	1.265	2	InAe	
Anthus correndera	Correndera Pipit	1.299	2	InTe	
Asthenes pyrrholeuca	Lesser Canastero	1.299	2	InFo	
Patagona gigas	Giant Hummingbird	1.305	2	NeAe	
Phrygilus gayi	Gray-hooded Sierra-Finch	1.312	2	GrTe	
Zonotrichia capensis	Rufous-collared Sparrow	1.312	2	GrTe	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Asthenes humicola	Dusky-tailed Canastero	1.313	2	InFo	
Pygarrhichas albogularis	White-throated Treerunner	1.325	2	InBa	
Hymenops perspicillata	Spectacled Tyrant	1.380	2	InAe	
Agelasticus thilius	Yellow-winged Blackbird	1.477	3	InFo	
Geositta cunicularia	Common Miner	1.477	3	InTe	
Diuca diuca	Common Diuca-Finch	1.491	3	GrTe	
Cinclodes fuscus	Bar-winged Cinclodes	1.502	3	InTe	
Laterallus jamaicensis	Black Rail	1.530	3	InAq	X
Thraupis bonariensis	Blue-and-yellow Tanager	1.556	3	HeAe	
Phrygilus fructiceti	Mourning Sierra-Finch	1.589	3	GrTe	
Picoides lignarius	Striped Woodpecker	1.592	3	InBa	
Chilia melanura	Crag Chilia	1.602	3	InTe	
Phytotoma rara	Rufous-tailed Plantcutter	1.602	3	HeFo	
Charadrius alexandrinus	Snowy Plover	1.617	3	InTe	
Caprimulgus longirostris	Band-winged Nightjar	1.635	3	InAe	
Eugralla paradoxa	Ochre-flanked Tapaculo	1.643	3	InTe	
Thinocorus rumicivorus	Least Seedsnipe	1.643	3	GrTe	
Pyrope pyrope	Fire-eyed Diucon	1.685	3	InAe	
Upucerthia dumetaria	Scale-throated Earthcreeper	1.693	3	InTe	
Columbina picui	Picui Ground-Dove	1.699	3	GrTe	
Scelorchilus albicollis	White-throated Tapaculo	1.705	3	InTe	
Cinclodes patagonicus	Dark-bellied Cinclodes	1.713	3	InTe	
Charadrius falklandicus	Two-banded Plover	1.813	4	InTe	
Mimus thenca	Chilean Mockingbird	1.820	4	InAe	
Cinclodes nigrofumosus	Chilean Seaside Cinclodes	1.824	4	InTe	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Nycticryphes semicollaris	South American Painted Snipe	1.839	4	InTe	
Glaucidium nanum	Austral Pygmy-Owl	1.858	4	CaAe	
Scelorchilus rubecula	Chucao Tapaculo	1.881	4	InTe	
Ixobrychus involucris	Stripe-backed Bittern	1.948	4	PiAq	
Curaeus curaeus	Austral Blackbird	1.954	4	InTe	
Turdus falcklandii	Austral Thrush	1.975	4	InTe	
Agriornis livida	Great Shrike-Tyrant	1.997	4	InTe	
Colaptes pitius	Chilean Flicker	2.000	4	InTe	
Sturnella loyca	Long-tailed Meadowlark	2.053	5	InTe	
Zenaida auriculata	Eared Dove	2.057	5	GrTe	
Falco sparverius	American Kestrel	2.063	5	CaAe	
Pteroptochos megapodius	Moustached Turca	2.076	5	InTe	
Gallinago gallinago	Common Snipe	2.086	5	InAq	
Metriopelia melanoptera	Black-winged Ground Dove	2.097	5	GrTe	
Oreopholus ruficollis	Tawny-throated Dotterel	2.124	5	InAq	
Porphyriops melanops	Spot-flanked Gallinule	2.130	5	HeAq	
Pteroptochos castaneus	Chestnut-throated Huet-Huet	2.149	5	InTe	
Sterna trudeaui	Snowy-crowned Tern	2.185	5	PiAe	
Athene cunicularia	Burrowing Owl	2.189	5	CaAe	
Himantopus mexicanus	Black-necked Stilt	2.220	5	InAq	
Sterna hirundinacea	South American Tern	2.265	5	PiAe	
Pardirallus sanguinolentus	Plumbeous Rail	2.294	5	InAq	
Columba araucana	Chilean Pigeon	2.301	5	НеТе	
Enicognathus ferrugineus	Austral Parakeet	2.301	5	HeFo	
Rollandia rolland	White-tufted Grebe	2.395	6	InAq	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Cyanoliseus patagonus	Burrowing Parrot	2.436	6	HeFo	
Enicognathus leptorhynchus	Slender-billed Parakeet	2.458	6	GrFo	
Milvago chimango	Chimango Caracara	2.471	6	CaAe	
Larus maculipennis	Brown-hooded Gull	2.505	6	InTe	
Vanellus chilensis	Southern Lapwing	2.515	6	InTe	
Merganetta armata	Torrent Duck	2.519	6	InAq	
Elanus leucurus	White-tailed Kite	2.522	6	CaAe	
Falco femoralis	Aplomado Falcon	2.523	6	InAe	
Podiceps occipitalis	Silvery Grebe	2.524	6	HeAq	
Accipiter bicolor	Bicolored Hawk	2.532	6	CaAe	
Asio flammeus	Short-eared Owl	2.540	6	CaAe	
Egretta thula	Snowy Egret	2.569	6	PiTe	
Strix rufipes	Rufous-legged Owl	2.582	6	CaAe	
Anas cyanoptera	Cinnamon Teal	2.586	6	HeAq	
Anas flavirostris	Speckled Teal	2.597	6	HeAq	
Circus cinereus	Cinereus Harrier	2.623	6	CaAe	
Podilymbus podiceps	Pied-billed Grebe	2.645	7	PiAq	
Fulica leucoptera	White-winged Coot	2.653	7	OmAq	
Nothoprocta perdicaria	Chilean Tinamou	2.661	7	GrTe	
Anas platalea	Red Shoveler	2.719	7	HeAq	
Tyto alba	Barn Owl	2.719	7	CaAe	
Heteronetta atricapilla	Black-headed Duck	2.726	7	GrAq	
Oxyura jamaicensis	Ruddy Duck	2.736	7	GrAq	
Oxyura vittata	Lake Duck	2.748	7	GrAq	
Anas georgica	Yellow-billed Pintail	2.766	7	InAq	

APPENDIX G. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Fulica rufifrons	Red-fronted Coot	2.791	7	OmAq	
Plegadis chihi	White-faced Ibis	2.793	7	CaAq	
Haematopus palliatus	American Oystercatcher	2.801	7	InAq	
Fulica armillata	Red-gartered Coot	2.824	7	HeAq	
Falco peregrinus	Peregrine Falcon	2.893	8	CaAe	
Phalcoboenus megalopterus	Mountain Caracara	2.900	8	CaAe	
Anas sibilatrix	Chiloe Wigeon	2.918	8	HeAq	
Parabuteo unicinctus	Harris's Hawk	2.926	8	CaAe	
Buteo polyosoma	Red-backed Hawk	2.936	8	CaAe	
Casmerodius albus	Common Egret	2.941	8	PiTe	
Nycticorax nycticorax	Black-crowned Night-Heron	2.946	8	PiAq	
Polyborus plancus	Crested Caracara	2.951	8	CaAe	
Larus dominicanus	Kelp Gull	2.954	8	CaAq	
Anas specularis	Spectacled Duck	2.989	8	OmAq	X
Netta peposaca	Rosy-billed Pochard	3.000	8	HeAq	
Phalacrocorax brasilianus	Neotropic Cormorant	3.041	8	PiAq	
Podiceps major	Great Grebe	3.067	8	PiAq	
Bubo virginianus	Great Horned Owl	3.117	8	CaAe	
Cathartes aura	Turkey Vulture	3.166	9	CaAe	
Theristicus caudatus	Buff-necked Ibis	3.190	9	InTe	
Coragyps atratus	Black Vulture	3.318	9	CaAe	
Geranoaetus melanoleucus	Black-chested Buzzard-Eagle	3.353	9	CaAe	
Cygnus melancoryphus	Black-necked Swan	3.672	9	HeAq	
Non-Indigenous Species					
Passer domesticus	House Sparrow	1.442		GrTe	
	=				

Latin Name	Common Name	Mass(g) BCAI	T Functional Group	Endangered
Molothrus bonariensis	Shiny Cowbird	1.548	InTe	
Myopsitta monachus	Monk Parakeet	2.079	HeFo	
Callipepla californica	California Quail	2.238	GrTe	
Bubulcus ibis	Cattle Egret	2.529	InTe	
Columba livia	Rock Dove	2.550	GrTe	
Phasianus colchicus	Ring-necked Pheasant	3.055	НеТе	
Cairina moschata	Muscovy Duck	3.392	HeAq	

APPENDIX H. Mediterranean-climate ecosystem birds in Spain. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

Latin Name	Common Name	Mass (g)	BCART	Functional Group	Endangered
Aegithalos caudatus	Long-tailed Tit	0.895	1	InFo	
Phylloscopus bonelli	Western Bonelli's Warbler	0.913	1	InFo	
Certhia brachydactyla	Short-toed Treecreeper	0.914	1	InBa	
Cisticola juncidis	Zitting Cisticola	0.940	1	InTe	
Sylvia cantillans	Subalpine Warbler	0.964	1	InFo	
Troglodytes troglodytes	Winter Wren	0.973	1	InFo	
Sylvia undata	Dartford Warbler	0.973	1	InTe	
Parus ater	Coal Tit	0.987	1	InFo	
Sylvia conspicillata	Spectacled Warbler	1.004	1	InFo	
Parus caeurleus	Blue Tit	1.029	1	InFo	
Hippolais pallida	Eastern Olivaceous Warbler	1.039	1	InFo	X
Hippolais polyglotta	Melodious Warbler	1.041	1	InFo	
Serinus serinus	European Serin	1.077	1	GrTe	
Parus cristatus	Crested Tit	1.099	1	InFo	
Riparia riparia	Bank Swallow	1.119	1	InAe	
Cettia cetti	Cetti's Warbler	1.125	1	InTe	
Sylvia melanocephala	Sardinian Warbler	1.129	1	InTe	
Delichon urbica	Common House-Martin	1.161	1	InAe	
Saxicola torquata	Stonechat	1.185	1	InAe	
Muscicapa striata	Spotted Flycatcher	1.197	1	InAe	
Hirundo rustica	Barn Swallow	1.204	1	InAe	
Carduelis carduelis	European Goldfinch	1.210	1	GrTe	
Phoenicurus ochruros	Black Redstart	1.211	1	InTe	

APPENDIX H. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Oenanthe hispanica	Black-eared Wheatear	1.217	1	InTe	X
Erithacus rubecula	European Robin	1.223	1	InTe	
Motacilla cinerea	Grey Wagtail	1.261	1	InTe	
Motacilla flava	Yellow Wagtail	1.268	1	InTe	
Parus major	Great Tit	1.272	1	InFo	
Carduelis cannabina	Eurasian Linnet	1.290	1	GrTe	
Sylvia atricapilla	Blackcap	1.291	1	InFo	
Luscinia megarhynchos	Common Nightingale	1.312	1	InTe	
Motacilla alba	White Wagtail	1.322	1	InTe	
Sylvia hortensis	Western Orphean Warbler	1.324	1	InFo	
Fringilla coelebs	Chaffinch	1.331	1	GrTe	
Calandrella brachydactyla	Greater Short-toed Lark	1.347	1	InTe	X
Hirundo daurica	Red-rumped Swallow	1.347	1	InAe	
Ptyonprogne rupestris	Eurasian Crag-Martin	1.364	1	InAe	
Emberiza cia	Rock Bunting	1.366	1	GrTe	
Calandrella rufescens	Lesser Short-toed Lark	1.377	1	InTe	X
Cercotrichas galactotes	Rufous-tailed Scrub-Robin	1.387	1	InTe	X
Oenanthe oenanthe	Northern Wheatear	1.389	1	InTe	
Emberiza cirlus	Cirl Bunting	1.408	1	GrTe	
Lullula arborea	Wood Lark	1.417	1	InTe	
Carduelis chloris	European Greenfinch	1.418	1	GrTe	
Passer domesticus	House Sparrow	1.442	1	GrTe	
Anthus campestris	Tawny Pipit	1.459	1	InTe	
Acrocephalus arundinaceus	Great Reed-Warbler	1.479	1	InFo	
Lanius senator	Woodchat Shrike	1.512	1	InAe	X

APPENDIX H. Continued.

Alcedo atthisCommon Kingfisher1.5501CaAeXGalerida theklaeThekla Lark1.5661InTeAlauda arvensisEurasian Skylark1.5851InTeOenanthe leucuraBlack Wheatear1.6001InTeXApus apusCommon Swift1.6301InAeGalerida cristataCrested Lark1.6501GrTeMilaria calandraCorn Bunting1.6941GrTeMerops apiasterEuropean Bee-eater1.7412InAeMonticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAeOriolus oriolusEurasian Golden Oriole1.8472InFo
Alauda arvensisEurasian Skylark1.5851InTeOenanthe leucuraBlack Wheatear1.6001InTeXApus apusCommon Swift1.6301InAeGalerida cristataCrested Lark1.6501GrTeMilaria calandraCorn Bunting1.6941GrTeMerops apiasterEuropean Bee-eater1.7412InAeMonticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Oenanthe leucuraBlack Wheatear1.6001InTeXApus apusCommon Swift1.6301InAeGalerida cristataCrested Lark1.6501GrTeMilaria calandraCorn Bunting1.6941GrTeMerops apiasterEuropean Bee-eater1.7412InAeMonticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Apus apusCommon Swift1.6301InAeGalerida cristataCrested Lark1.6501GrTeMilaria calandraCorn Bunting1.6941GrTeMerops apiasterEuropean Bee-eater1.7412InAeMonticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Galerida cristataCrested Lark1.6501GrTeMilaria calandraCorn Bunting1.6941GrTeMerops apiasterEuropean Bee-eater1.7412InAeMonticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Milaria calandraCorn Bunting1.6941GrTeMerops apiasterEuropean Bee-eater1.7412InAeMonticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Merops apiasterEuropean Bee-eater1.7412InAeMonticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Monticola solitariusBlue Rock Thrush1.7562InAeCoccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Coccothraustes coccothraustesHawfinch1.7632GrFoCinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Cinclus cinclusWhite-throated Dipper1.7782InAqMelanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Melanocorypha calandraCalandra Lark1.7832InTeUpupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Upupa epopsHoopoe1.7882InTeLarius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Larius excubitorNorthern Shrike1.8022InAeTurnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Turnix sylvaticaSmall Buttonquail1.8132GrTeXCaprimulgus ruficollisRed-necked Nightjar1.8362InAe
Caprimulgus ruficollis Red-necked Nightjar 1.836 2 InAe
Oriolus oriolus Eurasian Golden Oriole 1.847 2 InFo
Glareola pratincola Collared Pratincole 1.904 3 InAe X
Dendrocopos major Great Spotted Woodpecker 1.906 3 InBa
Caprimulgus europaeus Eurasian Nightjar 1.929 3 InAe
Otus scops European Scops-Owl 1.930 3 InAe
Sturnus unicolor Spotless Starling 1.938 3 InTe
Turdus merula Eurasian Blackbird 1.967 3 InTe
Coturnix coturnix Common Quail 2.007 3 GrTe
Tachymarptis melba Alpine Swift 2.017 3 InAe

APPENDIX H. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Rallus aquaticus	Water Rail	2.063	3	InAq	
Cuculus canorus	Common Cuckoo	2.065	3	InFo	
Turdus viscivorus	Mistle Thrush	2.071	3	InTe	
Tachybaptus ruficollis	Little Grebe	2.130	4	InAq	
Streptopelia turtur	Eurasian Turtle-Dove	2.135	4	GrTe	X
Coracias garrulus	European Roller	2.167	4	InAe	X
Ixobrychus minutus	Little Bittern	2.169	4	CaAq	
Falco naumanni	Lesser Kestrel	2.182	4	InAe	X
Clamator glandarius	Great Spotted Cuckoo	2.186	4	InFo	
Athene noctua	Little Owl	2.196	4	CaAe	
Garrulus glandarius	Eurasian Jay	2.214	4	InFo	
Picus viridis	Green Woodpecker	2.244	4	InTe	
Falco tinnunculus	Eurasian Kestrel	2.304	4	CaAe	
Accipiter nisus	Eurasian Sparrowhawk	2.310	4	CaAe	
Falco subbuteo	Eurasian Hobby	2.324	4	CaAe	X
Pterocles alchata	Pin-tailed Sandgrouse	2.376	4	GrTe	X
Corvus monedula	Eurasian Jackdaw	2.376	4	InTe	
Asio Otus	Long-eared Owl	2.423	4	CaAe	
Gallinula chloropus	Common Moorhen	2.477	4	HeAq	
Circus pygargus	Montagu's Harrier	2.499	4	CaAe	X
Columba livia	Rock Pigeon	2.550	4	GrTe	
Pterocles orientalis	Black-bellied Sandgrouse	2.608	4	GrTe	X
Strix aluco	Tawny Owl	2.663	4	CaAe	
Burhinus oedicnemus	Eurasian Thick-knee	2.665	4	InAq	X
Alectoris rufa	Red-legged Partridge	2.679	4	GrTe	
-					

APPENDIX H. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Columba palumbus	Common Wood-Pigeon	2.689	4	НеТе	
Corvus corone	Carrion Crow	2.691	4	InTe	
Tyto alba	Barn Owl	2.719	4	CaAe	
Podiceps cristatus	Great Crested Grebe	2.889	5	CaAq	
Falco peregrinus	Peregrine Falcon	2.893	5	CaAe	
Milvus migrans	Black Kite	2.918	5	CaAe	X
Hieraaetus pennatus	Booted Eagle	2.925	5	CaAe	
Ardea purpurea	Purple Heron	2.941	5	CaAq	
Buteo buteo	Eurasian Buzzard	2.942	5	CaAe	
Accipiter gentilis	Northern Goshawk	2.967	5	CaAe	
Milvus milvus	Red Kite	3.020	5	CaAe	X
Corvus corax	Common Raven	3.054	5	CaTe	
Circaetus gallicus	Short-toed Eagle	3.230	6	CaAe	
Hieraaetus fasciatus	Bonelli's Eagle	3.312	6	CaAe	X
Neophron percnopterus	Egyptian Vulture	3.320	6	CaAe	X
Bubo bubo	Eurasian Eagle-Owl	3.347	6	CaAe	
Aquila heliaca	Imperial Eagle	3.514	6	CaAe	X
Ciconia ciconia	White Stork	3.538	6	CaTe	
Aquila chrysaetos	Golden Eagle	3.623	6	CaAe	X
Otis tarda	Great Bustard	3.862	6	InTe	X
Gyps fulvus	Eurasian Griffon	3.870	6	CaAe	
Non-Indigenous Species					
Estrilda astrild	Common Waxbill	0.875		GrFo	
Amandava amandava	Red Avadavat	0.996		GrTe	
Passer montanus	Tree Sparrow	1.342		GrTe	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Psittacula krameri	Ring-necked Parakeet	2.155		HeFo	
Streptopelia decaocto	Eurasian Collared-Dove	2.173		GrTe	
Callipepla californica	California Quail	2.238		GrTe	
Oxyura jamaicensis	Ruddy Duck	2.736		GrAq	
Alectoris chukar	Chukar	2.762		GrTe	
Anas platyrhynchos	Mallard	3.032		OmAq	
Phasianus colchicus	Pheasant	3.051		НеТе	

APPENDIX I. Mediterranean-climate ecosystem birds in South Africa. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

Latin Name	Common Name	Mass (g)	BCART	Functional Group	Endangered
Estrilda astrlid	Common Waxbill	0.875	1	GrFo	
Anthoscopus minutus	Cape Penduline-Tit	0.875	1	InFo	
Cinnyris chalybeus	Lesser Double-collared Sunbird	0.937	1	NeAe	
Cisticola fulvicapilla	Neddicky	0.954	1	InTe	
Anthobaphes violacea	Orange-breasted Sunbird	0.964	1	NeFo	
Cryptillas victorini	Victorin's Warbler	1.000	1	InTe	
Prinia maculosa	Karoo Prinia	1.000	1	InFo	
Cisticola subruficapilla	Grey-backed Cisticola	1.021	1	InFo	
Cisticola textrix	Cloud Cisticola	1.021	1	InTe	
Sylvietta rufescens	Long-billed Crombec	1.053	1	InFo	
Apalis thoracica	Bar-throated Apalis	1.083	1	InFo	
Batis capensis	Cape Batis	1.107	1	InFo	
Cisticola tinniens	Levaillant's Cisticola	1.111	1	InTe	
Crithagra totta	Cape Siskin	1.117	1	GrTe	
Riparia paludicola	Brown-throated Martin	1.127	1	InAe	
Zosterops pallidus	Orange River White-eye	1.127	1	NeFo	
Serinus canicollis	Cape Canary	1.140	1	GrTe	
Saxicola torquatus	African Stonechat	1.185	2	InAe	
Parisoma subcaeruleum	Chestnut-vented Tit-Babbler	1.193	2	InFo	
Hirundo rustica	Barn Swallow	1.204	2	InAe	
Euplectes orix	Southern Red Bishop	1.211	2	GrTe	
Crithagra flaviventris	Yellow Canary	1.212	2	GrTe	
Nectarinia famosa	Malachite Sunbird	1.233	2	NeFo	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Euplectes capensis	Yellow Bishop	1.260	2	GrTe	
Cercomela sinuata	Sickle-winged Chat	1.270	2	InAe	
Hirundo fuligula	Rock Martin	1.279	2	InAe	
Crithagra sulphuratus	Brimstone Canary	1.283	2	GrTe	
Parus afer	Grey Tit	1.297	2	InBa	
Cercotrichas coryphoeus	Karoo Scrub-Robin	1.301	2	InTe	
Calandrella cinerea	Red-capped Lark	1.316	2	InTe	
Motacilla capensis	Cape Wagtail	1.318	2	InTe	
Hirundo albigularis	White-throated Swallow	1.328	2	InAe	
Passer melanurus	Cape Sparrow	1.340	2	GrTe	
Cercomela familiaris	Familiar Chat	1.342	2	InTe	
Crithagra leucopterus	Protea Seedeater	1.346	2	GrFo	
Emberiza capensis	Cape Bunting	1.350	2	GrTe	
Sigelus silens	Fiscal Flycatcher	1.408	3	InAe	
Crithagra albogularis	White-throated Canary	1.413	3	GrTe	
Anthus leucophrys	Plain-backed Pipit	1.431	3	InTe	
Hirundo cucullata	Greater Striped Swallow	1.431	3	InAe	
Cossypha caffra	Cape Robin-Chat	1.455	3	InTe	
Mirafra apiata	Cape Clapper Lark	1.487	3	InTe	
Calendulauda albescens	Karoo Lark	1.487	3	InTe	
Sphenoeacus afer	Cape Grassbird	1.497	3	InTe	
Tricholaema leucomelas	Acacia Pied Barbet	1.508	3	HeFo	
Certhilauda curvirostris	Cape Long-billed Lark	1.582	4	InTe	
Pycnonotus capensis	Cape Bulbul	1.597	4	HeFo	
Promerops cafer	Cape Sugarbird	1.606	4	NeFo	

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Oena capensis	Namaqua Dove	1.608	4	GrTe	
Colius colius	White-backed Mousebird	1.617	4	HeFo	
Lanius collaris	Common Fiscal	1.618	4	InTe	
Ploceus capensis	Cape Weaver	1.627	4	InTe	
Apus barbatus	African Black Swift	1.631	4	InAe	
Galerida magnirostris	Large-billed Lark	1.643	4	GrTe	
Caprimulgus pectoralis	Fiery-necked Nightjar	1.674	4	InAe	
Macronyx capensis	Cape Longclaw	1.677	4	InTe	
Laniarius ferrugineus	Southern Boubou	1.688	4	InTe	
Colius striatus	Speckled Mousebird	1.708	4	HeFo	
Urocolius indicus	Red-faced Mousebird	1.751	4	HeFo	
Chaetops frenatus	Cape Rockjumper	1.756	4	InTe	
Monticola rupestris	Cape Rock-Thrush	1.778	4	InTe	
Upupa africana	African Hoopoe	1.788	4	InTe	
Telophorus zeylonus	Bokmakierie	1.797	4	InTe	
Creatophora cinerea	Wattled Starling	1.826	4	InTe	
Turdus olivaceus	Olive Thrush	1.868	4	InTe	
Tachymarptis melba	Alpine Swift	1.881	4	InAe	
Streptopelia senegalensis	Laughing Dove	2.004	5	GrTe	
Spreo bicolor	Pied Starling	2.021	5	InTe	
Geocolaptes olivaceus	Ground Woodpecker	2.079	5	InTe	
Onychognathus morio	Red-winged Starling	2.124	5	InTe	
Streptopelia capicola	Cape Turtle-Dove	2.152	5	GrTe	
Vanellus coronatus	Crowned Lapwing	2.223	5	InTe	
Falco rupicolus	Rock Kestrel	2.304	5	CaAe	

APPENDIX I. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Elanus caeruleus	Black-shouldered Kite	2.522	6	CaAe	
Bubulcus ibis	Cattle Egret	2.529	6	InTe	
Columba guinea	Speckled Pigeon	2.547	6	GrTe	
Scleroptila africanus	Grey-winged Francolin	2.592	6	НеТе	
Burhinus capensis	Spotted Thick-knee	2.626	6	InTe	
Circus ranivorus	African Marsh-Harrier	2.705	6	CaAe	X
Corvus albus	Pied Crow	2.723	6	НеТе	
Pternistis capensis	Cape Spurfowl	2.814	6	НеТе	
Afrotis afra	Southern Black Korhaan	2.840	6	InTe	
Corvus capensis	Cape Crow	2.843	6	InTe	
Buteo vulpinus	Steppe Buzzard	2.942	6	CaAe	
Corvus albicollis	White-necked Raven	2.954	6	InTe	
Ardea melanocephala	Black-headed Heron	3.025	6	InTe	
Buteo rufofuscus	Jackal Buzzard	3.066	6	CaAe	
Numida meleagris	Helmeted Guinea-fowl	3.114	6	GrTe	
Sagittarius serpentarius	Secretarybird	3.557	7	InTe	X
Aquila verreauxi	Verreaux's Eagle	3.613	7	CaAe	
Neotis denhami	Denham's Bustard	3.615	7	InTe	X
Non-Indigenous Species					
Delichon urbicum	Common House Martin	1.161		InAe	
Fringilla coelebs	Chaffinch	1.330		GrTe	
Passer domesticus	House Sparrow	1.442		GrTe	
Apus horus	Horus Swift	1.447		InAe	
Sturnus vulgaris	European Starling	1.915		InTe	
Cuculus clamosus	Black Cuckoo	1.929		InFo	

Latin Name	Common Name	Mass(g)	BCART Functional Group	Endangered
Streptopelia decaocto	Eurasian Collared-Dove	2.173	GrTe	
Corvus splendens	House Crow	2.477	OmTe	
Columba livia	Rock Dove	2.550	GrTe	
Anas platyrhynchos	Mallard	3.032	OmAq	

APPENDIX J. Mediterranean-climate ecosystem birds in southwestern Australia. Log 10 body mass in grams (g), Bayesian CART (BCART) group, functional group, and the species status.

		Mass			
Latin Name	Common Name	(g)	BCART	Functional Group	Endangered
Smicrornis brevirostris	Weebill	0.708	1	GrFo	
Gerygone fusca	Western Gerygone	0.783	1	InFo	
Malurus leucopterus	White-winged Fairywren	0.785	1	InFo	
Acanthiza inornata	Western Thornbill	0.845	2	InTe	
Poephila guttata	Zebra Finch	0.845	2	GrTe	
Acanthiza uropygialis	Chestnut-rumped Thornbill	0.874	2	InFo	
Stipiturus malachurus	Southern Emuwren	0.879	2	InTe	X
Acanthiza apicalis	Inland Thornbill	0.881	2	InFo	
Certhionyx niger	Black Honeyeater	0.892	2	NeFo	
Dicaeum hirundinaceum	Mistletoebird	0.903	2	НеТе	
Malurus lamberti	Variegated Fairywren	0.903	2	InFo	X
Petroica goodenovii	Red-capped Robin	0.903	2	InAe	
Rhipidura fuliginosa	Grey Fantail	0.903	2	InAe	
Acanthiza chrysorrhoa	Yellow-rumped Thornbill	0.944	2	InFo	
Pardalotus xanthopygus	Yellow-rumped Pardalope	0.944	2	InFo	
Pardalotus punctatus	Spotted Pardalote	0.964	2	InFo	
Malurus pulcherrimus	Blue-breasted Fairywren	0.978	2	InFo	
Petroica multicolor	Scarlet Robin	0.982	2	InTe	
Malurus elegans	Red-winged Fairywren	1.000	2	InFo	
Malurus splendens	Splendid Fairywren	1.000	2	InFo	
Ephthianura tricolor	Crimson Chat	1.024	2	InTe	
Acanthorhynchus superciliosus	Western Spinebill	1.033	2	NeFo	
Sericornis brunneus	Redthroat	1.052	2	InTe	

APPENDIX J. Continued.

Emblema oculata Red-eared Firetail 1.0	070 076 079	2 2	InAe GrFo InBa	
	076 079	2		
Daphoenositta chrysoptera Varied Sittella 1.0	079		InBa	
		2		
Ephthianura albifrons White-fronted Chat 1.0	006	2	InTe	
Pardalotus striatus Striated Pardalote 1.0	086	2	InFo	
Aphelocephala leucopsis Southern Whiteface 1.1	101	2	InTe	
Sericornis frontalis White-browed Scrubwren 1.1	107	2	InTe	
Lichmera indistincta Brown Honeyeater 1.1	114	2	NeFo	
Sericornis cautus Shy Hylacola 1.1	153	3	InTe	
Melithreptus brevirostris Brown-headed Honeyeater 1.1	164	3	NeFo	
Hirundo neoxena Welcome Swallow 1.1	167	3	InAe	
Melithreptus lunatus White-naped Honeyeater 1.1	167	3	NeFo	
Cheramoeca leucosternum White-backed Swallow 1.1	170	3	InAe	
Cecropis nigricans Tree Martin 1.1	175	3	InAe	
Microeca fascinans Jacky Winter 1.1	196	3	InAe	
Lichenostomus ornatus Yellow-plumed Honeyeater 1.2	250	4	NeFo	
Phylidonyris albifrons White-fronted Honeyeater 1.2	255	4	NeFo	
Pachycephala rufiventris Rufous Whistler 1.2	258	4	InTe	
Phylidonyris nigra White-cheeked Honeyeater 1.2	262	4	NeFo	
Phylidonyris melanops Tawny-crowned Honeyeater 1.2	267	4	NeFo	
Lichenostomus cratitius Purple-gaped Honeyeater 1.2	292	4	InFo	
Lichenostomus penicillatus White-plumed Honeyeater 1.2	297	4	HeFo	
Phylidonyris novaehollandiae New Holland Honeyeater 1.3	301	4	NeFo	
Sericornis fuliginosus Field Wren 1.3	319	4	InFo	
Melanodryas cucullata Hooded Robin 1.3	326	4	InAe	

APPENDIX J. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Eopsaltria griseogularis	Gray-breasted Robin	1.336	4	InTe	
Amytornis textilis	Thick-billed Grasswren	1.356	4	GrTe	X
Chrysococcyx basalis	Horsfield's Bronze Cuckoo	1.358	4	InFo	
Lichenostomus leucotis	White-eared Honeyeater	1.364	4	HeFo	
Myiagra inquieta	Restless Flycatcher	1.380	4	InAe	
Anthus novaeseelandiae	Australasian Pipit	1.384	4	InTe	
Lichenostomus virescens	Singing Honeyeater	1.391	4	NeFo	
Chrysococcyx lucidus	Shining Bronze-Cuckoo	1.394	4	InFo	
Cinclorhamphus mathewsi	Rufous Songlark	1.398	4	GrTe	
Certhionyx variegatus	Pied Honeyeater	1.414	4	NeFo	
Lalage tricolor	White-winged Triller	1.415	4	InTe	
Rhipidura leucophrys	Willie-wagtail	1.442	4	InAe	
Cinclorhamphus cruralis	Brown Songlark	1.447	4	InTe	
Falcunculus frontatus	Crested Shrike-tit	1.456	4	InBa	X
Chrysococcyx osculans	Black-eared Cuckoo	1.458	4	InFo	
Merops ornatus	Rainbow Bee-eater	1.459	4	InAe	
Melopsittacus undulatus	Budgerigar	1.462	4	GrTe	
Pachycephala inornata	Gilbert's Whistler	1.515	5	InTe	
Pachycephala pectoralis	Golden Whistler	1.515	5	InTe	
Climacteris rufa	Rufous Treecreeper	1.526	5	InBa	
Artamus cinereus	Black-faced Woodswalllow	1.544	5	InAe	
Pomatostomus superciliosus	White-browed Babbler	1.544	5	InTe	X
Artamus personatus	Masked Woodswallow	1.549	5	InAe	
Geopelia cuneata	Diamond Dove	1.550	5	GrTe	
Drymodes brunneopygia	Southern Scrub Robin	1.568	5	InTe	

APPENDIX J. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Artamus cyanopterus	Dusky Woodswallow	1.602	5	InAe	
Turnix velox	Little Buttonquail	1.613	5	GrTe	
Halcyon sancta	Sacred Kkingfisher	1.620	5	InTe	
Neophema elegans	Elegant Parrot	1.633	5	GrTe	
Glossopsitta porphyrocephala	Purple-crowned Lorikeet	1.641	5	HeFo	
Acanthagenys rufogularis	Spiny-cheeked Honeyeater	1.643	5	InAe	
Cuculus pyrrhophanus	Fan-tailed Cuckoo	1.679	5	InTe	
Aegotheles cristatus	Australian Owlet-Nightjar	1.699	5	InTe	
Halcyon pyrrhopygia	Red-backed Kingfisher	1.719	5	InTe	
Psephotus varius	Mulga Parrot	1.778	6	GrTe	
Oreoica gutturalis	Crested Bellbird	1.792	6	InTe	
Platycercus icterotis	Western Rosella	1.801	6	GrFo	X
Manorina flavigula	Yellow-throated Miner	1.829	6	NeFo	
Cinclosoma castanotus	Chestnut Quail-thrush	1.865	6	GrTe	
Anthochaera chrysoptera	Brush Wattlebird	1.871	6	NeFo	
Colluricincla harmonica	Grey Shrike-thrush	1.879	6	InFo	
Cuculus pallidus	Pallid Cuckoo	1.934	7	НеТе	
Turnix varia	Painted Buttonquail	1.944	7	GrTe	
Caprimulgus guttatus	Large-tailed Nightjar	1.945	7	InAe	
Grallina cyanoleuca	Magpie-lark	1.949	7	InTe	
Nymphicus hollandicus	Cockatiel	1.954	7	GrTe	
Cracticus torquatus	Grey Butcherbird	1.966	7	InFo	
Peltohyas australis	Inland Dotterel	1.966	7	InTe	
Coracina novaehollandiae	Black-faced Cuckoo-shrike	1.970	7	InTe	
Coturnix australis	Brown Quail	1.974	7	GrTe	

APPENDIX J. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Polytelis anthopeplus	Regent Parrot	2.057	8	GrTe	
Anthochaera carunculata	Red Wattlebird	2.097	8	NeFo	
Purpureicephalus spurius	Red-capped Parrot	2.107	8	GrFo	
Barnardius zonarius	Port Lincoln Parrot	2.125	8	NeFo	
Coracina maxima	Ground Cuckoo-shrike	2.126	8	InTe	
Cracticus nigrogularis	Pied Butcherbird	2.193	9	InTe	
Falco cenchroides	Australian Kestrel	2.193	9	InAe	
Ninox novaeseelandiae	Morepork	2.241	9	InAe	
Accipiter cirrhocephalus	Collared Sparrowhawk	2.255	9	CaAe	
Ocyphaps lophotes	Crested Pigeon	2.264	9	GrTe	
Vanellus tricolor	Banded Lapwing	2.265	9	InTe	
Phaps elegans	Brush Bronzewing	2.301	9	GrTe	
Geophaps lophotes	Crested Pigeon	2.316	9	GrTe	
Strepera versicolor	Grey Currawong	2.370	9	OmTe	
Elanus notatus	Black-shouldered Kite	2.398	9	CaAe	
Falco longipennis	Australian Hobby	2.403	9	CaAe	
Cacatua leadbeateri	Pink Cockatoo	2.491	10	HeFo	
Phaps chalcoptera	Common Bronzewing	2.491	10	GrFo	
Gymnorhina tibicen	Australian Magpie	2.497	10	InTe	
Cacatua roseicapilla	Galah	2.505	10	GrTe	
Podargus strigoides	Tawny Frogmouth	2.544	10	InTe	
Circus assimilis	Spotted Harrier	2.623	11	InAe	
Ninox connivens	Barking Owl	2.665	11	CaAe	
Lophoictinia isura	Square-tailed Kite	2.700	11	CaAe	
Accipiter fasciatus	Brown Goshawk	2.708	11	CaAe	

APPENDIX J. Continued.

Latin Name	Common Name	Mass(g)	BCART	Functional Group	Endangered
Tyto alba	Barn Owl	2.719	11	CaAe	
Cacatua sanguinea	Little Corella	2.720	11	GrTe	
Falco berigora	Brown Falcon	2.740	11	CaTe	
Ardea novaehollandiae	White-faced Heron	2.742	11	CaAq	
Tyto novaehollandiae	Australian Masked-Owl	2.785	11	CaAe	
Calyptorhynchus magnificus	Red-tailed Black Cockatoo	2.796	11	HeFo	
Ardea pacifica	Pacific Heron	2.813	11	CaAq	
Corvus coronoides	Australian Raven	2.829	11	CaTe	
Burhinus magnirostris	Beach Thick-knee	2.836	11	InTe	X
Cacatua tenuirostris	Long-billed Corella	2.869	11	НеТе	
Falco peregrinus	Peregrine Falcon	2.893	11	CaAe	
Haliastur sphenurus	Whistling Kite	2.903	11	CaAe	
Calyptorhynchus funereus	Yellow-tailed Black-Cockatoo	2.904	11	GrFo	
Hieraaetus morphnoides	Little Eagle	2.924	11	CaAe	
Chenonetta jubata	Maned Duck	2.940	11	НеТе	
Tadorna tadornoides	Australian Shelduck	3.111	12	HeAq	
Threskiornis spinicollis	Straw-necked Ibis	3.255	12	InTe	
Leipoa ocellata	Malleefowl	3.273	12	НеТе	X
Aquila audax	Wedge-tailed Eagle	3.544	12	CaAe	
Ardeotis australis	Australian Bustard	3.799	12	InTe	X
Dromaius novaehollandiae	Emu	4.494	12	НеТе	
Non-Indigenous Species					
Neochmia temporalis	Red-browed Firetail	1.041		GrTe	
Taeniopygia guttata	Zebra Finch	1.079		GrTe	
Streptopelia senegalensis	Laughing Turtledove	2.004		GrTe	

APPENDIX J. Continued.

Latin Name	Common Name	Mass(g) BCART	Functional Group Endangered
Coturnix pectoralis	Stubble Quail	2.019	GrTe
Streptopelia chinensis	Spotted Dove	2.199	GrTe
Dacelo gigas	Laughing Kookaburra	2.520	CaTe
Ardeola ibis	Cattle Egret	2.529	InTe
Columba livia	Domestic Pigeon	2.550	GrTe
Egretta alba	Large Egret	2.924	PiAq
Cacatua galerita	Sulphur-crested Cockatoo	2.950	GrFo
Threskiornis molucca	White Ibis	3.255	InAq
Cygnus olor	Mute Swan	4.031	HeAq

APPENDIX K. Body mass of mammals reconstructed in Bridger Zone 1 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART
Pontifactor	21	1
Mysops	40	1
Uintasorex	40	1
Entomolestes	49	1
Centetodon	54	1
Nyctitherium	73	1
Apatemys	79	1
Talpavus	107	1
Trogolemur	121	1
Uintanius	158	2
Gazinius	229	2
Scenopagus	242	2
Microparamys	393	2
Omomys	440	2
Sciuravus	794	3
Pauromys	857	3
Oodectes	858	3
Leptotomus bridgerensis	1160	3
Paramys delicatus	1355	3
Peradectes	1728	3
Hemiacodon	1862	3
Pantolestes	2228	3
Antiacodon	2650	3
Homacodon	5386	4
Notharctus	5500	4
Peratherium	5568	4
Orohippus	8240	4
Viverravus	10203	4
Helohyus	13251	4
Thisbemys corrugatus	14500	4
Helaletes	15748	4
Hyrachyus eximius	127880	5
Mesonyx	303000	5
Palaeosyops	418000	5
Uintatherium	524283	5

APPENDIX L. Body mass of mammals reconstructed in Bridger Zone 2 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART	
Entomolestes	49	1	
Apatemys	79	1	
Talpavus	107	1	
Washakius insignis	222	1	
Scenopagus	242	1	
Omomys	440	2	
Sciuravus	794	2	
Pauromys	857	2	
Leptotomus bridgerensis	1160	2	
Paramys delicatus	1355	3	
Peradectes	1728	3	
Hemiacodon	1862	3	
Microsus	2188	3	
Pantolestes	2228	3	
Antiacodon	2650	3	
Pseudotomus	3378	3	
Homacodon	5386	4	
Notharctus	5500	4	
Peratherium	5568	4	
Orohippus	8230	4	
Viverravus	10203	4	
Thisbemys corrugatus	14500	5	
Helaletes	15748	5	
Didelphodus	18446	5	
Patriofelis	21079	5	
Ischyrotomus oweni	32000	5	
Hyrachyus eximius	127880	6	
Uintatherium	524283	6	

APPENDIX M. Body mass of mammals reconstructed in Bridger Zone 3 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART
Entomolestes	49	1
Centetodon	54	1
Taxymys	60	1
Nyctitherium	73	1
Apatemys	79	1
Uintanius	158	1
Scenopagus	242	2
Microparamys	393	2
Omomys	440	2
Sciuravus	794	2
Oodectes	858	2
Paramys delicatus	1355	3
Hemiacodon	1862	3
Smilodectes	2001	3
Microsus	2188	3
Pantolestes	2228	3
Microsyops	2300	3
Antiacodon	2650	3
Notharctus	5500	4
Peratherium	5568	4
Limnocyon verus	6290	4
Orohippus	8230	4
Viverravus	10203	4
Helohyus	13251	4
Thisbemys corrugatus	14500	4
Helaletes	15748	4
Hyrachyus eximius	127880	5
Isectolophus	327000	5

APPENDIX N. Body mass of mammals reconstructed in Bridger Zone 4 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART	
Nyctitherium	73	1	
Apatemys	79	1	
Scenopagus	242	1	
Omomys	440	1	
Hemiacodon	1862	2	
Pantolestes	2228	2	
Microsyops	2300	2	
Antiacodon	2650	2	
Notharctus	5500	3	
Peratherium	5568	3	
Orohippus	8230	3	
Thinocyon	9072	3	
Viverravus	10203	3	
Helohyus	13251	3	
Thisbemys corrugatus	14500	3	
Helaletes	15748	3	
Hyrachyus eximius	127880	4	
Mesonyx	303000	4	

APPENDIX O. Body mass of mammals reconstructed in Bridger Zone 5 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART	
Pontifactor	21	1	
Uintasorex	40	1	
Entomolestes	49	1	
Centetodon	54	1	
Taxymys	60	1	
Nyctitherium	73	1	
Apatemys	79	1	
Tillomys	81	1	
Trogolemur	121	1	
Namatomys	190	2	
Scenopagus	242	2	
Omomys	440	2	
Sciuravus	794	3	
Pauromys	857	3	
Paramys delicatus	1355	3	
Peradectes	1728	3	
Pantolestes	2228	3	
Microsyops	2300	3	
Notharctus	5500	4	
Peratherium	5568	4	
Triplopus	31000	5	
Isectolophus	327000	5	

APPENDIX P. Body mass of mammals reconstructed in Uinta Zone 1 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART	
Protoptychus	98	1	
Microparamys	393	1	
Sciuravus	794	2	
Pareumys	963	2	
Mesomeryx	1325	2	
Ischyrotomus compressidens	1673	2	
Leptotomus leptodus	2508	2	
Bunomeryx	2793	2	
Peratherium	5568	3	
Leptoreodon	7557	3	
Epihippus	11075	3	
Tapocyon	11210	3	
Protoreodon	14219	3	
Thisbemys medius	20600	4	
Isectolophus annectens	27500	4	
Triplopus	31000	4	
Epitriplopus	58500	4	
Achaenodon	334000	5	
Amynodon	375000	5	

APPENDIX Q. Body mass of mammals reconstructed in Uinta Zone 2 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART	
Protoptychus	98	1	
Trogolemur	121	1	
Spurimus	150	1	
Uintamys	404	2	
Mytonolagus	780	2	
Sciuravus	794	2	
Pareumys	963	2	
Mesomeryx	1325	2	
Ourayia	1832	3	
Leptotomus leptodus	2508	3	
Bunomeryx	2793	3	
Peratherium	5568	4	
Reithroparamys gidleyi	6900	4	
Epihippus	11075	4	
Tapocyon	11210	4	
Protoreodon	14219	4	
Thisbemys medius	20600	5	
Isectolophus annectens	27500	5	
Triplopus	31000	5	
Oxyaenodon dysodus	41075	5	
Simidectes	48888	5	
Epitriplopus	58500	5	
Limnocyon potens	88775	6	
Ischyrotomus eugenei	132000	6	
Amynodon	375000	6	

APPENDIX R. Body mass of mammals reconstructed in Uinta Zone 3 faunal assemblage. Bayesian CART groups used to identify each body mass aggregation.

Latin Name	Mass(g)	CART	
Microparamys	393	1	
Mytonolagus	780	1	
Sciuravus	794	1	
Pareumys	963	1	
Ourayia	1832	2	
Mytonomys	2144	2	
Leptotomus leptodus	2508	2	
Pentacemylus	4325	3	
Auxontodon	5278	3	
Leptoreodon	7557	3	
Epihippus	11075	4	
Tapocyon	11210	4	
Protoreodon	14219	4	
Diplobunops	18800	4	
Isectolophus annectens	27500	5	
Triplopus	31000	5	
Colodon	40500	5	
Simidectes	48888	5	
Epitriplopus	58500	5	
Proviverra	63772	5	

APPENDIX S. The data of one hundred countries used in Chapter 6 analyses. Environmental Sustainability Index (ESI) and Environmental Vulnerability Index (EVI).

Country	Endangered Birds	Endangered Mammals (%)	Invasive Birds (%)	Invasive Mammals	Resilience (%)	ESI	EVI	Total Population (1000)
Country	(%)		` /	(%)				, ,
Albania	1.714	4.054	0.286	1.351	2.594	58.8	330	3,130
Algeria	6.349	14.286	1.003	1.905	2.757	46	275	32,850
Argentina	4.776	9.626	0.682	4.011	7.643	62.7	287	38,750
Armenia	3.343	10.000	0.000	2.222	5.122	53.2	247	3,020
Australia	6.349	22.350	3.515	14.040	17.384	61	238	20,160
Austria	2.069	4.444	1.839	12.222	6.095	62.7	369	8,190
Azerbaijan	4.076	6.796	0.000	4.854	5.732	45.4	354	8,410
Bolivia	2.021	5.234	0.139	0.275	2.836	59.5	250	9,180
Brazil	7.025	13.117	0.228	0.772	9.045	62.2	281	186,400
Bulgaria	3.023	7.447	0.504	2.128	4.684	50	323	7,730
Burundi	1.168	6.618	0.146	0.000	2.192	40	288	7,550
Cameroon	1.567	12.239	0.000	0.000	4.334	52.5	229	16,320
Canada	2.719	5.941	1.208	5.446	5.671	64.4	251	32,270
Central African								
Republic	0.646	3.196	0.000	0.000	1.208	58.7	193	4,040
Chile	6.4	14.685	1.000	8.392	10.886	53.6	287	16,300
China	6.523	13.612	0.153	1.089	9.061	38.6	360	1,315,840
Colombia	4.567	11.991	0.106	0.905	6.237	58.9	296	45,600
Costa Rica	1.917	3.524	0.225	0.881	2.603	59.6	354	4,330
Côte d'Ivoire	1.884	9.524	0.000	0.000	3.819	47.3	248	18,150
Cuba	5.163	30.769	2.446	15.385	13.395	52.3	329	11,270
Czech Republic Democratic Republic	1.474	2.564	1.966	14.103	5.567	46.6	315	10,220
of Congo	2.661	6.744	0.000	0.000	3.762	44.1	288	57,550
Dominican Republic	5.19	28.571	3.460	0.000	11.538	43.7	324	8,890

Country	Endangered Birds (%)	Endangered Mammals (%)	Invasive Birds (%)	Invasive Mammals (%)	Resilience (%)	ESI	EVI	Total Population (1000)
Ecuador	4.169	12.366	0.181	0.806	5.969	52.4	304	13,230
Egypt	2.132	17.143	0.853	3.810	6.272	44	298	74,030
El Salvador	0.513	3.086	0.684	0.000	1.606	43.8	348	6,880
Finland	0.887	1.613	0.887	9.677	2.924	75.1	265	5,250
France	1.056	8.130	2.465	11.382	6.368	55.2	361	60,500
Gabon	0.667	7.143	0.000	1.099	2.146	61.7	211	1,380
Gambia	0.87	6.767	0.174	0.000	2.119	50	277	1,520
Georgia	2.793	9.804	0.000	0.980	4.565	51.5	261	4,470
Germany	1.174	5.941	2.153	14.851	6.209	57	357	82,690
Ghana	1.083	6.615	0.000	0.000	2.510	52.8	279	22,110
Greece	2.477	9.901	0.676	3.960	5.138	50.1	353	11,120
Guinea-Bissau	0.405	8.943	0.000	0.000	2.107	48.6	271	1,590
Honduras	0.947	3.774	0.271	0.000	1.788	47.4	273	7,200
Hungary	2.261	2.500	1.005	5.000	3.975	52	363	10,100
India	6.194	23.301	0.081	1.214	10.860	45.2	385	1,103,370
Indonesia	7.241	27.463	0.375	2.985	14.349	48.8	316	222,780
Iran	3.839	8.602	0.576	1.075	5.799	39.8	313	69,520
Ireland	0.209	10.000	0.626	14.000	3.025	59.2	318	4,150
Israel	2.403	13.889	3.327	0.926	7.242	50.9	380	6,720
Italy	1.495	7.080	0.748	5.310	4.012	50.1	386	58,090
Jamaica	3.988	16.327	4.601	6.122	10.400	44.7	381	2,650
Japan	7.12	19.444	1.942	8.333	12.598	57.3	389	128,080
Jordan	1.942	16.049	0.485	0.000	4.665	47.8	310	5,700

APPENDIX S. Continued.

	Endangered Birds	Endangered Mammals	Invasive Birds	Invasive Mammals	Resilience			Total Population
Country	(%)	(%)	(%)	(%)	(%)	ESI	EVI	(1000)
Kazakhstan	4.158	10.323	0.000	2.581	6.212	48.6	215	14,830
Kenya	2.4	7.181	0.444	0.532	4.064	45.3	262	34,260
Kyrgyzstan	3.183	8.451	0.265	7.042	5.357	48.4	234	5,260
Laos	3.286	21.395	0.286	0.000	7.760	52.4	243	5,920
Lebanon	4.556	14.925	1.075	0.000	1.613	40.5	387	3,580
Malaysia	5.534	20.833	0.515	1.190	10.872	54	312	25,350
Mali	0.982	8.824	0.000	0.000	2.410	53.7	215	13,520
Mauritania	1.476	13.274	0.000	0.000	3.511	42.6	233	3,070
Mexico	5.341	20.268	0.552	1.147	10.938	46.2	306	107,030
Mongolia	4.907	8.088	0.000	0.735	5.851	50	208	2,650
Morocco	2.041	14.286	0.204	4.511	5.778	44.8	315	31,480
Namibia	3.043	5.446	0.000	1.485	3.924	56.8	200	2,030
Nepal	3.556	17.582	0.111	0.549	6.100	47.7	305	27,130
Netherlands	0.433	5.128	1.515	11.538	4.074	53.7	388	16,300
New Zealand	24.047	18.182	11.730	70.455	41.818	61	292	4,030
Nicaragua	1.202	2.463	0.267	0.000	1.681	50.2	272	5,490
Nigeria	1.268	9.825	0.000	0.000	3.249	45.4	336	131,530
Norway	0.425	9.333	0.425	5.333	2.747	73.4	273	4,620
Pakistan	3.659	12.042	0.000	2.618	5.920	39.9	373	157,940
Panama	1.763	5.691	0.415	0.407	2.975	57.7	247	3,230
Paraguay	3.808	4.848	0.282	1.212	4.462	59.7	260	6,160
Peru	5.07	11.777	0.162	1.285	6.807	60.4	268	27,970
Philippines	11.337	18.841	0.508	2.415	14.286	42.3	402	83,050

	Endangered Birds	Endangered Mammals	Invasive Birds	Invasive Mammals	Resilience			Total Population
Country	(%)	(%)	(%)	(%)	(%)	ESI	EVI	(1000)
Poland	1.33	6.667	1.109	6.667	4.251	45	354	38,530
Portugal	1.782	12.222	1.782	2.222	5.210	54.2	335	10,490
Romania	3.158	7.368	0.263	5.263	5.263	46.2	335	21,710
Rwanda	1.389	10.326	0.000	0.000	3.208	44.8	298	9,040
Saudi Arabia	5.429	11.905	1.027	2.381	2.875	37.8	274	24,570
Senegal	1.196	8.466	0.000	0.000	2.797	51.1	277	11,660
Sierra Leone	1.504	8.421	0.000	0.000	3.041	43.4	283	5,530
Slovakia	1.939	3.529	0.554	0.000	2.691	52.8	303	5,400
Slovenia	1.061	4.651	1.061	1.163	2.808	57.5	362	1,970
South Africa	4.118	8.081	1.059	3.030	6.713	46.2	324	47,430
South Korea	5.693	13.889	0.380	1.389	7.179	43	373	47,820
Spain	2.98	13.913	2.607	6.957	8.282	48.8	352	43,060
Sri Lanka	2.921	25.641	0.449	2.564	8.541	48.5	331	20,740
Sudan	1.304	5.338	0.100	1.423	2.582	35.9	274	36,230
Sweden	0.63	1.389	0.210	16.667	3.102	71.7	311	9,040
Switzerland	0.495	2.381	1.238	0.000	1.844	63.7	348	7,250
Syria	6.224	17.021	0.000	1.064	3.351	43.8	350	19,040
Tajikistan	2.535	11.765	0.000	2.941	4.492	38.6	271	6,510
Tanzania	3.636	9.471	0.273	0.557	5.415	50.3	257	38,330
Thailand	4.427	18.650	0.101	0.643	8.046	49.8	308	64,230
Togo	0.302	5.714	0.000	0.000	1.434	44.5	293	6,150
Trinidad & Tobago	0.429	1.754	0.644	2.632	1.724	36.3	381	1,310
Turkey	3.049	11.409	0.610	1.342	5.772	46.6	353	73,190

APPENDIX S. Continued.

	Endangered Birds	Endangered Mammals	Invasive Birds	Invasive Mammals	Resilience			Total Population
Country	(%)	(%)	(%)	(%)	(%)	ESI	EVI	(1000)
Uganda	1.713	6.583	0.000	0.627	2.993	51.3	283	28,820
Ukraine	2.804	9.821	1.168	8.036	6.852	44.7	317	46,480
United Arab Emirates	6.029	15.217	3.218	0.000	1.839	44.6	293	4,500
United Kingdom	0.334	6.757	1.836	47.297	7.875	50.2	373	59,670
United States	9.209	9.091	4.372	6.136	14.059	53	300	298,210
Venezuela	1.849	9.091	0.427	0.551	3.787	48.1	291	26,750
Viet Nam	4.615	18.815	0.355	0.697	8.657	42.3	357	84,240
Zambia	1.435	3.419	0.000	1.282	2.150	51.1	210	11,670

APPENDIX T. The data of one hundred countries used in Chapter 6 analyses. Life Expectancy (LE) and Pesticide Regulations (PR).

	GDP per capita	Total Land	Latitude		Water Stress	Agricultural Intensity		Adult Literacy	Tourism (1000
Country	(\$)	Area (km ²)	(°)	LE	(%)	(%)	PR	(%)	people)
Albania	4,955	28,300	41	78	0.0	6.2	2	98.7	748
Algeria	6,376	2,302,500	28	74	24.5	55.9	15	69.9	1,443
Argentina	13,652	2,736,300	34	77	24.1	13.7	20	97.2	3,895
Armenia	5,011	28,300	40	73	68.6	3.5	22	99.4	319
Australia	30,678	7,634,600	27	82	45.7	12.9	22	99	5,497
Austria	30,736	83,200	47	80	0.0	23.3	22	99	19,952
Azerbaijan	5,953	85,400	40	67	31.4	5.6	1	98.8	1,177
Bolivia	2,579	1,069,100	17	67	2.1	0	4	86.7	413
Brazil	7,826	8,511,000	10	72	2.3	2	20	88.6	5,358
Bulgaria	8,754	111,300	43	73	36.5	18.4	22	98.2	7,282
Burundi	630	25,200	3	52	0.0	5.1	22	59.3	148
Cameroon	2,079	465,800	6	54	0.0	12.8	2	67.9	176
Canada	30,278	9,458,900	60	81	1.7	25.6	22	99	18,770
Central African Republic	1,111	622,900	7	45	0.5	0	13	48.6	12
Chile	10,939	721,200	30	77	16.5	0.4	22	95.7	2,027
China	6,621	9,198,100	35	74	19.6	10.7	13	90.9	120,292
Colombia	6,886	1,141,200	4	73	2.8	0	19	92.8	933
Costa Rica	9,646	51,000	10	78	0.0	4.1	16	94.9	1,679
Côte d'Ivoire	1,471	320,300	8	56	1.8	1.1	17	48.7	180
Cuba	4,100	111,200	21	78	28.7	34.2	14	99.8	2,319
Czech Republic Democratic Republic of	19,700	78,600	49	77	2.6	28.6	22	99	6,336
Congo	700	2,313,400	0	54	0.0	0.1	3	67.2	61
Dominican Republic	7,618	48,100	19	74	20.4	13.8	21	87	3,691

Country	GDP per capita (\$)	Total Land Area (km²)	Latitude (°)	LE	Water Stress (%)	Agricultural Intensity (%)	PR	Adult Literacy (%)	Tourism (1000 people)
Ecuador	3,982	256,300	2	75	19.2	1	19	91	861
Egypt	4,031	968,100	27	72	25.5	45.7	19	71.4	8,608
El Salvador	4,776	20,300	14	72	0.0	31.7	17	80.6	1,154
Finland	30,420	317,000	64	79	0.4	15.3	22	99	2,080
France	28,877	547,100	46	81	8.4	29	21	99	76,001
Gabon	5,835	265,100	1	53	0.0	0.8	3	84	222
Gambia	1,745	10,800	13	55	0.0	6	21	99	90
Georgia	3,304	69,200	42	77	7.0	3	3	100	560
Germany	27,438	356,000	51	79	15.9	17.2	22	99	21,500
Ghana	2,299	231,700	8	60	0.0	10.6	17	57.9	429
Greece	21,675	131,900	39	80	4.5	9.4	21	96	14,276
Guinea-Bissau	745	34,100	12	48	0.0	0	1	99	5
Honduras	3,170	112,100	15	69	2.3	1.3	1	80	673
Hungary	16,928	92,000	47	73	24.5	40.7	21	99	3,446
India	3,308	3,208,100	20	70	33.5	50.6	3	61	3,919
Indonesia	3,570	1,897,800	5	71	0.2	10.9	19	90.4	5,002
Iran	7,405	1,590,400	32	71	25.3	13.2	20	82.4	1,659
Ireland	36,238	69,500	53	78	0.0	2.9	21	99	7,334
Israel	23,020	21,900	31	81	75.3	29.4	1	97.1	1,903
Italy	26,496	299,300	43	80	17.7	21.9	21	98.4	36,513
Jamaica	3,907	11,100	18	74	0.0	10.2	20	79.9	1,479
Japan	27,992	371,700	36	82	5.6	1.7	22	99	6,728
Jordan	5,176	88,400	31	79	75.0	23.7	22	91.1	2,987

Country	GDP per capita (\$)	Total Land Area (km²)	Latitude (°)	LE	Water Stress (%)	Agricultural Intensity (%)	PR	Adult Literacy (%)	Tourism (1000 people)
Kazakhstan	7,652		48	68	20.1	8.7	10	99.5	
	,	2,619,400							4,365
Kenya	1,137	579,600	1	58	13.9	1.3	4	73.6	1,146
Kyrgyzstan	1,749	185,300	41	69	20.5	0	18	98.7	315
Laos	2,013	230,200	18	57	0.0	0.3	19	68.7	1,095
Lebanon	4,876	10,300	34	74	10.0	14.5	20	99	1,140
Malaysia	10,091	330,800	2	73	0.7	1.8	20	88.7	16,431
Mali	942	1,248,100	17	50	13.5	0	4	24	143
Mauritania	2,161	1,036,900	20	60	15.8	0	3	51.2	30
Mexico	9,967	1,943,100	23	76	31.5	9.7	18	91.6	21,915
Mongolia	2,034	1,546,300	46	68	11.3	0.2	17	97.8	338
Morocco	4,346	403,800	32	72	47.6	58.7	19	52.3	5,843
Namibia	7,038	820,000	22	51	52.0	0	3	85	778
Nepal	1,379	139,100	28	66	0.9	7.9	13	48.6	375
Netherlands	31,306	35,000	52	79	24.1	9.4	21	99	10,012
New Zealand	23,109	265,300	41	80	1.2	1.7	22	99	2,366
Nicaragua	3,539	118,800	13	72	0.0	4.9	5	76.7	712
Nigeria	1,008	904,200	10	47	4.7	27.2	3	69.1	2,778
Norway	37,667	318,500	62	80	0.0	8.7	22	99	3,859
Pakistan	2,206	785,300	30	65	33.4	34.3	2	49.9	798
Panama	7,234	74,500	9	77	2.6	0	21	91.9	576
Paraguay	4,368	395,900	23	76	23.5	3.1	21	93.5	341
Peru	5,725	1,288,300	10	71	16.7	0.1	21	87.9	1,486
Philippines	4,731	295,400	13	71	3.0	6.9	18	92.6	2,623

Country	GDP per capita (\$)	Total Land Area (km²)	Latitude (°)	LE	Water Stress (%)	Agricultural Intensity (%)	PR	Adult Literacy (%)	Tourism (1000 people)
Poland	13,349	311,200	52	76	5.6	37.5	21	99	4,310
Portugal	18,966	91,400	39	78	10.0	19.5	21	93.8	5,676
Romania	8,722	237,100	46	73	17.2	42.3	22	97.3	5,839
Rwanda	1,105	24,300	2	51	0.0	13.4	4	64.9	113
Saudi Arabia	14,769	1,942,700	25	76	51.6	24.6	20	82.9	8,037
Senegal	1,599	196,200	14	59	13.4	2.4	4	39.3	387
Sierra Leone	753	72,600	8	41	0.0	0	1	34.8	40
Slovakia	15,409	48,900	48	75	0.0	30.4	22	99	1,515
Slovenia	20,890	20,200	46	77	0.0	2.3	19	99.7	1,545
South Africa	10,338	1,217,600	29	49	54.8	4.8	14	82.4	7,369
South Korea	20,572	99,000	37	79	9.7	4.2	15	99	6,023
Spain	24,681	505,300	40	80	37.1	31.6	21	99	55,914
Sri Lanka	4,391	65,800	7	75	16.5	13	18	90.7	549
Sudan	2,050	2,492,400	15	51	10.7	1.1	21	60.9	246
Sweden	30,392	431,700	62	81	0.4	15.8	22	99	7,627
Switzerland	32,775	39,000	47	81	0.0	4.3	22	99	7,229
Syria	3,497	184,400	35	71	55.6	58.2	21	80.8	3,368
Tajikistan	1,257	130,100	39	65	14.0	0.7	3	99.5	5
Tanzania	650	891,000	6	52	10.8	0.1	4	69.4	613
Thailand	8,065	513,600	15	73	8.8	11.7	20	92.6	11,567
Togo	1,306	57,300	8	59	0.0	33.5	16	53.2	81
Trinidad & Tobago	14,708	5,200	11	71	0.0	16	19	98.4	463
Turkey	7,842	768,700	39	72	13.9	14.2	19	87.4	20,273

Country	GDP per capita (\$)	Total Land Area (km²)	Latitude (°)	LE	Water Stress (%)	Agricultural Intensity (%)	PR	Adult Literacy (%)	Tourism (1000 people)
Uganda	1,313	207,100	1	53	1.4	31.9	1	66.8	468
Ukraine	6,605	588,400	49	68	24.2	62.3	16	99.4	12,514
United Arab Emirates	22,698	74,800	24	76	41.6	0	3	88.7	5,871
United Kingdom	30,237	247,200	54	79	8.4	20.5	21	99	29,970
United States	38,165	9,210,800	38	78	21.3	16.8	19	99	49,206
Venezuela	6,485	911,800	8	74	9.7	0.9	3	93	706
Viet Nam	2,925	328,800	16	72	3.0	11.8	20	90.3	3,468
Zambia	949	745,300	15	39	0.1	0.1	9	68	669

APPENDIX U. The data of one hundred countries used in Chapter 6 analyses. Under Nourishment (UN), Total Biodiversity (TB) and Political Stability (PS).

Country	UN (%)	Annual Rainfall (mm)	Energy Efficiency (Terajoules/million GDP)	Wilderness Protection (%)	ТВ	Exports/Imports (million \$)	PS	Women in Govt. (%)
Albania	6	1,136	6,751	8.1	3,569	2269/596	35	7
Algeria	5	257	6,797	5.2	3,846	18200/32300	13	7
Argentina	2.5	1,062	6,120	6.6	11,387	22445/34550	50	40
Armenia	29	497	15,417	8.6	4,010	1351/723	42	8
Australia	2.5	527	8,960	10.6	19,463	96507/80218	79	30
Austria	2.5	1,230	5,833	28.2	3,698	117708/117360	94	27
Azerbaijan	10	625	21,371	7.4	4,849	3504/3614	24	11
Bolivia	23	1,507	8,241	21.8	19,611	1844/2146	18	15
Brazil	8	1,940	6,402	29.7	60,322	65946/96475	37	9
Bulgaria	9	730	15,195	10.1	4,196	14400/9912	61	22
Burundi	67	1,042	1,650	6.1	3,324	176/47	9	32
Cameroon	25	1,778	2,300	10.3	10,059	2400/2600	31	14
Canada Central African	2.5	641	14,227	8.7	4,164	273526/316735	85	25
Republic	45	1,309	1,362	18.2	4,614	120/130	7	11
Chile	4	2,287	6,832	19.7	6,222	24871/32025	66	13
China	12	1,119	7,079	15.8	35,082	1003665/1029408	32	21
Colombia	14	2,708	3,805	26.2	54,967	16723/16431	8	10
Costa Rica	4	2,926	4,462	31.1	13,864	8268/6297	78	37
Côte d'Ivoire	14	1,912	4,027	21.3	4,887	3588/6243	3	9
Cuba	2.5	1,103	14,968	18.7	7,448	5000/1700	49	43
Czech Republic	2.5	818	9,418	15.8	2,448	69476/68624	77	16

Country	UN (%)	Annual Rainfall (mm)	Energy Efficiency (Terajoules/million GDP)	Wilderness Protection (%)	ТВ	Exports/Imports (million \$)	PS	Women in Govt.
Democratic	(%)	(111111)	GDP)	(%)	1 D	(111111011 \$)	гъ	(%)
Republic of Congo Dominican	72	1,566	2,139	11.8	13,208	600/400	2	8
Republic	27	821	4,699	28.8	6,250	5370/1334	49	17
Ecuador	5	2,320	8,247	28.1	22,311	7861/7634	19	25
Egypt	3	107	8,732	8.0	3,077	17975/10453	22	4
El Salvador	11	1,305	3,643	1.4	3,731	5989/3382	44	17
Finland	2.5	410	8,349	9.9	1,653	50799/61304	99	42
France	2.5	818	6,685	15.5	5,549	465229/448498	65	20
Gabon	5	1,504	4,561	16.7	7,724	1370/4200	52	16
Gambia	27	598	1,550	2.0	1,816	230/30	38	9
Georgia	13	1,321	11,490	3.9	4,841	1848/648	24	6
Germany	2.5	945	6,382	56.3	3,425	716580/911821	81	31
Ghana	12	1,112	2,762	17.1	5,000	5214/2327	53	11
Greece	2.5	748	6,215	3.4	5,758	52552/15190	63	15
Guinea-Bissau	37	1,223	4,960	19.3	1,730	69/69	30	14
Honduras	22	1,234	5,355	21.0	7,119	3922/1534	31	23
Hungary	2.5	559	6,909	5.7	2,751	59303/54830	68	11
India	20	1,432	4,571	4.9	26,769	94070/71798	18	9
Indonesia	6	2,749	6,485	15.8	36,760	52076/71261	15	12
Iran	4	258	13,048	7.2	9,011	37739/40710	11	3
Ireland	2.5	1,273	4,014	1.1	1,796	60621/104231	89	16
Israel	2.5	427	5,780	34.9	3,251	41036/38520	13	14

Country	UN (%)	Annual Rainfall (mm)	Energy Efficiency (Terajoules/million GDP)	Wilderness Protection (%)	ТВ	Exports/Imports (million \$)	PS	Women in Govt. (%)
Italy	2.5	932	5,090	7.1	6,477	350865/348984	62	20
Jamaica	10	1,628	15,398	20.8	3,914	4071/1586	43	14
Japan	2.5	1,551	6,248	14.4	7,491	455254/565822	85	12
Jordan	7	179	10,528	10.6	2,744	8179/3883	34	9
Kazakhstan	8	277	21,143	2.9	6,746	12781/20096	58	12
Kenya	31	998	4,642	12.3	8,667	4553/2684	16	10
Kyrgyzstan	4	419	20,967	3.4	4,803	941/719	15	26
Laos	21	1,933	4,833	16.3	9,460	506/361	43	25
Lebanon	3	656	10,179	0.4	3,571	9397/1747	4	5
Malaysia	3	2,822	9,851	20.2	17,539	105284/126512	52	15
Mali	28	536	1,318	2.1	2,640	1131/932	39	10
Mauritania	10	199	9,024	0.9	1,909	480/400	32	20
Mexico	5	1,052	7,153	8.0	29,510	128723/101252	25	22
Mongolia	28	156	20,733	14.1	3,382	801/616	68	4
Morocco	6	340	4,117	1.4	4,486	17525/9667	27	6
Namibia	23	339	4,102	15.1	4,347	2180/1830	79	27
Nepal	17	1,648	1,781	17.6	8,226	1890/716	3	33
Netherlands	2.5	893	8,000	23.4	1,857	319176/358015	76	38
New Zealand	2.5	1,248	9,838	30.1	3,094	22163/19830	94	33
Nicaragua	27	1,869	3,584	18.5	8,883	1879/605	36	19
Nigeria	9	1,324	6,931	16.3	6,227	14164/31148	4	7
Norway	2.5	1,241	10,689	6.3	2,321	47929/81544	93	36

Country	UN (%)	Annual Rainfall (mm)	Energy Efficiency (Terajoules/million GDP)	Wilderness Protection (%)	ТВ	Exports/Imports (million \$)	PS	Women in Govt. (%)
Pakistan	23	438	6,160	9.1	6,114	17950/13380	1	21
Panama	25	2,619	9,763	28.5	11,759	3594/944	50	17
Paraguay	15	1,205	15,943	6.1	8,953	3004/1985	28	14
Peru	12	1,988	3,997	13.8	20,247	982/12617	20	29
Philippines	19	2,199	3,603	17.4	11,079	42348/39700	10	20
Poland	2.5	588	8,036	24.4	3,065	89131/74818	67	18
Portugal	2.5	1,039	5,618	6.6	5,872	54888/35750	73	28
Romania	2.5	620	9,464	10.7	3,993	32664/23485	51	10
Rwanda	36	1,115	1,298	8.2	3,306	284/98	37	51
Saudi Arabia	4	151	18,749	42.4	2,831	44500/95369	25	0
Senegal	23	576	3,905	25.1	3,163	2860/1270	38	29
Sierra Leone	50	2,546	3,451	4.1	3,127	607/180	33	13
Slovakia	6	747	11,138	19.7	3,620	29457/27534	80	19
Slovenia	3	989	7,898	6.6	3,787	17189/15823	84	10
South Africa	4	640	10,129	6.2	25,681	48240/45720	51	34
South Korea	2.5	1,142	9,432	4.5	3,544	224463/253845	62	14
Spain	2.5	645	6,229	9.5	5,983	249187/178521	45	34
Sri Lanka	22	1,700	2,724	20.5	4,440	7973/5757	6	6
Sudan	27	741	2,156	4.6	4,698	2711/2609	2	17
Sweden	2.5	561	8,238	10.9	2,390	99276/122478	95	47
Switzerland	2.5	1,502	5,361	30.3	3,599	111740/118673	99	27
Syria	4	366	14,076	0.7	3,592	5300/7000	25	12

Country	UN	Annual Rainfall	Energy Efficiency (Terajoules/million	Wilderness Protection	TD	Exports/Imports	DC	Women in Govt.
Country	(%)	(mm)	GDP)	(%)	TB	(million \$)	PS	(%)
Tajikistan	61	440	37,289	15.1	5,491	1375/915	19	20
Tanzania	44	1,116	3,493	41.6	12,237	2508/1330	40	30
Thailand	21	1,634	6,654	20.3	13,648	94382/96064	17	13
Togo	25	1,117	2,316	11.0	4,034	556/367	27	11
Trinidad & Tobago	11	1,983	37,706	34.5	2,961	4858/6373	44	33
Turkey	3	615	6,690	2.0	9,549	97540/63121	21	9
Uganda	19	1,401	1,010	17.5	6,541	2014/886	14	31
Ukraine	3	525	23,643	3.5	5,678	28996/32672	50	8
United Arab								
Emirates	2.5	52	30,690	0.3	380	58000/88000	73	23
United Kingdom	2.5	1,130	5,668	22.0	2,738	463244/346695	66	20
United States	2.5	939	9,112	14.7	22,575	1525481/818520	56	17
Venezuela	18	1,813	22,593	71.4	23,675	16700/33929	12	19
Viet Nam	17	1,740	4,880	5.7	12,291	25227/20176	56	26
Zambia	47	1,049	11,906	41.5	5,989	1691/1198	54	15